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ABSTRACT
Eight genetically distinct carbonic anhydrase (EC 4.2.1.1) enzyme families (a-, b-, c- d-, f-, g-, h- and i-CAs)
were described to date. On the other hand, 16 mammalian a-CA isoforms are known to be involved in
many diseases such as glaucoma, edema, epilepsy, obesity, hypoxic tumors, neuropathic pain, arthritis,
neurodegeneration, etc. Although CA inhibitors were investigated for the management of a variety of
such disorders, the activators just started to be investigated in detail for their in vivo effects. This review
summarizes the activation profiles of a-, b, c-, d-, f- and g- CAs from various organisms (animals, fungi,
protozoan, bacteria and archaea) with the most investigated classes of activators, the amines and the
amino acids.

ARTICLE HISTORY
Received 8 August 2019
Revised 29 August 2019
Accepted 30 August 2019

KEYWORDS
Carbonic anhydrase;
activator; isoforms;
neurodegenerative; pro-
ton shuttle

1. Introduction

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloproteins present
virtually in all living organisms. CA enzymatic activity was first
observed in the early 1930s, when experiments performed with
hemolyzed blood samples have demonstrated that the rate of car-
bon dioxide release from the hemolyzed blood was higher than
expected, indicating that blood could contain a catalyst for the
dehydration of bicarbonate, which allows the formation of CO2

[1]. This catalyst, named carbonic anhydrase, was thereafter
extracted from erythrocytes in 1933 by Meldrum and Roughton
[2]. Upon the discovery in 1940 that zinc ions are an intrinsic
cofactor of the protein, CA became the first recognized metalloen-
zyme. This enzyme efficiently catalyzes the reversible hydration of
carbon dioxide (CO2) to yield bicarbonate (HCO3

-) and protons
(Hþ) [2,3].

CO2 þ H2O � HCO3
� þ Hþ

It has been known since the 1940s that CA is ubiquitous in
plants [4], where it performs an essential role in CO2 fixation [5].
CAs, under the form of many enzyme families and isoforms, are
virtually found in all living organisms, from the unicellular ones to
higher vertebrates including humans. Their structure is encoded
by eight evolutionary unrelated gene families, leading thus to the
a-, b-, c-, d-, f-, g-, H-, and i-CA classes [6–13]:

� a-CAs are Zn2þ metalloproteins expressed in animals, verte-
brates, prokaryotes, fungi, algae, protozoa and plants [9].

� b-CAs are Zn2þ metalloproteins present in bacteria, plants,
fungi, chloroplasts of mon-/dicotyledons [6].

� c-CAs are Zn2þ or Fe, Co metalloproteins present in some
plants, fungi, bacteria and archarea [6].

� d-CAs are Co metalloproteins present in marine diatoms [7,10].

� f-CAs are Cd or Zn metalloproteins identified only in some
marine diatoms [11].

� g-CA are Zn metalloproteins identified in Plasmodium
spp. [12].

� H-CA are Zn metalloproteins identified in Marine diatoms [11].
� i-CAs were only recently reported to be present in diatoms

and bacteria and seem to be Mn(II) proteins [13].

CA inhibitors (CAIs) targeting mammalian CAs, are in clinical
use as diuretics, antiglaucoma, antiepileptic or antiobesity agents
for decades [3,6,14–18]. These diverse applications are due to the
fact that at least 15 different a-CA isoforms are present in humans,
being involved in critical physiological and pathological proc-
esses [14–18].

In the current review, we focused our attention on recent acti-
vation studies on a-, b-, c-, d-, f-, and g-CA classes which were
explored with at least two classes of modulators of activity,
amines and amino acids. The catalytic mechanism of these
enzymes is in fact well understood [3]. A metal hydroxide species
present in the active site of these enzymes as the fourth ligand
(Figure 1(A,B)) acts as a strong nucleophile (at physiologic pH)
converting the CO2 to bicarbonate, bis-coordinated to Zn(II), in a
trigonal bipyramidal geometry (Figure 1(C)). This adduct is not
very stable and reaction with a water molecule leads to liberation
of bicarbonate in solution and generation of an acidic form of
the enzyme incorporating a M2þ(OH2) species at the metal
center, which is catalytically ineffective for the hydration of CO2

(Figure 1(D)). In order to generate the nucleophilic, M 2þ(OH_)
species, a proton transfer reaction occurs, which is rate determin-
ing for the catalytic cycle in many of these quite rapid enzymes.
CA enzymes typically use a metal ion (Zn2þ in a-, b- and c-CAs,
Fe2þ/Co2þ/Zn2þ) which favors in the reduction pKa of H2O from
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14 to 7 [6–8]. Human CAs use a Zn2þ ion to decrease the pKa of
H2O bound with Zn2þ ion which also binds to histidine residues
(His94, His96 and His119). For many a-CAs this step is assisted by
a proton shuttle residue, which is His64 in most mammalian iso-
forms. Possessing a flexible orientation, inwards (the in conform-
ation) or outwards (the out conformation) the zinc ion center, the
imidazole moiety of this histidine, with a pKa of 6.0–7.5 is an
appropriate proton shuttling residue and crucially important for
the entire catalytic cycle. The process can be also assisted by
endogenous molecules, which bind within the enzyme active site
(as proven by X-ray crystallography and other techniques) which
have been termed CA activators (CAAs) [19]. They facilitate the
proton transfer reactions between the metal ion center and the
external medium. It was understood that CA activators act by
speeding up the deprotonation of zinc-bound water (the rate-
determining step, Equation (2) in the catalytic mechanism)
[19–21], with the generation of the active form of the enzyme [22]
(see equations below):

EZn2þ�OH� þ CO2�EZn2þ�HCO3
� �þH2O

EZn2�OH2 þ HCO3
� (1)

EZn2þ�OH2 � EZn2þ�OH� þ Hþ �rate determining step� (2)

In the presence of an activator ‘A’, Equation (2) becomes (3):

EZn2þ�OH2 þ A�½EZn2þ�OH2� A� �
½EZn2þ�HO�� AHþ� � EZn2þ�HO� þ AHþ (3)

enzyme - activator complexes

CAAs may have pharmacologic applications, activation of the
mammalian enzymes was shown to enhance cognition and

memory in experimental animals [23], likewise its inhibition has an
opposite effect [24].

In order to better understand the catalytic mechanism of CAs
belonging to the b-, d- c-, d- f-, g-CA and H-CA classes, it is of cru-
cial importance to see if these enzymes act, similar to the a-CAs,
which can be activated by compounds that shuttle protons
between the active site and the environment. The activation of
CAs from pathogenic bacteria may be relevant for understanding
the factors governing virulence and colonization of the host,
because pH in the tissues surrounding the pathogens likely plays
a key role in such processes and many compounds that are CAAs
(biogenic amines and amino acid derivatives) are abundant in
such tissues. In this review, we have carefully analyzed the activa-
tion potential of different natural, non natural, aromatic/heterocyc-
lic amino acids and amines (compounds 1–19) across 6 different
families of CAs that were investigated based on the existing litera-
ture (Chart 1) [19–24]. These compounds have functional groups
similar to their endogenous proton shuttlers, and can participate
in proton transfer processes during the catalytic cycle. This study
is relevant as no X-ray crystal structures of enzyme activator com-
plexes have been reported so far for b- c-, d-, f-, g-CA and H-CAs.

2. Activation of a-CAs with amino acids and amines

Activation of the twelve catalytically active human (h) or murine
(m) CA isoforms, hCA I, hCA II, hCA III, hCA IV, hCA VA, hCA VB,
hCA VII, hCA IX, hCA XII, mCA XIII, hCA XIV and mCA XV with
amino acids and amines (1–19) has been investigated by stopped

Figure 1. Catalytic mechanism of a-CAs [3]. A. The zinc hydroxide form of the enzyme. B. The bucleophilic attack on CO2 bound in the hydrophobic pocket. C.
Bicarbonate bound to the active site metal ion. D. Acidic form of the enzyme. B in the last step of the cycle is a buffer molecule or the imidazole moiety of a His64
residue from the enzyme active site, acting as proton shuttle.
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flow CO2 hydrase assay method and are shown in Table 1 [25–29].
This bioassay is in excellent agreement with results from native
mass spectrometry [30]. The following structure-activity relation-
ship (SAR) can be summarized from data presented in Table 1
based on the activation profile of these derivatives.

Compounds 1–19 generally activated, these CA isoforms in a
very different manner based on their structures. Nanomolar poten-
cies were observed for several isozymes. For example, hCA I was
activated by compounds 1 (L-His), 2 (D-His), 3 (L-His), 9 (L-Tyr), 10
(D-Tyr), and 19 (L-adrenaline) with KAs ranging from 20 to 90 nM.
The best activation profile was observed against one of the most

abundant cytosolic isoform hCA II with KAs ranging from 125 mM
to 11 nM. Specifically, compounds 3 (L-His), 9 (L-Tyr), and 10
(D-Tyr) showed good activation potency with KAs of 13, 11 and
13 nM, respectively. Other cytosolic isoforms hCA III and hCA VII
were weakly activated, in general, by these series of amines and
amino acids 1–19. The remaining cytosolic isoform mCA XIII was
moderately activated by most of the compounds with KAs ranging
from 0.24 to 48.3 mM. Among the mitochondrial isoforms hCA VB
was slightly better activated than hCA VA by these amines and
amino acids. Interestingly, compound 5 (L-DOPA) showed nano-
molar potency against both isozymes, hCA VA and VB, with KAs of

Chart 1. Amino acids 1–11 and amines 12–19.

Table 1. In vitro hCA I [25], hCA II [25], hCA III [26], hCA IV [26], hCA VA [27], hCA VB [27], hCA VII [28], hCA IX [29], hCA XII [29], mCA XIII [25], hCA XIV [28] and
mCA XV [30] activation data with amines and amino acids (1–19) by a stopped-flow CO2 hydrase assay.

KA (mM)a

No Compound hCA I hCA II hCA III hCA IV hCA VA hCA VB hCA VII hCA IX hCA XII mCA XIII hCA XIV mCA XV

1 L-His 0.03 10.9 35.9 7.30 1.34 0.97 0.92 9.71 37.5 0.13 0.90 32.1
2 D-His 0.09 43 1.13 12.3 0.12 4.38 0.71 12.5 24.7 0.090 2.37 14.1
3 L-Phe 0.07 0.013 34.7 36.3 9.81 10.45 10.93 16.3 1.38 1.02 0.24 33.4
4 D-Phe 86 0.035 15.4 49.3 4.63 0.072 9.74 9.30 0.37 0.051 7.21 9.5
5 L-DOPA 3.1 11.4 13.5 15.3 0.036 0.063 58.3 51.3 1.67 43 12.1 6.5
6 D-DOPA 4.9 7.8 28.7 34.7 4.59 3.71 34.7 54.7 0.89 0.73 36.8 4.0
7 L-Trp 44 27 20.5 37.1 1.13 0.89 57.5 37.5 26.0 16 16.5 13.5
8 D-Trp 41 12 19.0 39.6 1.24 1.35 39.6 43.6 28.1 0.81 18.0 8.7
9 L-Tyr 0.02 0.011 34.1 25.1 2.45 0.044 20.3 25.3 25.8 – 21.8 8.9
10 D-Tyr 0.04 0.013 – – – – – – – – – –
11 4-H2N-L-Phe 0.24 0.15 43.2 0.079 2.76 2.17 18.7 48.7 1.09 – 2.90 16.3
12 Histamine 2.1 125 36.9 25.3 0.010 3.52 37.5 35.1 27.9 4.6 0.010 18.5
13 Dopamine 13.5 9.2 33.2 30.9 0.13 7.85 0.89 0.92 0.67 27 14.6 7.1
14 Serotonin 45 50 0.78 3.14 6.33 0.11 0.93 33.1 0.30 0.51 6.5 7.5
15 2-Pyridyl-methylamine 26 34 1.03 5.19 23.56 0.24 43.7 1.07 41.5 3.8 21.7 11.6
16 2–(2-Aminoethyl)pyridine 13 15 1.10 7.13 7.62 0.094 27.8 0.013 0.69 46 6.9 11.9
17 1–(2-Aminoethyl)-piperazine 7.4 2.3 0.32 24.9 6.04 0.91 32.5 0.009 48.3 54 18.3 10.4
18 4–(2-Aminoethyl)morpholine 0.14 0.19 0.091 1.30 0.089 1.15 64.3 0.43 0.24 0.013 5.4 9.3
19 L-Adrenaline 0.09 96 36.4 45.0 – – – 60 0.87 – 36.1 6.9
aMean from 3 different determinations (errors in the range of 5–10% of the reported values.
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36 and 63 nM, respectively. Only one compound 11 (4-H2N-L-Phe)
had nanomolar activity against membrane-bound isoform hCA IV
with a KA of 79 nM. On the other hand, another transmebrane-
bound tumor overexpressed isoform hCA IX was moderately acti-
vated by most of the tested compounds, except the compound
16 and 17 which showed one of the best activation profile from
the Table 1 with KAs of 13 and 9 nM, respectively. The CA activat-
ing effects of amines and amino acids 1–19 on the remaining
membrane-bound isoforms hCA XII, hCA XIV and mCA XV were
moderate to weak and most of the results were very close the
each others (Table 1).

3. Activation of b-CAs with amino acids and amines

In literature, there are many b-CAs which were investigated in
details, among which Cab (from Methanobacterium thermoautotro-
phicum), scCA (from Saccharomyces cerevisiae), CgCA (from
Candida glabrata), MgCA (from Malassezia globosa), VchCAb (from
Vibrio cholerae, mtCA 3 (from Mycobacterium tuberculosis), BsuCA1
(from Brucella suis), FtuCA (from Francisella tularensis), LdcCA (from
Leishmania donovani chagasi), and EhiCA (from Entameba histoly-
tica). Their activation by by amines and amino acid derivatives
was investigated in the last several years [31–38] – Table 2. In
general, good to moderate activation effects were obtained
against all b-CAs, except FtuCA, by using amino acid and amine
derivatives 1–19. Among the b-CAs, the best activation profile
was observed against LdcCA, for which two compounds, 16 and
17, showed nanomolar potency, with KAs of 12 and 9 nM, respect-
ively. Interestingly, these two compounds have (2-aminoethyl)
groups in their structures. Other interesting results were obtained
against scCA for which the activation profile was better with
amines (KAs: 0.95–21.3 mM) than with amino acids (KAs: 82–91mM).
Furthermore, VchCAb and BsuCA1 was also activated efficiently,
with KAs of 0.18–20.3 and 0.70–43.1 mM, by amino acids and
amines, respectively. Specifically, VchCAb was activated slightly
more effectively by amines (KAs: 0.18–12.8 mM) than by amino acid
derivatives (KAs: 0.94–20.3mM). For BsuCA1 activities of most com-
pounds are close to each other, except the compounds 2, 8, and
17 with KAs of 12.3, 13.7 and 43.1mM, respectively, which are the
least effective CAAs. In the case of FtuCA, most of the amines and

amino acid derivatives (compounds 5, 9–14, 16, 18 and 19) inves-
tigated so far showed weak activation effects, with activation con-
stants >100 mM. The remaining activators were also moderately
active against FtuCA, with KAs ranging between 30.5 to 78.3 mM.
Other b-CAs (Cab, CgCA, MgCA, mtCA 3 and EhiCA) were activated
in a different manner, as seen from Table 2, with most of the acti-
vation constants in a limited range of values.

4. Activation of c-, d-, f-, and g-CAs with amino acids
and amines

Activation studies were also performed recently against c-CAs,
such as Zn-Cam and Co-Cam (from the Archaeon Methanosarcina
thermpophila), BpscCA (from the pathogenic bacterium
Burkhalderia pseudomallei), PhaCA (from the cyanobacterium
Pseudoalteromonas haloplanktis), and CpsCA (from another cyano-
bacteriu, Colwellia psychrerythraea), as well as d-CAs, such as
TweCAd (from the diatom Thalassiosira weissflogii)], f-CA, such as
ZnTweCAf (from the same diatom, Thalassiosira weissflogii)], and
g-CAs, such as PfaCA (from Plasmodium falciparum) [31, 40–44].
Among them, an interesting activation profile was observed for
some of the c- class CAs, such as BpscCA. Most of the tested com-
pounds showed nanomolar potency against this enzyme.
Specifically, BpscCA was efficiently activated by compounds 2, 5,
8, 11, 13, and 16–19 with activation constants ranging between 9
to 86 nM. Interestingly, the f- class CA, ZnTweCAf was activated
slightly more efficiently by amines (KAs of 92 nM to 10.1 mM) than
by amino acids (KAs of 0.62 to 15.4mM), which is just the opposite
in the case of the g- class CA PfaCA, for which KAs ranging from
0.12 to 8.55 mM were obtained for amino acid derivatives and
between 0.71 and 9.97mM for amines (Table 3). A wide range of
activities of the various activators for the remaining CAs was
observed, such as for c- class of CAs, Co-Cam and PhaCA, which
were moderately activated by amino acid derivatives and amines
with KAs of 0.72–135 mM (Table 3). Other c-CAs, such as Zn-Cam
and CpsCA were less prone to be activated, as compared to other
c- CAs investigated so far, with activation constants ranging
between 4.79 to >100 mM. The unique d- class CA investigated in
details at this moment, TweCAd, was efficiently activated by most

Table 2. In vitro b-CA (Cab [31], scCA [31–34], CgCA [34], MgCA [32], VchCAb [35], mtCA 3 [36], BsuCA1 [37], FtuCA [37], LdcCA [38, 39], and EhiCA [38]) activation
data with amines and amino acids (1–19).

KA (mM)a

No Compound Cab scCA CgCA MgCA VchCAb mtCA 3 BsuCA1 FtuCA LdcCA EhiCA

1 L-His 69 82 37 29.3 20.3 18.2 1.76 40.7 8.21 78.7
2 D-His 57 85 21.2 18.1 18.0 32.5 12.3 78.3 4.13 9.83
3 L-Phe 70 86 24.1 34.1 15.4 30.6 1.16 69.1 9.16 16.5
4 D-Phe 10.3 86 15.7 10.7 5.12 44.1 1.21 75.0 3.95 10.1
5 L-DOPA 11.4 90 23.3 8.31 8.36 30.0 2.07 >100 1.64 16.6
6 D-DOPA 15.6 89 15.1 13.7 6.27 9.74 2.34 44.8 5.47 4.05
7 L-Trp 16.9 91 22.8 10.1 4.18 8.98 1.25 34.1 4.02 5.24
8 D-Trp 41 90 12.1 12.5 5.89 43.7 13.7 30.5 6.18 4.95
9 L-Tyr 10.5 85 9.5 15.7 6.15 28.9 1.38 >100 8.05 4.52
10 D-Tyr 19.2 84 7.1 25.1 0.94 17.6 0.95 >100 1.27 1.07
11 4-H2N-L-Phe 89 21.3 31.6 13.4 7.21 40.5 1.18 >100 15.9 8.12
12 Histamine 76 20.4 27.4 10.9 9.50 34.2 3.71 >100 0.74 7.38
13 Dopamine 51 13.1 27.6 9.43 1.24 12.1 1.54 >100 0.81 30.8
14 Serotonin 62 15.0 16.7 14.2 1.37 10.3 4.26 >100 0.62 4.94
15 2-Pyridyl-methylamine 18.7 16.2 15.0 6.12 0.18 43.3 1.62 46.3 0.23 >100
16 2–(2-Aminoethyl)pyridine 40 11.2 16.3 7.30 1.00 45.9 5.20 >100 0.012 >100
17 1–(2-Aminoethyl)-piperazine 13.8 9.3 14.9 0.81 0.24 50.3 43.1 51.8 0.009 43.8
18 4–(2-Aminoethyl)morpholine 18.5 10.2 10.1 5.82 12.8 52.0 9.56 >100 0.94 >100
19 L-Adrenaline 11.5 0.95 10.8 0.72 8.73 52.2 0.70 >100 4.89 25.6
aMean from 3 different determinations (errors in the range of 5–10% of the reported values, data not shown).
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of the amino acid derivatives and amines 1–19, with KAs ranging
between 51 nM and 18.9 mM.

5. Conclusions and future perspective

To our knowledge, this is the first article that summarizes the acti-
vation profile of all classes of CAs (the a-, b-, c-, d-, f-, and g-CA)
with a small library of amines and amino acid derivatives. This
panel of investigated amino acids and amines showed consider-
able activating properties, with a well defined structure–activity
relationship, but without net differences between the various CA
families. Even if the available activators are not isoform-selective
(for the many a-CAs of human or other origins), as already men-
tioned above, in the last period, their possible use as pharmaco-
logical agents for memory therapy or for artificial tissues
engineering started to be explored [23,24], with very promising
results being obtained. There is however a stringent need for hav-
ing more effective, isoform-selective and possibly non-autacoid or
amino acid derived compounds, which may possess a rather com-
plicated polypharmacology [3]. Furthemore, the investigations of
the activating effects of non-human CAs are still in their infancy,
with very few in vitro studies being available on the non-a-CA
activators. Indeed, only in the few several years the first activation
studies of b-, c-, d-, f-, and g-CAs from various organisms have
been reported, which allowed the identification of compounds
active in the nanomolar to micromolar range. However, no drug
design studies of CAAs targeting these enzymes were performed
so far, which is one of the future objectives of research in this
area. In addition, almost nothing is known regarding the in vivo
effects of CAAs in organisms other than the vertebrates (human
and rodents). As briefly mentioned, many pathogenic bacteria,
fungi or protozoans live in various niches which are potentially
rich in endogenous activators of the amine and amino acid type.
A deep understanding of the role that these modulators of activity
may play in the interaction between the host and the pathogen,
may lead to relevant biomedical discoveries, but this is an entire
new field to be explored in the future.
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