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Abstract: Speech emotion recognition (SER) is a natural method of recognizing individual emotions
in everyday life. To distribute SER models to real-world applications, some key challenges must
be overcome, such as the lack of datasets tagged with emotion labels and the weak generalization
of the SER model for an unseen target domain. This study proposes a multi-path and group-
loss-based network (MPGLN) for SER to support multi-domain adaptation. The proposed model
includes a bidirectional long short-term memory-based temporal feature generator and a transferred
feature extractor from the pre-trained VGG-like audio classification model (VGGish), and it learns
simultaneously based on multiple losses according to the association of emotion labels in the discrete
and dimensional models. For the evaluation of the MPGLN SER as applied to multi-cultural domain
datasets, the Korean Emotional Speech Database (KESD), including KESDy18 and KESDy19, is
constructed, and the English-speaking Interactive Emotional Dyadic Motion Capture database
(IEMOCAP) is used. The evaluation of multi-domain adaptation and domain generalization showed
3.7% and 3.5% improvements, respectively, of the F1 score when comparing the performance of
MPGLN SER with a baseline SER model that uses a temporal feature generator. We show that the
MPGLN SER efficiently supports multi-domain adaptation and reinforces model generalization.

Keywords: speech emotion recognition; domain adaptation; SER generalization; Korean Emotional
Speech Database; ensemble model; multi-path; group-loss; BLSTM network

1. Introduction

Human speech is a natural communication method in human–computer interaction
(HCI) and human–robot interaction (HRI). Speech emotion recognition (SER), which is
based on natural human language, is a key method used to recognize individual emotions
in everyday speech. SER uses the acoustic features of a speech segment, not the lexical
features having the semantic information of the segment [1]. Hence, it recognizes subjects’
emotions from “how” they speak rather than the content of their words. The predicted
emotional context of a target speaker can then be used as an important factor for decision
making in intelligent HCI and HRI services [2,3].

Prior to deploying SER models in real applications, the lack of SER databases tagged
with emotion labels must be addressed, because they are not sufficient for training deep-
SER models. Another challenge is the limited generality of the SER model, owing to the
high variability of the acoustic signals of the emotional speech samples.

Emotions have characteristics of high subjectivity and diversity, depending on the
individual or culture. Therefore, it is time-consuming and expensive to build a large-
scale emotional database annotated with reliable gold-standard emotion labels via human
observation. Most SER datasets having gold-standard labels contain thousands of speech
samples collected from a limited number of speakers in a specific environment [4–7].
Therefore, the performance of an SER model trained on single-domain samples is inherently
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degraded when applied to unseen domain samples that reflect different languages, cultures,
speakers, genders, microphone types, positions, and signal-to-noise ratios [8–10]. This
study defines a single SER domain dataset collected using one collection procedure at one
place using the same collection device.

Many studies have effectively utilized limited emotion databases to improve the SER
performance. In addition to the typical augmentation methods of speech samples [11,12],
there exists a domain adaptation method that utilizes speech datasets already established
in the unknown target domain [8–10,13–16]. In comparison with the results of data aug-
mentation in a single domain, it is difficult to guarantee good performance because of
the high variability of the acoustic features of the emotional speech samples in the do-
main [8–10,13,14]. However, domain adaptation based on multi-domain datasets can be
used to construct better SER models to support such generalities without overfitting.

We propose a multi-path and group-loss-based network (MPGLN) for SER, which
supports supervised domain adaptation in multi-domain datasets acquired from multiple
environments. The proposed MPGLN for SER (MPGLN SER) is based on an ensemble learn-
ing structure for multi-level embedding vector learning for speech segments. It includes
a temporal embedding feature generator, transferred feature extractor, and prediction
function network that classifies the emotion labels based on the generated and extracted
feature vectors. The bidirectional long short-term memory (BLSTM)-based temporal feature
generator network learns an embedding vector as a 74-D input of handcrafted low-level
descriptions (LLD) of a speech segment. The transferred feature extractor creates feature
vectors from the pre-trained VGG-like audio classification model (VGGish) [17], and the
proposed MPGLN SER is trained based on multiple losses by the association between the
discrete and continuous dimensional emotion labels [1] of the multi-domain samples.

The proposed MPGLN SER is evaluated over five multi-domain SER datasets: the
benchmark English Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset [7],
which was widely used in previous studies for SER model evaluation, and the four Korean
Emotional Speech Database (KESD) datasets that are built for this study.

In our evaluation, we use an SER model comprising a BLSTM-based temporal feature
generator and the MPGLN predicting network, excluding transferred features, as our base-
line model. We then verify the reliability of the baseline SER model using the IEMOCAP
dataset. Comparing it with the performance of the baseline SER model, it is confirmed that
the proposed MPGLN SER is effective in supporting supervised multi-domain adaptations
and reinforcing generalizations [18] of the SER model in multi-domain datasets.

This paper is organized as follows. In Section 2, we present a brief overview of related
SER and domain adaptation works. Section 3 describes the proposed MPGLN, which
supports multi-domain adaption of SER in multi-domain datasets. Section 4 details the
evaluation results of the MPGLN SER, and Section 5 concludes this study and suggests
future works.

2. Related Works

Recent SER models based on deep-learning architectures [19–30] have demon-
strated state-of-the-art performance with an attention mechanism [19,20,22,23,25,26].
The deep-learning architectures adopted in previous studies included recurrent neural
networks (RNN) [19], convolutional neural networks (CNN) [24], and convolutional
RNNs (CRNN) [20,26]. Liu et al. [21] presented an SER model of a decision tree for an
extreme learning machine having a single hidden-layer feed-forward neural network,
using a mixture of deep learning and typical classification techniques.

The input features for deep-learning-based SER models are generally extracted from
the time or spectrum axis in units of speech segments or frames. There are various LLDs
and high-level statistical functions of the LLD single features [19,20,31–33]. The spectrum
LLD features of speech signals include logMel filter-banks and mel-frequency cepstral
coefficients (MFCC). Zero-crossing rates and signal energies are representative time-domain
features [27–30], whereas spectral roll-off and spectral centroid are classified as spectral
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parameters [33]. A set of multiple single features for acoustic signal processing, such as
the extended Geneva Minimalistic Acoustic Parameter Set [34] and the INTERSPEECH
2010 Paralinguistic Challenge (IS10) dataset [35], is now accessible from open-source
frameworks, such as OpenSmile [36]. Some studies have investigated the mechanism of
modeling and integrating of temporal acoustic features to improve the performance of
speech emotion recognition or audio classification [31,32]. Jing et al. [37] presented an
evaluation of multiple acoustic feature sets that combined features generated from the
pre-trained acoustic model [15,17,38,39].

A typical deep-learning model requires large-scale samples for training. Unfortunately,
SER datasets annotated with emotion labels are scarce. Furthermore, collecting SER speech
samples and tagging them with emotion labels is time-consuming and expensive. Thus,
to overcome the limitations of volume and diversity of labeled speech samples for deep-
learning SER models, studies have been performed using data augmentation [11,12,40–42],
active learning [12,43] based on collected datasets, and domain adaptation [8–10,13–16] to
adapt the existing SER datasets to the target domains.

Park et al. [11] presented a data augmentation experiment for speech samples using
warping and masking in a frequency channel with a time step. Chatziagapi et al. [40]
proposed a method that used generative adversarial networks [44] to extract artificial
spectrograms of augmented data to balance each emotion class.

Active-learning methods have been used to present greedy selection methods of
speech samples to construct an initial SER model suitable for a target speaker based on
limited samples [12,43]. Abdelwahab et al. [43] proposed the active learning of greedy
sampling to select the most informative samples to improve the performance of DNN-based
SER models. In a study by Bang et al. [12], samples that were close to the target speaker’s
samples in the embedding space were selected; the synthetic minority oversampling
technique was applied to increase the number of samples of the minority class.

Domain adaptation techniques are actively being studied in the field of visual clas-
sification [18,45]. Metric-based learning is a representative method of learning distances
containing the features of inter-domain and -class samples to minimize domain mismatches
between the source and target domains. Gao et al. [46] proposed an acoustic model based
on ResNet [47] for acoustic scene classification; its learning process is such that it is difficult
to distinguish the domain to which a sample belongs.

The domain adaptation for SER models based on multi-domain datasets has the pur-
pose of building an SER model that is not overfitted to a specific dataset and is generalized
for unknown target-domain speech data. However, the SER model based on multi-domain
datasets has a different applicability from the case that applies data augmentation by
oversampling a single domain dataset. It does not guarantee the SER performance im-
provement, even if several multi-domain speech samples are used to train the SER model,
because there is high domain discrepancy in the speech signal, which depends on the
collection environments [8–10,13,14].

Liang et al. [9] proposed a structure that learned emotion-salient features based on
audio and video data through an adversarial learning framework, generating embedding
features for the purpose of reducing domain discrepancies. Huang et al. [13] presented a
network model that aligned the distribution shift in the intermediate feature space between
the source and target domains. Neumann et al. [14] introduced an adaptive technique to
fine-tune the weights of SER neural networks trained in the source domain using a small
number of samples from the target. By using the transferred features from the pre-trained
model, Li et al. [15] demonstrated improvements in the SER performance using additional
embedding vectors extracted from the pretrained VGGish in AudioSet [48]. Lee et al. [16]
presented the generalization effect of emotion recognition by applying dropout and nor-
malization methods in multilingual heterogeneous datasets.
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3. Ensemble Learning Model for SER in Multi-Domain Datasets

We propose an ensemble learning model to improve the performance of SER general-
ization in multi-domain datasets. The operational flow of the supervised multi-domain
adaptation of the proposed MPGLN SER is shown in Figure 1. We denote speech-input
samples and class-label spaces as X and Y, respectively, and the domain datasets are
D = {D1, D2, . . . , Dk }. This study assumes a supervised learning environment wherein
each domain sample has common emotion labels. In this study, each domain dataset

consists of pairs Dk =
{(

Xk
i , (yk

i_d, yk
i_v)
)}Nk

i=1
, where Nk is the number of speech samples

of the k-th domain dataset, and datasets in each speech sample have multiple Y labels. The
discrete emotion label is yk

i_d (e.g., “happy” and “sad”), and that of the valence-level is yk
i_v

in the continuous dimensional emotion model.

Figure 1. Supervised multi-domain adaptation of the multi-path and group-loss-based network (MPGLN) speech emotion
recognition (SER). The model generates the temporal embedding feature and the transferred embedding feature for the
speech segment and learns based on multiple losses.

The source-domain dataset used for model training is domain Ds, and the domain to
which test samples to be predicted belong is the target domain, Dt. There are variant shifts
and domain discrepancies of the feature distribution, d

(
XS) and d

(
XT), of data samples of

different domain datasets, Ds and Dt, respectively [45].
The goal of the SER model is to learn the classifier function, f : X → Y , in the target

domain. Function f consists of the composition of two functions, f = h ◦ g, where g is an
embedding feature generator from the input data space, X, to an embedding feature space,
and h is the function used to predict the embedding feature to label-space Y.

Figure 2 shows the architecture of the proposed MPGLN SER, which generates the
multi-level embedding vectors from the multi-path generators. The BLSTM-based feature
generator, gBLSTM, generates a temporal embedding vector, and the transferred feature
extractor, gvgg, extracts a transferred embedding vector from the pre-trained VGGish
model [17].

In the prediction function, h, of the proposed ensemble structure, discrete emotional
labels are classified based on the fusion of multi-path embedding vectors from gBLSTM
and gvgg. It also includes a dimensional valence-level classification function based on the
temporal embedding feature generated by gBLSTM.
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Figure 2. Architecture of the multi-path and group-loss-based network for SER. The MPGLN SER model comprises a
bidirectional long short-term memory (BLSTM)-based temporal embedding generator and a transferred feature extractor
from the VGG-like audio classification model (VGGish) and its prediction function.

3.1. Multi-Path Embedding Features

In this study, the speech segments of an utterance unit are embedded in the feature
space through gBLSTM, a temporal feature generator of the ensemble structure, and gvgg, a
transmitted feature extractor. In Figure 2, the temporal feature generator, gBLSTM, of the
BLSTM architecture reflects a characteristic of the temporal relevance of before-and-after
speech features. The 74-D LLD-per-frame speech segment comprises a 13-D MFCC and
40-D Mel-spectrogram, along with 21-D time- and frequency-domain LLDs such as zero-
crossing rate, energy, spectral centroid, and spectral roll-off. The 74-D LLD are extracted by
the frame that applies sliding windows of 200 ms with a 50% shift in the speech segment.
Each speech segment is padded with a zero value to have a fixed number of 100 frames,
and the sequence of 100 × 74 per segment is input to gBLSTM. The padded input sequence
is fed into the gBLSTM, comprising 128 cells in each direction, and gBLSTM produces a 256-D
feature vector.

The feature generator, gBLSTM, adopts an attention mechanism and focuses on those
more discriminative parts of the BLSTM output sequence before activation of the final
emotion classification. The attention mechanism for SER assumes that there are certain
words and salient parts that express emotions well in the speech segment. Using the
attention method, it gives more weight to relevant speech frames of an utterance-level
segment for emotion recognition.

The attention layer focuses on relevant parts of the output sequence of the BLSTM
by giving different weight scores and generates the high-level features (h f ). It computes
weight αt using the softmax function via the attention layer (see Equation (1)), where the

BLSTM output vector is ht = [
→
ht,
←
ht] at time t. It produces the high-level feature, h f , which

is the weighted sum, ht, obtained by multiplying the weights, αt (see Equation (2)). The
generated h f is transited again to an embedding feature vector of R64 through the two
fully-connected (FC) layers in the MPGLN.

αt =
exp(W·ht)

∑T
t=1 exp(W·ht)

(1)
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h f =
T

∑
t=1

αt·ht, (2)

The temporal feature generator, gBLSTM : X → R64 , generates a 64-D embedding
vector from the input of the 74-D LLD in units of speech-segment frames. The feature
generator, gBLSTM, in the MPGLN SER can operate as an SER model alone by combining
the prediction function, hbaseline

d : R64 → Y(yk
i_d ), without using the transferred features

from the VGGish. This study uses the BLSTM-based SER model as a baseline for the
evaluation of the MPGLN SER.

The transferred feature extractor, gvgg : X→ RVGGish , extracts the transferred feature
vector of data-sample X using the VGGish model. The input speech segment is divided
into non-overlapping 960 ms time-unit frames, and 64 mel-spaced spectrogram features
that apply a 25 ms window every 10 ms in each frame are extracted using the VGGish
model [17]. Using the transferred feature extractor, gvgg, it generates a 128-D embedding
feature vector from the VGGish model for the speech segment by inputting a frame-by-
frame spectrogram in units of 96 × 64. The extracted 128-D embedding vector passes
through the fattening and FC layers and is transited to a 64-D embedding vector.

3.2. Group Loss

Equation (3) shows how classifier f is trained on the classification loss, Lc( f ), of the
emotion labels Y of the speech samples X, where ` is an appropriate loss function similar
to cross-entropy for multi-class classification [45,49].

Lc( f ) = `( f (X), Y) (3)

The proposed MPGLN SER is trained to simultaneously minimize multiple losses,
which are induced by the association of multi-dimensional emotion labels. The discrete
emotion labels are intuitive for expressing the emotion, but it has difficulty in expressing
complex emotions. The dimensional emotion labels are capable of normalized expressions
of complex emotions. However, doing so, it is difficult to intuitively distinguish emotions
at similar positions (e.g., “fear” and “anger”) in the arousal-valence axis [1]. This study
derives an association between discrete and dimensional valence-level labels based on real
SER domain datasets and applies a method of simultaneously learning the loss for each
emotion-label classification in the MPGLN model.

As shown in Figure 2, the MPGLN SER learns simultaneously based on the two losses:
Lcv for the valence-level label using the R64 feature vector generated from gBLSTM and Lcd
for predicting the discrete emotion label.

The primary loss,Lcd, is used for the predicting function, fd = hd
◦ (gBLSTM ⊕ gVGGish),

where hd :
(
R64 ⊕RVGGish

)
→ Y(yk

i_d ) predicts the discrete emotion label of yk
i_d via the

combination of two embedding vectors. The complementary loss, Lcv, is that of the
predicting function, fv = hv

◦gBLSTM, which classifies the valence-level labels, where
hV : R64 → Y(yk

i_v ). Equation (4) shows that the proposed MPGLN SER is trained to
minimize group loss Lg about the prediction functions, fd and fv:

Lg = Group(Lcd( fd), Lcv( fv)). (4)

4. Evaluation
4.1. Datasets

We evaluated the proposed model using five multi-domain datasets contained in
three real SER databases. For the evaluation of the MPGLN SER based on multi-cultural
datasets, two KESD databases (i.e., KESDy18 and KESDy19) constructed for this study, and
the IEMOCAP are used. KESDy18 and KESDy19 comprise two domain datasets based on
heterogeneous microphone devices.

In the IEMOCAP dataset, data were collected from the scenarios for inducing the five
target emotions (“happy”, “sad”, “neutral”, “angry”, and “frustration”), and annotators
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selected one of the six basic emotions (“angry”, “sad”, “happy”, “disgust”, “fear”, and
“surprise”) [50] along with “frustration”, “excited”, and “neutral” as the discrete emotion
labels. Numerous data were annotated with the emotion categories such as “fear” and
“disgust”, which do not belong to the target emotions in IEMOCAP [7]. Even in the
KESD database, considering the subjectivity and diversity of human emotion perception,
the categorical emotion label was tagged as one of the six basic emotion labels along
with “neutral”.

The KESDy18 comprises speech samples in which 30 voice actors uttered 20 sentences
while expressing the four given emotions of “angry”, “happy”, “neutral”, and “sad”.
The six external taggers evaluated the speech segments while listening to the recorded
utterances as shown in Figure 3a. The annotators tagged one of the seven categorical
emotion labels comprising the six basic emotions [50] in addition to “neutral”, whose
tagged labels are more diverse than the classification of the actor’s expressed emotion.
They tagged labels of arousal and valence-level on a five-point scale for each segment.
The final categorical emotion label was determined by majority vote. The label of arousal
and the valence-level were determined from the average value of the levels tagged by
the evaluators. KESDy18 simultaneously collected speech data from two heterogeneous
microphones (i.e., a cell-phone’s built-in microphone (PM) and an external microphone
(EM) connected to a computer). According to the type of microphone devices, KESDy18
comprised the KESDy18_PM dataset plus the KESDy18_EM dataset.

Figure 3. External annotator tags the emotion labels for speech segments using the tagging application while watching the
recorded video and listening to the Emotional Speech Database (KESD) speech segments: (a) evaluating emotional labels of
KESDy18 via the tagging application; (b) evaluation of the KESDy19 speech segments looking at the recorded video.

The KESDy19 includes the speech samples of 40 voice-actors who speak Korean as
their native language using collection scenarios similar to those of the IEMOCAP. KESDy19
consists of 20 sessions collected from speech and electrocardiogram signals produced
during the dyadic acting of two voice actors, the process of acting was recorded. Each
session consists of 10 plays having lengths of 4–10 min. Six plays were based on scenarios
written to induce specific emotions, and the other four were improvised during the dyadic
interactions. Each speech segment per speaker was tagged using one of seven categorical
emotion labels, and the average value of the five-point scale of arousal and valence-level
was annotated by 10 external taggers using the same tagging application as shown in
Figure 3b. KESDy19 comprises a KESDy19_EM dataset that used an external microphone
and a KESDy19_PM dataset that simulated the KESDy19_EM dataset via a cell-phone’s
microphone.

The IEMOCAP is a widely used SER performance evaluation model organized into
five sessions of multi-modal audio, visual, and textual data taken from interactive dyadic
interactions performed by 10 voice actors. In each session, two voice actors emotionally per-
formed improvisations or scripted scenarios. The speech segments of their utterance-levels
were tailored to discrete emotion labels of “happy,” “sad,” “neutral,” “angry,” “surprise,”
“frustration,” “excited,” “disgust,” or “fear” based on the majority opinions of three exter-
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nal human annotators. The IEMOCAP data were also tagged with labels of arousal and
valence based on a five-point dimensional emotion scale [39,51]. The IEMOCAP database
provides the re-rounded average score of the evaluations of arousal and valence-levels
according to the five-point scale based on evaluations by six external evaluators. Many
prior studies evaluated SER performance using the IEMOCAP database to classify the four
emotion categories of “happy,” “sad,” “neutral,” and “angry.”

Figure 4 shows the distribution of four discrete emotion and arousal/valence-level
labels on the five-point scales of IEMOCAP, KESDy18, and KESDy19. As shown in
Figure 4a–c, the speech samples of the “happy” class are distributed at the highest va-
lence level, and the “neutral” samples are in the middle. The speech data labeled with
“sad” and “angry” classes show a distribution of low-level valences across all three SER
databases. The association between discrete emotion labels and those of arousal-level
shows more irregularities in Figure 4d–f. The speech samples tagged with the “sad” class
are distributed in the overall arousal-level, and the samples of the IEMOCAP with the
“happy” label are distributed in the overall level of arousal, unlike the other two KESD.

Figure 4. Cont.
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Figure 4. Distribution between discrete and dimensional emotion labels of the five-point scale: (a) distribution of discrete
and valence-level labels of Interactive Emotional Dyadic Motion Capture database (IEMOCAP); (b) distribution of discrete
and valence-level of KESDy18; (c) distribution of discrete and valence-level of KESDy19; (d) distribution of discrete and
arousal-level of IEMOCAP; (e) distribution of discrete and arousal-level of KESDy18; and (f) distribution of discrete and
arousal-level of KESDy19.

In Figure 4, the speech samples corresponding to the discrete emotion classes con-
stitute roughly three distribution groups across the label of valence-level. The three
distribution groups are “happy,” “neutral,” and “sad” or “angry.”

In this study, we mapped the valence-level labels of the five-point scale to a three-point
scale using the induced association between discrete and dimensional emotion labels, as
shown in Table 1 and Figure 4. Each valence-level (i.e., 1, 2, and 3) of the three-point
scale represents “negative”, “neutral”, and “positive” emotional states, respectively. For
the conversion to the valence-level of the three-point scale, this study assigned sample
labels of valences less than 2.5 to the first valence-level, samples of 4.0 or higher to the
third, and the others to the second, respectively. Table 1a shows the mean and standard
variation of arousal and valence-levels on a five-point scale for each discrete emotion
category. Table 1b shows the confidences of association [52] of the speech samples of
four discrete emotion classes included in the valence levels of the three-point scale. The

confidence Con f .
(
Ci → Vj

)
=

NCi∪Vj
NCi

, where Ci is the discrete emotion label, 1 ≤ i ≤ 4,

and Vj denotes the valence-level, 1 ≤ j ≤ 3.

Table 1. Association properties of discrete emotion labels and valence-levels in multi-domain SER datasets: (a) Mean and
standard variation of arousal and valence levels on a five-point scale for each discrete emotion category; (b) Confidence of
discrete emotion labels and valence-level of three-point scale.

Index Association Property IEMOCAP KESDy18 KESDy19

(a)

Valence
Mean ± variation

angry 1.89 ± 0.52 2.11 ± 0.21 1.78 ± 0.37
happy 3.94 ± 0.47 4.42 ± 0.34 4.33 ± 0.36
neutral 2.95 ± 0.49 3.23 ± 0.53 2.94 ± 0.60

sad 2.24 ± 0.57 2.00 ± 0.33 1.89 ± 0.52

Arousal
Mean ± variation

angry 3.69 ± 0.66 3.93 ± 0.46 3.81 ± 0.58
happy 3.16 ± 0.61 3.92 ± 0.36 3.90 ± 0.53
neutral 2.79 ± 0.53 3.08 ± 0.38 2.99 ± 0.33

sad 2.61 ± 0.61 2.60 ± 0.44 2.63 ± 0.64

(b) Confidence

Conf.({Ci = angry}->{V1}) 0.8 0.95 0.95
Conf.({Ci = sad}->{V1}) 0.58 0.9 0.86
Conf.({Ci = neutral }->{V2}) 0.85 0.83 0.71
Conf.({Ci = happy}->{V3}) 0.77 0.93 0.86
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Table 2 shows properties of the five domain datasets of three SER databases used for
the evaluation, where we used speech segments having lengths of 2 s or longer as one of
four categories of emotion labels, “angry”, “happy”, “neutral”, and “sad.”

Table 2. Properties of multi-domain SER datasets.

Property IEMOCAP KESDy18 KESDy19 2

Language English Korean Korean

Speakers 10 (5 male, 5 female) 30 (15 male, 15 female) 40 (20 male, 20 female)

Utterance type Acted
(Scripted/Improvised)

Acted
(Scripted)

Acted
(Scripted/Improvised)

Datasets (Mic.) IEMOCAP
(2 Mic. of the same type)

KESDy18_PM (Galaxy S6),
KESDy18_EM 1 (Shure S35)

KESDy19_PM (Galaxy S8),
KESDy19_EM (AKG C414)

angry 947 431 1628
happy 507 157 1121
neutral 1320 1193 2859
sad 966 467 694

Total 3740 2248 6302
1 KESDy18_EM is available online at https://nanum.etri.re.kr/share/kjnoh/SER-DB-ETRIv18?lang=eng (accessed on 7 January 2021).
2 The collecting process of the KESDy19 was approved by the Institutional Review Board of Korea National Institute for Bioethics Policy
(approval number P01-201907-22-010 and 22 July 2019).

4.2. Evaluation of the BLSTM-Based Baseline SER

As shown in Table 2, the five domain SER datasets used for evaluation were un-
balanced in the number of samples of the discrete emotion classes. We did not apply
oversampling, data augmentation [11], or weighted loss methods [46] to minority classes
for objective verification of the proposed MPGLN SER.

Speech samples of each class in the multi-domain datasets were trained in the SER
model by the units of the speech segment, which consisted of the voiced part of the vocal-
cord vibrations and unvoiced parts such as a silence section between voiced parts [53].
This study did not remove the unvoiced region from any speech segment. However, it
framed the entire voiced and unvoiced parts of the segment as input to the model.

We present four performance metrics in consideration of the sample imbalance of each
emotion class: weighted accuracy (WA), unweighted accuracy (UA), precision (PR), and F1
score. WA is the overall accuracy, calculated as the ratio of the total number of test data
and the number of samples accurately predicted by the actual label. UA is calculated as the
average of the recall values of four classes and is an important performance indicator in
the evaluation of the SER model based on imbalanced datasets [19,20,26].

This study applied z-normalization [1] of the means and standard deviations of each
dataset to reduce the fluctuations of the speaker and speech signals. We evaluated the
speaker-independent leave-p-subjects-out (LpSO) validation technique, where p is the
number of subjects to leave out when training the model. For training, we used separated
samples belonging to speakers accounting for 80% of the total number in each dataset;
samples of the remaining 20% were evaluated as test data.

For the evaluation of IEMOCAP, we used a leave-two-subjects-out evaluation that
applied speech data from two speakers participating in one session as the test data, which
was the leave-one-session-out (LOSO) validation. KESDy18 was evaluated as a leave-six-
subjects-out sample from the set of 30 speakers. The evaluation of KESDy19 was conducted
as a leave-eight-subjects-out sample for four sessions of the 20 sessions played in pairs by
40 speakers. The training and test data separated for speaker-independent evaluation in
each dataset were equally applied to the evaluation of a single domain, multi-domain, or
domain generalization, as shown in Tables 3 and 4 and Tables 6–8.

https://nanum.etri.re.kr/share/kjnoh/SER-DB-ETRIv18?lang=eng
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Table 3. Performance of the baseline BLSTM-based SER model according to the input low-level descriptions (LLD) feature
set in SER datasets.

Model Dataset Input LLDs WA UA PR F1

Our baseline
(SPSL: single-path-

single-loss)

IEMOCAP

MFCC 0.616 0.588 0.576 0.559
Mel-spec 0.534 0.525 0.504 0.491

MFCC + Mel-spec 0.608 0.58 0.574 0.562
MFCC + Mel-spec + TimeSpectral 0.611 0.59 0.58 0.575

KESDy18_EM

MFCC 0.742 0.712 0.715 0.71
Mel-spec 0.62 0.57 0.553 0.556

MFCC + Mel-spec 0.762 0.736 0.719 0.724
MFCC + Mel-spec + TimeSpectral 0.774 0.738 0.737 0.734

KESDy19_EM

MFCC 0.613 0.563 0.581 0.567
Mel-spec 0.56 0.483 0.518 0.491

MFCC + Mel-spec 0.617 0.562 0.579 0.568
MFCC + Mel-spec + TimeSpectral 0.643 0.595 0.608 0.599

Table 4. Performance of the baseline BLSTM-based SER model.

Model Dataset WA UA PR F1

Our baseline
(SPSL)

IEMOCAP 0.611 0.59 0.58 0.575
KESDy18_PM 0.776 0.739 0.739 0.736
KESDy18_EM 0.774 0.738 0.737 0.734
KESDy19_PM 0.624 0.574 0.589 0.58
KESDy19_EM 0.643 0.595 0.608 0.599

In the evaluation of this study, a model based on the temporal embedding features
and the learning loss, Lcd, without the transferred embedding feature was assumed to
be the baseline SER model. It can be seen that this baseline operated using a single-path-
single-loss (SPSL) scheme. In the evaluation, the proposed MPGLN and the baseline SPSL
SER model were trained with a batch size of 200 samples at 25 epochs using an Adam
optimizer and a drop rate of 0.6 to the last two FC layers. The learning rate of the optimizer
was 1.10−3. The model was evaluated over 10 iterations of training and testing, and the
final value of each performance metric was calculated as the average value.

The baseline SPSL SER model uses the 74-D LLD integration per-frame of speech
segment, which comprises 13-D MFCC and 40-D Mel-spectrogram (Mel-spec), along with
21-D time- and spectral-domain (TimeSpectral) LLDs such as zero-crossing rate, energy,
spectral centroid, and spectral roll-off. We evaluated the performance of each combination
of LLDs with our baseline SER model based on multiple SER datasets. Table 3 summarizes
the performance evaluation according to the input feature set of the LLDs used in this
study, as shown in the evaluation results based on the IEMOCAP, KESDy18_EM, and
KESDy19_EM datasets. It can be observed that MFCC is the dominant feature of SER from
the results in Table 3. The SER performance improved from 1.6% to 3.2% based on the F1
score in comparison with the single input of MFCC when using the input combination of
MFCC and Mel-spectrogram, along with TimeSpectral LLDs.

Table 4 shows the results of the speaker-independent evaluation of the BLSTM baseline
SPSL when classifying the four discrete emotion labels in each of the five domain datasets.
The evaluation based on KESDy19 showed similar performance results as IEMOCAP. In the
evaluation of KESDy18, it showed higher performance results than the other two databases.

A previous study by Zheng et al. [54] demonstrated the performance of 40% WA of
the CNN-based SER model for the five emotion classes based on IEMOCAP. For a fair
comparison of the SER performance, this study performed a comparison with the previous
RNN-based SER models that presented the UA performance of the four emotion classes
based on IEMOCAP, which was the test environment in many previous SER studies.
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In Table 5, we compare the performance results of previous RNN-based SER models
and the SPSL baseline model in the LOSO evaluation to classify the four emotion labels
based on the IEMOCAP dataset. These studies present a UA metric of the average recall
for each emotion class, considering the imbalance of the number of samples. As shown in
Table 5, our baseline BLSTM SER model achieved a competitive performance of UA 59% in
the LOSO validation based on IEMOCAP.

Table 5. Performance results reported in previous recurrent neural networks (RNN)-based studies of
SER model and our baseline model based on IEMOCAP.

Researches Features Network UA Emotions

Mirsamadi [19] 32 LLD RNN 0.585 4
Chen 1 [20] logMel CRNN 0.647 ± 0.054 4
Mu [26] Spectrogram CRNN 0.564 4
Our baseline (SPSL) 74 LLD RNN 0.59 ± 0.08 4

1 This study used only the improvisation data of female speakers as test data.

4.3. Evaluation of Multi-Domain Adaptation

As shown in Tables 6–8, evaluations were performed using a single-domain evaluation,
a multi-domain adaptation, and a multi-domain generalization according to the source
and target domains participating in training and evaluation. The division of training and
testing data separated for speaker-independent evaluation in each dataset used the same
configurations as those used in Tables 3–8. In Tables 6–8, the highest F1 scores are highlighted.

Table 6. Evaluation results in a single domain dataset. Single-path-single-loss (SPSL) is the baseline
SER model that learns by the temporal embedding features and the loss Lcd; Multi-path-single-loss
(MPSL) is that model learns using the multi-path embedding vectors and loss Lcd without the loss
Lcv; MPGL is the model that learns based on multi-path embedding vectors and the group loss Lg.

Index Domain Model WA UA PR F1

(a) IEMOCAP
SPSL 0.611 0.59 0.58 0.575
MPSL 0.611 0.606 0.576 0.583
MPGL 0.619 0.607 0.582 0.588

(b) KESDy18_PM
SPSL 0.776 0.739 0.739 0.736
MPSL 0.781 0.753 0.747 0.746
MPGL 0.814 0.778 0.771 0.773

(c) KESDy18_EM
SPSL 0.774 0.738 0.737 0.734
MPSL 0.788 0.756 0.732 0.741
MPGL 0.797 0.768 0.761 0.762

(d) KESDy19_PM
SPSL 0.624 0.574 0.589 0.58
MPSL 0.625 0.581 0.594 0.586
MPGL 0.637 0.586 0.607 0.594

(e) KESDy19_EM
SPSL 0.643 0.595 0.608 0.599
MPSL 0.629 0.581 0.591 0.584
MPGL 0.642 0.592 0.608 0.598
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Table 7. Evaluation results of multi-domain adaptation.

Index Multi-Domain Model WA UA PR F1

(a)
KESDy18_PM,
KESDy18_EM

SPSL 0.774 0.749 0.722 0.731
MPSL 0.799 0.764 0.753 0.756
MPGL 0.806 0.773 0.766 0.768

(b)
KESDy19_PM,
KESDy19_EM

SPSL 0.618 0.581 0.584 0.581
MPSL 0.626 0.58 0.589 0.584
MPGL 0.631 0.585 0.595 0.589

(c)
KESDy18_PM,
KESDy18_EM,
KESDy19_PM,
KESDy19_EM

SPSL 0.653 0.628 0.63 0.628
MPSL 0.664 0.639 0.642 0.639

MPGL 0.663 0.63 0.639 0.634

(d)
KESDy18_PM,
KESDy18_EM,

IEMOCAP

SPSL 0.683 0.649 0.63 0.637
MPSL 0.706 0.675 0.654 0.66
MPGL 0.713 0.677 0.656 0.664

(e)
KESDy19_PM,
KESDy19_EM,

IEMOCAP

SPSL 0.599 0.577 0.575 0.573
MPSL 0.602 0.583 0.576 0.578
MPGL 0.616 0.587 0.59 0.588

Table 8. Evaluation results of multi-domain generalization.

Index Source
Domain

Target
Domain Model WA UA PR F1

(a)
KESDy18_PM,
KESDy18_EM,
KESDy19_EM

KESDy19_PM
SPSL 0.594 0.532 0.563 0.539
MPSL 0.592 0.53 0.559 0.536
MPGL 0.606 0.543 0.573 0.551

(b) KESDy18_EM,
IEMOCAP

KESDy18_PM
SPSL 0.682 0.69 0.652 0.658
MPSL 0.688 0.704 0.643 0.658
MPGL 0.718 0.74 0.677 0.693

(c) KESDy19_EM,
IEMOCAP

KESDy19_PM
SPSL 0.572 0.55 0.538 0.538
MPSL 0.577 0.552 0.545 0.542
MPGL 0.596 0.555 0.561 0.554

Table 6 shows the evaluation results when classifying four discrete emotion classes based
on each of the five domain datasets. The evaluation was conducted in three experimental
environments according to the type of SER model: The baseline SPSL model learns from the
temporal embedding features and the single-loss Lcd. Multi-path-single-loss (MPSL) uses
multi-path embedding vectors and is trained only on Lcd without the complementary loss,
Lcv, for valence-level classification. Multi-path-group-loss (MPGL) learns from multi-path
embedding vectors and the group loss, Lg, consisting of Lcd and Lcv.

When compared with the harmonic-mean F1 score based on the KESDy18_PM dataset
shown in Table 6b, the performance of the SER of the MPSL using a single-loss Lcd showed
an improvement of 1% over that of the baseline SPSL. The SER MPGL model trained on
the loss group, Lg, showed an F1 improvement of up to 3.7% over the SPSL’s F1.

Table 7 shows the results of multi-domain adaptation evaluation when the SER model
was trained with samples aggregated from multiple-domain SER datasets collected from
various environments. The separated test samples for about 20% of the speakers were
evaluated for speaker-independent evaluation. As shown in Table 7a, regarding KESDy18,
which consisted of two datasets collected simultaneously via heterogeneous devices, the
proposed SER model trained on the group-loss Lg of MPGL achieved an F1 improvement
of up to 3.7% over the baseline SPSL.

Table 8 presents the evaluation results of the proposed MPGLN SER for supporting
multi-domain generalization. In the evaluation of Table 8a, the SER model was trained
with the aggregated samples of KESDy18_PM, KESDy18_EM, and KESDy19_EM datasets
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and was evaluated against the separated test samples of the KESDy19_PM domain, which
was not used for training but was collected from the same language culture. The evaluation
results of Table 8a shows that the F1 score of the MPGL model improved by 1.2% compared
with the baseline SPSL. In the evaluation of Table 8b, when the SER model was trained
on KESDy18_EM and IMEOCAP datasets, which were from different language cultures,
the model was evaluated using the Korean KESDy18_PM domain dataset. The proposed
MPGLN SER showed an F1-score improvement of about 3.5% over the baseline model.

Figure 5 shows the changes in losses from Table 8b, including the loss, Lcd, of the
baseline SPSL model and losses Lcd and Lcv of the MPGL SER model. These losses were
measured every 25 epochs during training using aggregated KESDy18_EM and IEMOCAP
samples. The loss, Lcd, of the MPGL model, which learned two losses simultaneously,
trained faster than did the Lcd of the baseline SER model. This shows that the other
complementary loss, Lcv, of the proposed MPGLN, used to predict the valence-level label,
decreased similarly to the loss, Lcd, of the baseline SPSL.

Figure 5. Change in losses of the baseline SER and the proposed MPGLN SER in Table 8b. The loss,
Lcd, of the baseline SPSL model and losses Lcd and Lcv of the SER model of MPGL.

Figure 6 shows the distribution of the 64-D embedding vectors of the test data reduced
to a 2-D embedding space via t-stochastic neighbor embedding (t-SEN). The 64-D embed-
ding vectors were generated in the FC layer just prior to the MPSL and MPGL softmax
activations of the evaluation in Table 8b.

Figure 6. Distribution of reduced embedding vectors (the 64-D embedding vectors of the test data in the last fully-connected
(FC) layer in the ensemble network) that are reduced to 2-D via t-stochastic neighbor embedding (t-SEN) dimension
reduction: (a) embedding space for MPSL in Table 8b; (b) embedding space for MPGL in Table 8b.
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Figure 6a shows the distribution of the embedding feature vector in the MPSL trained
by the loss, Lcd, only without the complementary loss, Lcv. Figure 6b displays the dis-
tribution of the MPGL model based on the loss group, Lg, of the two losses: Lcd and
Lcv. Figure 6b shows the MPGLN SER model that learns from multi-path embedding
vectors and the loss group, Lg, where the samples belonging to the “happy” class were
more closely grouped, and the samples of the “angry” and “sad” classes are located closer
together compared with the MPSL distribution shown in Figure 6a.

5. Conclusions

We determined that it is essential to improve the generalization of the SER model for
deployment to real applications. This paper proposed the MPGLN for SER in support of
supervised multi-domain adaptation and generalization based on multi-domain datasets.
The proposed MPGLN SER includes a temporal feature generator for the BLSTM network
using the input of handcrafted LLD features of a speech sample. Additionally, we leveraged
the transferred feature extractor from the pre-trained VGGish model for the MPGLN. The
proposed MPGLN SER learned simultaneous multiple losses induced by associations
between discrete emotion and dimension labels.

The proposed MPGLN SER was evaluated using five real SER datasets of various
speaker domains, language cultures, collecting devices, and procedural environments.
This included KESDy18 and KESDy19 databases. KESDy18 comprised speech samples
delivered by voice actors who uttered Korean short sentences by expressing specific dis-
crete emotions. The KESDy18 database consisted of KESDy18_PM and KESDy18_EM
datasets from heterogeneous devices and environments with different device locations.
The KESDy19 database comprised KESDy19_EM and KESDy19_PM, which contained the
collected speech sample voices acted using a similar procedure as that of the IEMOCAP and
that of the simulated dataset based on the cell-phone’s built-in microphone, respectively.

This study assumed that the SER model was trained only with the BLSTM-based tem-
poral embedding feature generator included with MPGLN without transferred feature as
the baseline SER model. We verified the performance reliability of the baseline SER model
using the IEMOCAP. The BLSTM-baseline SER model showed competitive UA results
of 59% when classifying the four categorical emotion labels. The multi-domain adapta-
tion and domain generalization evaluation of the proposed MPGLN SER was performed
using the English-speaking IEMOCAP and the Korean KESDy18 and KESDy19 datasets
by comparing the performances of the baseline model according to various evaluation
environments.

The proposed MPGLN SER model trained on multiple losses showed an F1 perfor-
mance improvement of up to 3.7% over the baseline model when classifying four emotion
labels in a single domain dataset. The performance evaluation of the MPGLN SER for
supervised multi-domain adaptation, which trained and tested on the SER model using the
aggregated speech samples of the multi-domain datasets, also showed an improvement of
up to 3.7% over the baseline F1 score. From the evaluation of the multi-domain generaliza-
tion of the proposed MPGLN SER, the F1 score enjoyed an improvement of 3.5% over the
baseline SER when using samples from other language cultures not used for training. From
these results, we found that our MPGLN SER, which supports supervised multi-domain
adaptations, is also effective in reinforcing the generalization of the SER model based on
multi-domain datasets.

For future works, we plan to derive the differences in acoustic features of emotional
expressions based on multi-cultural SER datasets and study the learning method for the
deep-learning-based SER model considering the domain discrepancy. Furthermore, we
will continue enhancing our model’s generalizability through evaluations of speech data in
the wild by deploying the proposed MPGLN SER to real applications.
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