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Machine learning and other artificial intelligence methods are gaining increasing
prominence in chemistry and materials sciences, especially for materials design and
discovery, and in data analysis of results generated by sensors and biosensors. In this
paper, we present a perspective on this current use of machine learning, and discuss the
prospects of the future impact of extending the use of machine learning to encompass
knowledge discovery as an essential step towards a new paradigm of machine-generated
knowledge. The reasons why results so far have been limited are given with a discussion of
the limitations of machine learning in tasks requiring interpretation. Also discussed is the
need to adapt the training of students and scientists in chemistry andmaterials sciences, to
better explore the potential of artificial intelligence capabilities.
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INTRODUCTION

The ongoing revolution with Artificial Intelligence (AI) is certain to affect science and technology,
especially in materials science, chemistry, and engineering owing to their interdependence. On one
hand, the “hardware” component of intelligent systems, e.g., the sensors and actuators used to build
soft robots and implement Internet-of-Things applications, will increasingly rely on advanced
materials. Therefore, fulfilling the promises of AI requires developments in chemistry and materials
sciences. On the other hand, machine learning and other AI methods have become crucial for
materials design and discovery, in addition to their importance for treating the data generated from
materials characterization (Rodrigues et al., 2021). AI comprises multiple and related research fields,
including ML, natural language processing (NLP), computer vision, pattern recognition, robotics,
and knowledge management. Hence, AI as a discipline spans a lot more than ML, a fact not always
properly emphasized in communications targeted at non-experts or general audiences. This is
possibly a consequence of ML being by far the AI methodology most deployed in diverse application
areas, including chemistry, and materials sciences.

The main aim in this Perspective paper is to introduce knowledge discovery as a potential tool for
fields of chemistry and materials sciences. In order to do that we provide some context information
illustrating the current uses of ML in solving problems in chemistry and materials, but with no
intention of providing a comprehensive account of such uses, as this is not a Review paper on the
topic. We do place considerable emphasis on the strengths and limitations of present ML
methodologies. In particular, we explain why ML is highly efficient for solving tasks that rely on
learning by recognizing patterns, but not so for handling tasks that require cognition and
interpretation. Since this is crucial for understanding the potential of extending ML to handle
knowledge discovery tasks, we provide some background information on computer science and
NLP to clarify the limitations identified. In an outlook section we present some predictions for
the short-term future in the field, which include topics associated with knowledge discovery.
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The increasing usage of ML and AI also has implications for
the training of students and scientists, which we discuss
briefly. We do not develop the distinct but related topic of
novel materials to produce AI devices, which is mentioned in
the Concluding Remarks, along with some prospects of
performing ML via hardware.

MACHINE LEARNING APPLIED TO
CHEMISTRY OF MATERIALS

The connection between chemistry, materials science or
nanotechnology with computational methods has been
discussed in review papers (Oliveira et al., 2014; Rodrigues
et al., 2016; Paulovich et al., 2018), with examples of
applications in many research areas [see (Paulovich et al.,
2018; Rodrigues et al., 2021) for an overview]. Of special
relevance in this context is the area of materials design and
discovery, today heavily based on ML methods. Just by way of
illustration, a query in the Web of Science in January 2022
with the keyterms “machine learning and (chemistry or
materials discovery)” retrieved over 2,800 papers, of which
more than half published in the last 2 years, as indicated in
Figure 1. As far as the output in scientific papers is concerned,
the field has been dominated by the United States, with almost
1,200 publications, and Europe, with nearly 1,000
publications. The appearance of AI and ML as relevant
keywords in chemistry and materials sciences literature is
relatively recent, and one may expect a growth in this field
even higher than the one observed so far.

One can broadly identify three major types of ML applications
for chemistry and materials sciences, as follows:

1) Data analysis. As huge amounts of data are generated from
increasingly sophisticated equipment and computer
simulations, researchers will inevitably rely on
computational methods to process their data. This is true
even in scenarios where data are acquired locally by individual
researchers and the amount of data to be processed is small,
far from being categorized as Big Data. The most significant
example is in sensing, biosensing, and diagnostics, of any type
(Paulovich et al., 2018; Rodrigues et al., 2021).

2) Materials design and discovery. This area has gained
momentum in recent years owing to the Materials
Genome initiatives [see comments in (Rodrigues et al.,
2021)] and availability of high-throughput experiments
and simulations to build libraries of materials properties.
Coupled with the dissemination of robust implementations
of established ML algorithms, these initiatives have fostered
data intensive approaches for drug discovery and materials
design.

3) Knowledge discovery. In computer science, knowledge
discovery typically refers to the process of using ML
algorithms to extract useful and actionable information
from data (Fayyad et al., 1996). In this article we are
concerned with the extraction of useful information from
text, more specifically scientific literature, for purposes of
mapping the existing knowledge on one or multiple topics
of interest. The term “knowledge discovery” is rather novel for
the chemistry and materials sciences communities, but we
consider it here owing to its anticipated potential impact in
not-too-distant a future. Indeed, recent contributions (Silva
et al., 2016; Kim et al., 2017; Extance, 2018; Kogonova et al.,
2021) have shown that automated (or semi-automated) tools
may soon become available for researchers to extract and

FIGURE 1 | Papers retrieved from the Web of Science using the query “machine learning and (chemistry or materials discovery)” on 21 January 2022, per
publication year.
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organize information from the literature, which may go
beyond academic publications.

The analysis of scientific data, from sensors and other devices,
for monitoring and diagnosis has long relied on ML algorithms,
particularly for those cases in which pattern recognition methods
are the most suitable. Prototypical examples are in the use of
electronic tongues to assess the quality of wine and coffee (Riul
et al., 2004), to identify opiate illicit drugs (Ortiz-Aguayo et al.,
2022), and to diagnose oral cancer (Braz et al., 2022). In the latter
paper, impedance spectroscopy data obtained with an electronic
tongue applied to saliva samples were combined with clinical
information to enhance diagnosis accuracy. Supervised machine
learning provided a reasonable accuracy of 80% based on the data
of less than 30 cancer patients and healthy individuals. Though
the number of patients and healthy volunteers was insufficient to
yield definitive conclusions, results indicated that alcoholismmay
be associated with oral cancer (Braz et al., 2022), a relevant
finding not anticipated by the medical doctors involved in the
study. This finding is representative of the potential of combining
distinct types of information in diagnosis, a major advantage
afforded by machine learning approaches.

Several review papers have discussed the landscape of materials
discovery based on machine learning (Juan et al., 2021; Gao et al.,
2022; Karthikeyan and Priyakumar, 2022;Wang et al., 2022), in some
cases providing references to available databases (Gao et al., 2022).
We mention a couple of examples by way of illustrating specific
applications.Wang et al. (2022) identified ideal double perovskites for
efficient photovoltaic devices with a ML workflow that screened all
suitable double perovskites from the periodic table. The properties of
these perovskites could be computed with a predictive accuracy of
92%, orders of magnitude faster than would be possible with ab initio
calculations. More than 23,000 double perovskites not yet explored
were screened, and six had adequate band gaps, from 1.0 to 2.0 eV, of
which two have direct band gaps (Wang et al., 2022). A similar
problem is encountered in trying to discover new two-dimensional
(2D) materials. Existing databases already contain information on
several thousand 2Dmaterials, but the chemical design space is much
vaster. A deep learning generative model made it possible to obtain
over 267,000 new potential compositions for 2D materials (Song
et al., 2021). While energy calculations serve to verify which of these
materials can actually be formed, the approach using random forests
could predict the crystal structures of 92 compositions in a subset of
the hypothetical formulas. Significantly, their structure stability could
be confirmed with density functional theory (DFT) calculations
(Song et al., 2021). A review on the use of machine learning for
materials discovery, with an emphasis on 2Dmaterials, can be found
elsewhere (Schleder et al., 2021).

KNOWLEDGE DISCOVERY AND NATURAL
LANGUAGE PROCESSING

Knowledge discovery in chemistry and materials sciences is yet at
an embryonic stage as compared with application of ML in data
analysis and materials discovery, as already mentioned. It
depends heavily on NLP, a field that until recently faced

severe practical limitations. Nonetheless, a few examples of
knowledge discovery in materials science can be found in the
literature, as in the analysis of over 12 thousand manuscripts to
predict relevant parameters for the synthesis of titania nanotubes
(Kim et al., 2017). ML and NLP techniques were combined to
retrieve relevant articles automatically and extract synthesis
conditions and materials properties from the text, thus
permitting to discover the relationships between synthesis
conditions and materials. Synthesis steps such as hydrothermal
and calcinations reactions could be recognized, but authors
highlight that the ML models could not distinguish multiple
synthesis routes appearing in a single paper (Kim et al., 2017).
This limitation is indicative of the difficulties faced in interpreting
text, even in a seemingly simple scenario in which all that was
required was determining the text boundaries of different
synthesis routes.

Another interesting example found was an analysis of solid-
state chemistry literature to improve understanding of materials
synthesis (He et al., 2020). A major difficulty in the analysis is to
identify which materials are precursors and which are targets.
Following the strategy of named-entity recognition in NLP, which
basically consists in the automatic identification of entities in a
text, He et al. (2020) introduced a chemically-driven named-
entity recognition model to identify precursors and targets. Their
two-step model was based on a bi-directional recurrent neural
network architecture (Bi-LSTM) (Lample et al., 2016) which takes
advantage of context information, i.e., it considers the entities
identified as materials and their surrounding words. He et al.
(2020) developed a predictive synthesis model with a knowledge
discovery effort that required data collection and preparation:
they compiled over four million papers from major publishers,
and employed a semi-supervised random forest model to identify
371,850 paragraphs describing inorganic synthesis of various
types. From these, 95,283 paragraphs and their corresponding
abstracts from 86,554 papers were used for materials extraction.

ARTIFICIAL INTELLIGENCE, KNOWLEDGE
DISCOVERY AND INTEGRATED
PLATFORMS FOR MATERIALS RESEARCH
Strong support for the integration of chemistry, materials science,
and engineering with AI methodologies came from a proposal of
a Materials Research Platform, produced by a team of 40 experts
in various areas (Aykol et al., 2019). These experts identified the
following 16 requirements for a useful platform: Adaptive
systems—active-learning and beyond; Automation of
experiments; Automation of simulations; Collaboration; Data
ingestion and sharing; Integration; Knowledge discovery;
Machine learning for experiments; Machine learning for
simulations; Multi-fidelity and uncertainty quantification;
Reproducibility and provenance; Scale bridging; Simulation
tools; Software infrastructure; Text mining and natural
language processing; Visualization. The requirements have
been conceptually organised into three interrelated themes,
which are illustrated in Figure 2: 1) data and knowledge
assets, 2) automation of science, and 3) integrative approaches.
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Despite the varied nomenclature, one may fit these requirements
and themes within two big movements, viz. Big Data and NLP.
Within the framework of the Big Data movement, they are
basically related to the methods for acquiring, curating and
analysing data (experimental, theoretical, and simulations),
whereas strategies for knowledge management and intelligent
search are typical of NLP.

Perhaps the most unforeseen requirements in Figure 2 are
associated with knowledge management and the so-called
baselines [“baselines help gauge where a new scientific finding
stands but are often lacking” (Aykol et al., 2019)]. We consider
these concepts and associated methodologies as being strongly
related to leveraging the existing literature in a field. In fact, the
study of the literature is an integral part of any research project,
and the large number of papers and patents in any given field
poses a major challenge to this task. Researchers may have to
consult or survey hundreds if not thousands of items in the
literature, which can no longer be done manually in a reasonable
timeframe. Semi-automated tools (Silva et al., 2016; Extance,
2018) have been devised to assist in analysing content
retrieved for surveys, including approaches specific for
materials-related topics (Kim et al., 2017; Kogonova et al.,
2021). The importance of these requirements justifies a
stronger connection between NLP and materials science and
engineering and further attention to the topic of knowledge
discovery from text. A search on Chemistry of Materials on
24th January 2022 for the keyterm “natural language
processing” has retrieved only three entries. “Knowledge
Discovery” has not appeared yet, though there are odd
appearances in ACS Nano, ACS Applied Materials and
Interfaces and the Journal of the American Chemical Society

(one entry in each journal). Our motivation for discussing
knowledge discovery in this perspective paper lies in its
tremendous potential enabled by recent developments on NLP
associated with ML, despite acknowledging the modest results
so far.

The practical results of knowledge discovery [as the ones
illustrated in refs. (Silva et al., 2016; Kim et al., 2017;
Kogonova et al., 2021)] have been limited, especially owing to
the challenges associated with automated text interpretation by
machines. Yet, it is evident that AI software tools will likely assist
humans in any literature survey effort in the near future.
Publishers are already developing AI tools to assist editors,
and authors may soon benefit from analogous tools, which
makes NLP a key area for science and technology. In fact, a
broader perspective of the impact and breadth of AI may be
inferred from recent predictions (Oliveira and Oliveira, 2021;
Rodrigues et al., 2021) that in a few decades the machines
themselves may be able to generate knowledge. This new
paradigm, with machines capable of generating knowledge
without human intervention for the first time in history, will
reshape society. The block diagram depicted in Figure 3 shows
multiple AI methodologies, NLP included, and places knowledge
discovery as the output of AI processes, which as far as chemistry
of materials is concerned is mostly based onML. Nonetheless, the
next significant moves in the field will probably rely on the
integration of ML with other AI methodologies. Indeed, even
though NLP and ML appear in the figure as distinct subareas of
AI, their boundaries are not clearly defined and they are actually
combined in many applications, as it will be commented upon
later on.

MACHINE GENERATED KNOWLEDGE

Reaching the ambitious goal of machine-generated knowledge
will likely result from the convergence of two major movements
already pointed out in this text: the Big Data movement through
ML, which is critical for data intensive discovery, and the NLP
movement, which is critical for knowledge discovery. Both
movements are intertwined, as in order to generate knowledge
machines must learn sufficient information about the world. This
is only possible if they are capable of processing text and natural
language effectively, as humans do. As the two movements are
already underway, one may wonder why machine-generated
knowledge has not yet become a reality. A precise answer to
this question must consider the current limitations of AI
methodologies, and of ML in particular.

LIMITATIONS OF ML

Machine learning handles two broad classes of problems, namely
those that require identifying relevant patterns and those that
require interpretation. A typical task of the first type is
classification, and abundant examples of successful
classification tasks are seen in image analysis and facial
recognition applications. Provided there is sufficient data to

FIGURE 2 | Requirements considered as the Main Pillars of a Materials
Research Platform, within three broad themes: Data and Knowledge Assets,
Automation of Science on the Platform, and Integrative Approaches.
Reproduced from ref. (Aykol et al., 2019).
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train the algorithms and sufficient processing power, intelligent
systems for classification normally surpass the human ability. Yet,
AI does not replace expert knowledge. For a start, classification
typically relies on pattern identification, but it is not always
possible for a human expert to observe and understand the
reasons that led an algorithm to output a certain result. In
many cases obtaining a correct classification is not sufficient
and some level of explanation of the result should also be
provided, e.g., in clinical diagnosis. Current ML algorithms
focused on pattern identification simply ignore any underlying
cause-and-effect relations, which are nonetheless central to
explaining observed behaviours in the real world. It should be
noted, nevertheless, that though at its very core ML is always
based on pattern identification, there are approaches that allow
identifying rules explaining cause-and-effect relations, as in the
concept of multidimensional calibration space, further discussed
in the Outlook section.

The same efficacy observed in classification tasks does not
apply to interpretation tasks executed by ML algorithms. For
tasks that require answering questions of the type “How?” “Why,”
i.e., demand some degree of understanding and interpretation,
the success of intelligent systems is much narrower. In fact, this
limitation explains why NLP tools have so far failed to provide
interpretation of texts or high-level communication between
humans and machines. This brings us to a discussion on the
nature of current capabilities and limitations of ML.

Major breakthroughs in ML happened with recent
implementations of the connectionist model of AI on deep
neural network architectures, yielding the so-called deep
learning (DL) algorithms. Several algorithms and architectures
have been successful in executing “difficult” tasks of an
“intellectual” nature, such as language translation, object or

face recognition, and speech to text conversion. As they are
currently approached, these can typically be framed as
classification tasks. In general, DL and its underlying
technology, deep neural networks, are deemed suitable for
tasks that require efficient detection of representative patterns
in large data sets. In materials science, for instance, DL with
decision tree algorithms has been used to generate high
dimensional potential energy models for 54 elemental systems
and alloys (Manna et al., 2022). Algorithms learn models from
large sets of annotated data (the “training data”), from which they
can extract and learn the relation between the data patterns and
the output classes. Thus, as of now, successful ML requires
humans to provide the high-level concepts in the form of
labels, an approach known as “supervised learning”.

In his seminal work, Kahneman (2011) identifies two types of
cognitive processes in humans. The “system 1 cognition” refers to
unconscious, low level and fast cognitive processes that require no
effort, limited attention and no explicit reasoning. Tasks solved
with system 1 cognition involve intuition and habit. The “system
2 cognition” refers to conscious, high level, and typically slow
cognitive processes that involve reasoning, logic, inference and
explanation—closer to our idea of “interpretation” tasks. At
present, DL algorithms are good at solving tasks typical of
“system 1” cognition (Kahneman, 2011). There are many
discussions on the limits of DL to handle higher level tasks of
the “system 2” type, and thus getting closer to creating systems
with learning performance more akin to the human capabilities
when solving problems. While some authors advocate human-
level AI requires completely novel paradigms, the pioneers
Bengio, Lecun and Hinton (Bengio et al., 2021) argue that DL
architectures can learn higher-level cognitive tasks if extended
with some capabilities inspired on human learning. First, humans

FIGURE 3 | Block diagram illustrating the main AI methodologies, emphasizing the potential applicability of ML in data analysis, materials discovery, and semi-
automated surveys. Knowledge discovery is placed as the ultimate AI application, which would be essential for the new paradigm of machine-generated knowledge.
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can generalize from rather limited experience, whereas current
algorithms that use supervised learning require too much labeled
data. Here, much progress has been observed in the field of
transfer learning, in which the parameters learned by an
architecture are transferred to a novel architecture that will
solve a similar, yet different task (an example for materials
science is introduced in the next section), which reduces the
required training effort. Second, while humans need few
examples to adapt to changes in the world, current DL
algorithms are not robust to changes in data distribution.
Actually, ML algorithms typically assume that the test cases
come from the same distribution as the training cases, which
is unrealistic for data collected in the real word. Third, they point
DL architectures should evolve to handle more complex tasks,
e.g., requiring a deliberate sequence of steps. For instance,
architectures could incorporate attention mechanisms to focus
on the bits of information relevant at a particular processing
stage, rather than in the whole input information (Bengio et al.,
2021), a concept already in use in recent DL architectures for
NLP tasks.

OUTLOOK

The upcoming revolution in science and technology yielded by
the new paradigm based on machine-generated knowledge will
only be achieved after overcoming the current limitations in AI
andML. As for now, it is not possible to make a firm prediction of
when this is going to happen. Yet, analysing short-term
perspectives may be of practical value. We anticipate an
increasing usage of ML in data analysis in the field of
chemistry and materials sciences, particularly in diagnosis and
monitoring based on results from sensors, biosensors, images,
and videos. Since any diagnostics is per se a classification task
(even when regression is employed), the use of ML will be a must.
For instance, the construct related to analytical curves has been
extended with machine learning in the new concept referred to as
multidimensional calibration space (Popolin-Neto et al., 2021).
With this concept, one can not only predict but also explain how
samples are classified in a diagnosis exercise, with rules that
resemble (and replace) the equations used in calibration curves.
Also significant is the overall principle according to which, for
ML algorithms, the data type or source is irrelevant for the task to
be performed. In other words, “Data is data”. This principle could
appear intriguing to a chemist or a materials scientist, because the
common knowledge is that the nature of the information
conveyed and the expertise required to analyze data will vary
considerably in distinct problems. This is not so for an intelligent
system that relies on a classification algorithm, since as long as the
input features and the classes are well defined, the classification
task will be performed regardless of the specificities of the data
instances. An implication of this principle is the generality of ML
algorithms, which may be employed in tasks as diverse as clinical
diagnosis with image processing, sample classification with
electronic tongues and noses, and even text classification
(Oliveira et al., 2014; Rodrigues et al., 2016; Paulovich et al.,
2018; Oliveira and Oliveira, 2021; Rodrigues et al., 2021).

In the discovery of new materials and new properties,
successful use of ML will require curation of large materials
properties databases (Oliveira et al., 2021), probably with
initiatives similar to those of the materials genomics projects
(Breneman et al., 2013). Furthermore, researchers need to be
aware of the strengths and limitations of existing approaches.
While several ML tasks are employed in addressing chemistry
problems, at present viable solutions to scientific-technological
problems can only be obtained using algorithms that rely on
pattern identification. Also relevant is to consider the critical
amount of data required for successful application of some ML
algorithms. Deep learning strategies, for instance, require
comprehensive datasets, unless transfer learning can be
applied with datasets from other domains. Transfer learning
has been advocated as suitable to predicting materials
properties because chemical, electronic, thermodynamic,
physical, and mechanical properties are interrelated (Yamada
et al., 2019). The rationale behind this strategy is that, when there
is only a limited supply of training data for a given target
property, pretraining is made in models of related proxy
properties for which there is sufficient data. For instance,
using a pretrained model library referred to as XenonPy.MDL,
comprising over 140,000 pretrained models for small molecules,
polymers, and inorganic crystalline materials, Yamada et al.
(2019) built models departing from only dozens of materials
data, also revealing underlying connections between small
molecules and polymers. In one of the applications, a
prediction model was obtained which described the specific
heat capacity of polymers as a function of chemical structures
of the repeat units (Yamada et al., 2019).

The need of large databases is one of the stringent
requirements for exploiting ML and AI. In fact, in proposing a
materials platform Aykol et al. (2019) emphasize that integrating
consortia of research groups and institutions is necessary to
provide the required expertise and cope with the sheer size of
the databases already available. In their own words (Aykol et al.,
2019): “Materials science of the future is expected to be
interwoven with data, automation, machine learning, and
other emerging information technologies.” Integrated data
curation, sharing and dissemination are already observed in
commercial and academic platforms, e.g., two examples are
MaterialsZone (https://www.materials.zone/) and Materials
Cloud (Talirz et al., 2020). The emergence of data integration
platforms is also driven by a growing concern with data
generation and usage adherent to the FAIR data principles,
namely Findability, Accessibility, Interoperability, and
Reusability (Wilkinson et al., 2016). The principles of open
science are critical to accelerating future progress, as open
publication of datasets, source codes and neural architectures
can contribute to overcoming many practical limitations in
adopting novel research practices and workflows.

The discussion in this paper concentrated on supervised
machine learning, currently the most employed paradigm in
materials discovery. However, examples may also be found
which use unsupervised machine learning, and considerable
progress may be anticipated with methods exploiting
variational autoencoders (Kingma et al., 2016). As an example

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9303696

Oliveira and Oliveira Materials Discovery and Machine Learning

https://www.materials.zone/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


in chemistry andmaterials, deep generative models were obtained
for designing nanoporous crystalline reticular materials using a
variational autoencoder (Yao et al., 2021).

In a future in which AI methodologies play such a critical role
in research, it is also relevant to consider the impacts in education
and training of researchers. For beyond the concepts and skills
associated with the (already) many topics in materials, other skills
will be required from students expected to work in a scenario
dominated by large research consortia. These skills include the
mastering of fundamentals of information technology, artificial
intelligence and data science, and the ability to work in teams.
Therefore, graduate programs in chemistry and materials science
will need to enhance their inter- and multidisciplinary content
and focus, and the teams of supervisors and researchers will have
to be extended beyond the borders of chemistry and materials
science. Those programs more likely to be successful will
prioritize increased diversity—of areas, backgrounds and
skills—including those not directly related to materials, such
as linguistic and social skills. There are at least three levels for
such training, depending on the type of activity intended.

1) Students could be trained to interact with AI experts, learning
to identify opportunities in applying AI to their research. They
would not need to learn how to write computer programs and
not even use the software packages implementing ML
algorithms. However, they should understand the concepts,
strengths, limitations, risks of misuse, and the machinery
behind the software packages.

2) Students could be trained to use the software packages
implementing the ML algorithms, in addition to the skills
mentioned in 1).

3) Students could be further trained to use the software packages
and write programs implementing ML algorithms and other
AI programs.

CONCLUDING REMARKS

In this paper we have highlighted ML applications to solve
problems of materials and their applications, but the opposite
movement is also equally important, i.e., how materials sciences
can yield devices that will enable novel AI applications. There is a
long list of such materials and devices (Oliveira et al., 2021),
including wearable sensors and actuators for virtual reality
environments and Internet-of-Things applications, soft
materials for flexible electronics and soft robots. In health and
in the assessment of athletes’ performance, intelligent monitoring
systems will require functional materials for wearable and even

implantable biosensors. Similarly, intelligent systems for artificial
vision and mimicking the human senses are all based on
nanomaterials, as exemplified with electronic tongues,
electronic noses, electronic skins (Paulovich et al., 2018;
Oliveira and Oliveira, 2021; Rodrigues et al., 2021). In fact,
there is reciprocity in contributions in all of these systems, for
research on materials is essential to produce the devices, and ML
(or another AI method) is used to analyze the data generated by
such devices and make decisions. Emblematic examples of the
latter are speech processing and voice recognition systems
(Solanki et al., 2017) where sound detection is performed with
strain sensors in wearable devices.

Today all the ML applications in extensive use are based on
software, as ML via hardware is still embryonic, and it may
take decades before it is seen in practice. However,
tremendous potential for innovation exists in research in
materials sciences. An example is the development of
organic electrochemical devices to mimic synapses for
neuromorphic computing (Van de Burgt et al., 2017). In
addition, in this paper we only considered methods with
classical computing, even in the more far-fetching
predictions of future developments. Obviously, when
quantum computers become available to run ML
algorithms and apply other AI methods, a whole host of
new possibilities will emerge. The expected innovative
capabilities of quantum computing are very likely to
significant accelerate reaching machine-generated
knowledge, even though it may still take some time for
such a breakthrough to reach practical applications.
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