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A B S T R A C T   

Liquid biopsy-derived RNA sequencing (lbRNA-seq) exhibits significant promise for clinic- 
oriented cancer diagnostics due to its non-invasiveness and ease of repeatability. Despite sub-
stantial advancements, obstacles like technical artefacts and process standardisation impede 
seamless clinical integration. Alongside addressing technical aspects such as normalising fluctu-
ating low-input material and establishing a standardised clinical workflow, the lack of result 
validation using independent datasets remains a critical factor contributing to the often low 
reproducibility of liquid biopsy-detected biomarkers. 

Considering the outlined drawbacks, our objective was to establish a workflow/methodology 
characterised by: 1. Harness the rich diversity of biological features accessible through lbRNA-seq 
data, encompassing a holistic range of molecular and functional attributes. These components are 
seamlessly integrated via a Machine Learning-based Ensemble Classification framework, enabling 
a unified and comprehensive analysis of the intricate information encoded within the data. 2. 
Implementing and rigorously benchmarking intra-sample normalisation methods to heighten 
their relevance within clinical settings. 3. Thoroughly assessing its efficacy across independent 
test sets to ascertain its robustness and potential utility. 

Using ten datasets from several studies comprising three different sources of biological mate-
rial, we first show that while the best-performing normalisation methods depend strongly on the 
dataset and coupled Machine Learning method, the rather simple Counts Per Million method is 
generally very robust, showing comparable performance to cross-sample methods. Subsequently, 
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we demonstrate that the innovative biofeature types introduced in this study, such as the Fraction 
of Canonical Transcript, harbour complementary information. Consequently, their inclusion 
consistently enhances prediction power compared to models relying solely on gene expression- 
based biofeatures. Finally, we demonstrate that the workflow is robust on completely indepen-
dent datasets, generally from different labs and/or different protocols. Taken together, the 
workflow presented here outperforms generally employed methods in prediction accuracy and 
may hold potential for clinical diagnostics application due to its specific design.   

1. Introduction 

Human body biofluids, such as blood, urine, and saliva, have proven to be a rich and valuable source of information about an 
individual’s health status [1]. The burgeoning field of liquid biopsy (LB) research has been actively exploring these resources with the 
aim of unlocking their full potential for diagnosis, monitoring, prognosis, and treatment response assessment in various diseases, 
including cancer [2,3]. LB’s most effective assets lie in its repeatability, cost-effectiveness, and minimal invasiveness. 

Advancements in technology and computer science have propelled LB research. The advent of Next Generation Sequencing (NGS) 
technology, combined with continuous improvements in bioinformatics have deepened our understanding of the molecular landscapes 
in LB samples, revealing insights into disease mechanisms and the discovery of potential biomarkers [4–7]. Several studies investi-
gating blood-based biosources like Tumour-Educated Platelets (TEPs), Extracellular Vesicles (EVs), Circulating Epithelial Cells (CECs), 
and Circulating Tumour Cells (CTCs) have notably unveiled a range of diagnostic signatures that hold promise for the early detection of 
prominent cancers, harnessing the power of mRNA sequencing (mRNA-Seq) [8–10]. For instance, Antunes-Ferreira et al. [11], report 
an Area Under the ROC Curve (AUC) of 0.88 through an 881 RNA biomarker panel to predict outcomes in Non-small Cell Lung 
Carcinoma patients. 

Despite the great promise and certain advancements in the field, the current focus on LB-based transcriptomics has predominantly 
been centred around gene expression profiling, partly due to the lack of comprehensive pipelines tailored for laboratories with limited 
bioinformatics resources. Consequently, biofeatures such as isoform expression, fraction of canonical transcript (FoCT), gene fusion, 
RNA editing, and single nucleotide variants (SNVs) have remained largely uncharted, representing untapped sources of valuable in-
sights. Specifically, the simultaneous usage of these biofeatures has not been explored in previous research, promising substantial 
potential for enhancing our understanding of LB data. 

Moreover, the predominant application of cross-sample normalisation methods, while beneficial for prediction accuracy in 
enclosed, frequently single lab study designs, fosters challenges for clinical applications where intra-sample normalisation is 
mandatory to classify individual clinical samples applying a fixed prediction model. Additionally, the lack of independent test sets in 
many studies raises concerns about the reproducibility and generalisability of reported results, rendering metrics like AUCs potentially 
misleading. 

The untapped wealth of information within LB-derived RNA-Seq (lbRNA-Seq) data presents an opportunity for more compre-
hensive and clinically relevant insights. To fully unlock the potential of LB data, a comprehensive exploration of complementary 
biological information available in a lbRNA-seq sample is imperative in order to gain an encircled understanding of such biosources. 
However, integrating this high amount of heterogeneous data into a single prediction model is challenging. Moreover, due to the high- 
dimensional nature of lbRNA-seq data, machine learning (ML) approaches have become indispensable for detecting patterns and 
gaining a deeper understanding of the underlying biological conditions [12]. 

In this study, we introduce ELLBA (Ensemble Learning for Liquid Biopsy Analysis), a methodology designed to tackle the com-
plexities of LB data and enhance the predictive modelling of patient, with applicability to clinical settings. ELLBA encompasses six 
biologically motivated feature types: gene expression, isoform expression captures alternative splicing, FoCT quantifies predominant 
transcript shifts, gene fusion detects structural changes, RNA editing indicates post-transcriptional modifications, and SNVs unveil 
potential mutations. Each biofeature type addresses different molecular properties that can be altered in pathologies like cancer, 
offering therefore diagnostic and prognostic value. In the context of existing literature, it is noteworthy that virtually all published LB- 
based studies are based on Gene Expression or, at most, SNVs. No comparable study or methodology exists harnessing the comple-
mentary information contained in six different biofeatures providing a unified decision output and applicability to clinical data. This 
innovative strategy distinguishes our approach, marking a significant advancement in the field of lbRNA-Seq analysis. Given the 
absence of a comparable workflow, our methodology focuses on comparing the final ensemble output to the standard Gene Expression 
results. Finally, the modelling part of the methodology utilises Ensemble Classification Methods to combine the complementary in-
formation from these features. 

ELLBA was rigorously evaluated across six datasets and four independent validation sets, encompassing around 2,500 samples, 
covering various cancer types and biosources. Our work highlights the utility of the rather simple intra-sample Count Per Million 
(CPM) normalisation in clinical settings. We show that while the best normalisation method depends both on the data type and 
employed machine learning model, in general, CPM performs equally well compared to more sophisticated cross-sample methods. 
Moreover, our study demonstrates that Ensemble Learning is effectively leveraging the complementary information contained in the 
different biofeature types, always improving the prediction power over the best individual biofeature type. Interestingly, the 
improvement seems to be especially pronounced when evaluating independent test sets, which might indicate the robustness and 
reproducibility of the discriminative biofeatures detected by ELLBA. In summary, our workflow improves prediction accuracy and 
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streamlines clinical decision-making, contributing to personalised cancer care (Fig. S1). 

2. Materials and methods 

2.1. Workflow and implementation 

The ELLBA workflow can be easily installed using a Docker image. The source code and exact installation instructions are available 
on GitHub. The workflow integrates established bioinformatics tools with novel algorithms for data processing, biofeature generation, 
and ML analysis. ELLBA was primarily developed using Python (v3.8) with supplemental R (v3.6.3) scripts. ML analysis relies on the 
scikit-learn (v1.2.0) Python package [13]. Table S1 presents a comprehensive summary of all the software and packages utilised in the 
workflow, along with their corresponding versions. 

We employed data from 10 different liquid biopsy studies, encompassing a total of 2,479 publicly available samples from the SRA 
repository [14]. The studies span different types of LB data, including TEPs, EVs, and CECs. To initiate the ELLBA workflow, in addition 
to the raw fastq files, a sample sheet specifying at least the sample name and group label (e.g., control, cancer) is required. Although we 
conducted rigorous benchmarking in terms of normalisation and ML, this section outlines the final workflow configuration. 

2.2. Data preprocessing and biofeature extraction 

Artificial adapter sequences and low-quality reads (average Q below 20 or shorter than 40 nt) are automatically detected and 
removed by the BBDuk (v38.18) tool [15]. Furthermore, the workflow provides multi-sample quality reports through MultiQC (v1.13) 
[16]. 

Genome mapping was performed by the STAR (v2.7.6a) aligner [17] using the human reference genome GRCh38.p13 primary 
assembly as well as the GENCODE v35 reference gene annotation [18]. STAR was employed with ‘GeneCounts’ and ‘Tran-
scriptomeSAM’ parameters to obtain count matrices at both gene and transcript levels. Alignment quality metrics were extracted using 
RSeQC (v3.0.0) and Picard tools (v2.23.3) [19,20] to evaluate the alignment process and a final summarised report is being generated. 

Based on the STAR-generated BAM files, we generate a total of six biologically motivated feature types: (1) Gene expression, (2) 
Isoform expression, (3) FoCT, (4) Gene fusion, (5) RNA editing and, (6) SNV. A detailed overview of each biofeature type can be found 
in Table 1. 

2.2.1. Gene expression 
To quantify gene expression, we collected read abundances from the GeneCounts-based generated files and created a single 

expression matrix that encompassed the quantification results for all samples. Subsequently, we performed a principal component 
analysis (PCA) on the gene expression matrix to identify potential batch effects in the data. Furthermore, an Interquartile Range (IQR) 
analysis was employed to identify any potential outlier samples. 

Following the exploratory analysis, we utilised the filterByExpr function from the edgeR (v3.28.1) package [21] to remove genes 
with low expression levels across samples. Subsequently, we applied the standard CPM normalisation followed by the MinMaxScaler 
function, from the sklearn package, to further transform the gene expression data ensuring that all feature values are on a comparable 
scale. 

2.2.2. Isoform expression 
For quantification at a transcript level, we employed Salmon (v1.9.0) software [22] in alignment-based mode, using STAR 

Table 1 
Implementation details on the six biofeature types utilised in this study.  

Biofeature type Biological rationale 

Gene expression Gene-level expression profiles provide information on the transcriptional activity of each gene in the sample. It is a measure of how active a 
gene is and determines the abundance of RNA molecules produced from that gene. Gene expression plays a crucial role in determining an 
organism’s traits and functions. Consequently, perturbations in gene expression, driven by diseases, can lead to substantial alterations. 

Isoform expression Isoform expression is the measurement of different splice variants or isoforms of a gene’s RNA transcripts. Alternative splicing allows 
genes to produce multiple isoforms with sometimes different functional characteristics. Isoform expression profiling reveals gene product 
diversity and potential disease associations. 

FoCT FoCT is designed to assess the predominant canonical transcript shift in each gene using a default group. Changes in the frequency of 
alternative splicing events are quantified by means of the fraction of the canonical transcript. The rationale behind this metric is that in 
cancer, frequently the splicing pathway is affected, increasing the transcriptional variation for at least certain genes. Under this scenario, it 
might be less important to correctly identify the different isoforms but to robustly quantify the existence of a differential amount of 
alternative transcripts. 

Gene fusion Gene fusion detection involves identifying abnormal fusion events between two genes, which can arise from chromosomal rearrangements 
or translocations. Fusion events can create chimeric RNA transcripts or fusion proteins that are often associated with disease. 

RNA editing RNA editing is a post-transcriptional modification process that alters the nucleotide sequence of RNA molecules, leading to changes in the 
encoded protein or functional non-coding RNA. This process is crucial for expanding the functional diversity of the transcriptome and can 
impact gene regulation, protein structure, and function. 

SNV Single Nucleotide Variants (SNVs) can alter protein structure, function, or gene regulation based on their location in the coding or 
regulatory sequences. SNV analysis aids in discovering disease-associated (driver) mutations.  
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TranscriptomeSAM output. Default parameters were employed, along with additional settings including seqBias and gcBias enabled for 
sequence and GC content biases correction, libType U for unstranded data, and 100 bootstrap iterations for robust quantification. The 
resulting transcript-level expression matrix was obtained by merging quantification outputs using Salmon’s quantmerge script, 
selecting the numreads column for the final matrix. 

Similar to gene expression analysis, we performed exploratory analysis, normalisation, and transformation on the transcript-level 
expression matrix. These steps followed the same approach as described in section 2.2.1 for gene expression analysis. 

2.2.3. Fraction of canonical transcript 
We randomly selected 20 control individuals and extracted the most abundant transcript of each gene (canonical transcript) based 

on the isoform expression levels in these samples. This list of transcripts was used to convert the transcript expression matrix into a 
canonical transcript matrix. The transformed matrix considered only the most abundant transcripts, dividing their expression levels by 
the total counts of all transcripts originating from the same gene. This yielded the fraction of canonical transcript for each sample, 
which was then combined into a single matrix. Any features with missing values (NA) were entirely removed. Finally, the Stand-
ardScaler function was applied to transform the frequency feature matrix. 

2.2.4. Gene fusion 
Gene fusions were identified using the Arriba (v2.1.0) software [23,24], with specific parameters adjusted within the STAR aligner 

for fusion gene detection. The Arriba software was utilised with default parameters. Following detection, gene fusions were sorted 
alphabetically, and gene IDs were appropriately adjusted. Specifically, the first gene ID within the fusion nomenclature was retained, 
while the second part was omitted. Furthermore, instances of the same first gene ID were merged into a unified entry, resulting in a 
count matrix. This matrix was subsequently transformed into a binary format, featuring exclusively 0 or 1 values. In this binary 
configuration, a value of 0 denotes the absence of fusion detection within a sample, while a value of 1 signifies its presence. 

2.2.5. RNA editing events 
The genome-aligned BAM files were subjected to de-duplication using the rmdup function of samtools (v1.7) [25]. Additionally, 

GATK BaseRecalibrator (v4.1.9.0) [26] was employed to recalibrate the base quality scores. Subsequently, BCFtools mpileup (v1.7) 
[27] was utilised on the pre-processed BAM files with the following parameters: min-MQ 15, min-BQ 15, redo-BAQ, per-sample-mF, 
and min-ireads 2. Variant calling was performed using BCFtools call with the parameters ploidy GRCh38, variants-only, and 
multiallelic-caller. Known common variants from the dbSNP [28] database (common_all_20180418) were excluded from the analysis. 

RNA editing events were detected using REDItools (v2.0) software [29]. The software was configured with the following pa-
rameters: min-edits 2, min-read-quality 18, and min-base-quality 15. RNA editing events were filtered at the sample level based on a 
minimum depth per site of 10, a mean quality score per site of at least 20, and a minimum substitution frequency of 0.3. All RNA 
editing events that passed the quality filters were merged into an overall feature matrix and further filtered to include only events that 
were present in at least 20% of the samples. The resulting RNA editing event matrix was transformed into a binary format, where 
0 indicated the absence of an event and 1 indicated its presence. 

2.2.6. Single nucleotide variants 
Up to the common variant (SNP) filtering step, an identical protocol to RNA editing analysis was followed. After this stage, positions 

with quality scores below 20 and a minimum depth of 2, along with previously identified RNA editing sites, were filtered out. BCFtools 
merge was then employed to consolidate the filtered VCF files, producing a unified matrix across all samples. Subsequently, GATK 
VariantsToTable (v4.1.9.0) [30] extracted the genotype field for each variant from the filtered VCF file, converting the data into a 
tab-delimited table format. SNV values were discretised as follows: 0 for no alternative allele, 0.5 for heterozygous calls, and 1 for 
homozygous positions. Lastly, variants occurring in less than 20% of samples were filtered out. 

2.3. Machine learning and ensemble learning implementation 

To be able to generate a robust model that may classify each input sample within the datasets, ML techniques were employed on 
each of the six distinct biofeature spaces extracted from the data. Each dataset was initially split into training and test sets. For datasets 
with an independent external validation dataset, this was designated as the test set, while the main dataset served as the training set. In 
the absence of an external validation set, a random 70-30 split was performed, with 70% of the data used for training and the remaining 
30% as an approximation to an independent test set. 

Feature selection and model training were conducted on the training set, followed by final validation on the test set. Initially, highly 
correlated features (Pearson’s correlation above 0.8) and quasi-constant features (with 99% similarity) were removed from further 
analysis. 

The filtered training biofeature matrices underwent feature selection using the GeneticSelectionCV function, a Python imple-
mentation of the genetic algorithm (GA) [31]. The GA operates in a wrapper-like mode, systematically searching for the optimal set of 
features for the classification task. The choice to utilise the GA for feature selection stems from its efficiency in managing well vast 
high-dimensional biofeature spaces within a relatively short timeframe. As a population-based metaheuristic algorithm, the GA em-
ploys multiple candidate solutions during the search process. It excels in exploring diverse biofeature combinations comprehensively, 
proving notably faster and less computationally expensive—ideal for large-scale datasets. In contrast to standard methods like 
Recursive Feature Elimination (RFE) or Univariate methods, the GA offers unique advantages. RFE, while effective, can be 
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computationally demanding and time-intensive, especially with high-dimensional data, such as Isoform Expression with nearly 34,000 
features. Univariate methods, on the other hand, may overlook intricate feature interactions, limiting their ability to capture nuanced 
patterns in the data. The GA, with its capacity to consider feature interactions and navigate vast feature spaces efficiently, provides a 
more robust and holistic approach to feature selection in the context of liquid biopsy-based datasets. 

The GA was utilised with stratified 5-fold cross-validation (CV), employing empirical parameters including n_population = 130, 
n_generations = 130, scoring = "accuracy", and max_features = 50, a choice justified by balancing model complexity and prediction 
performance. For each training biofeature type matrix used in GA-based feature selection, an appropriate base estimator was selected. 
It’s worth noting that the GeneticSelectionCV function employs the selected base estimator to evaluate the fitness of different feature 
subsets during the genetic algorithm process. Specifically, the Random Forest classifier was selected as the base estimator for Gene 
Expression, the SVM classifier for Isoform Expression, and the Logistic Regression classifier for the remaining biofeatures (Table S2). 

Kindly take note that, going forward, when we refer to selecting or utilising an appropriate base estimator, we specifically mean 
choosing or using the underlying method that is employed by algorithms like GeneticSelectionCV or AdaBoost. This subtle yet crucial 
distinction is pivotal for comprehending how ensemble learning harnesses the unique strengths of distinct base estimators to enhance 
overall predictive accuracy. 

In particular, for both feature selection and modelling, we explored a range of standard and diverse classifiers to identify the most 
suitable ones. This set included classifiers such as AdaBoost, K-Nearest Neighbours (KNN), support vector machine with a linear kernel 
(LinearSV), Logistic Regression, Naive Bayes, and Random Forest. Model training was conducted using stratified 5-fold CV. Table S2 
provides a detailed overview of the final feature selection and classifier combinations. 

Ensemble learning was employed to combine the individual information from all six distinct biofeature types and enhance the 
predictive performance of each sample. To ensure the inclusion of reliable features, a minimum mean accuracy score of 0.65 during 
cross-validation in the training process was set as an empirical eligibility criterion. The soft voting strategy was then applied to make 
the final label prediction, averaging the aggregating predictions based on the probability distribution of class labels. 

2.4. Functional enrichment analysis 

To perform functional enrichment analysis, we utilised the online GOst tool provided by the gProfiler [32] web service. This tool 
facilitated the Gene Ontology (GO) and pathway enrichment analyses on the genes selected through the GA for each biofeature type. 
Additionally, we conducted enrichment analysis on the combined biofeature set, incorporating all selected features. 

3. Results 

3.1. Data collection and description 

Our study design comprises data from ten different LB-based studies encompassing a total of 2,479 samples [9,10,33–40]. The data 

Fig. 1. A comprehensive overview of the datasets employed in this study, showcasing six distinct datasets: NSCLC, GBM, CRC, ESCC, PDAC, and 
HCC, as depicted in the outer donut plot. Light blue colouring (NSCLC, CRC, and PDAC) signifies datasets with independent external validation sets, 
while grey shading (GBM, ESCC, HCC) represents datasets without external validation. The inner circle categorises the biosource origin of each 
dataset: dark yellow for TEPs in NSCLC, GBM, CRC, and ESCC; cinnamon red for EVs in PDAC; and brown for CECs in HCC. 
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were obtained from publicly available sources and consisted of short-read RNA sequencing (RNA-Seq) data. Various sequencing 
protocols, including mRNA-Seq, Extracellular Vesicles Long RNA Sequencing (exLR-Seq), single-cell RNA sequencing (scRNA-Seq), 
read lengths (100, 150, and 250), read types (single and paired-end), and sequencing methods (bulk and single-cell) were included into 
the analysis. 

The collected data were derived from three distinct blood-extracted biosources: TEPs, EVs, and CECs. TEP-derived data comprise 
the majority accounting for over 1,900 samples, while approximately 450 samples were derived from EVs, and the remaining samples 
originated from CECs (Fig. 1). 

Furthermore, our study was particularly focused on six different cancer types, each represented by a unique acronym: Non-small 
Cell Lung Carcinoma (NSCLC) for lung cancer, Glioblastoma multiforme (GBM) for brain cancer, Colorectal Cancer (CRC) for colon 
cancer, Esophageal Squamous-Cell Carcinoma (ESCC) for esophageal cancer, Pancreatic Ductal Adenocarcinoma (PDAC) for 
pancreatic cancer, and Hepatocellular carcinoma (HCC) for liver cancer. These well-defined cancer types serve as the foundation for 
our analyses, and we refer to each of the six datasets by their respective cancer type acronyms: NSCLC, GBM, CRC, ESCC, PDAC, and 
HCC. 

To ensure the robustness of our analysis, we divided the collected studies into two main subsets: a training set and an independent 
external validation testing set, when available. The training set comprised samples from six of the ten studies, totalling approximately 
2000 samples. The remaining four studies were exclusively used for the external validation testing set. To be more precise, within the 
set of six datasets, three (NSCLC, CRC, and PDAC) are accompanied by independent external validation datasets. For instance, in the 
NSCLC dataset, which encompasses 779 samples comparing NSCLC to non-cancer TEP samples, sequenced using an SE100 mRNA-Seq 
protocol, we identified an external validation dataset that perfectly aligns with the same sequencing protocol and cancer type. 
Similarly, the CRC dataset, comprising 322 samples, employed PE100 mRNA-Seq sequencing to distinguish between Colorectal Cancer 
and Non-Cancer samples. Its corresponding external validation set maintained the cancer type and utilised an SE100 mRNA-Seq 
protocol. In the context of PDAC, featuring 401 samples focused on Pancreatic Ductal Adenocarcinoma versus Healthy Controls, 
the sequencing followed a PE150 exLR-Seq protocol. The matching external validation set, derived from two publications, also 
maintained consistency in terms of cancer type and sequencing protocol. Table S3 provides a detailed overview of the datasets, 
including their configuration, utilisation, and accession information. Kindly consult the Supplementary Materials for a detailed ac-
count of the specific procedures and analyses applied to individual biofeatures in the utilised datasets. 

3.2. Overview of the ELLBA methodology 

The ELLBA methodology is organised into two core components: bioinformatics and machine learning. It consists a total of seven 
distinct modules. The initial four modules, namely Input, Mapping, Biofeature Extraction, and Biofeature Processing, constitute the 
bioinformatics phase of the analysis. The subsequent three modules, Feature Selection, Classification, and Decision Output, are focused 
on machine learning. The entire workflow is depicted in Fig. 2. Each module within this framework performs a specific set of tasks, 
which can be summarised as follows: 

Input module: Adapter trimming and quality control. (Fig. 2A). 
Mapping module: Genome alignment and gene profiling, including alignment quality controls. (Fig. 2B). 
Biofeature extraction module: Six distinct biological features are extracted (Table 1): (i) gene-level expression profiles, (ii) 

isoform-level expression profiles, (iii) FoCT, (iv) gene fusion quantification, (v) RNA editing, and (vi) putative somatic SNV (Fig. 2C). 
Table S4 provides a numerical overview of the extracted biofeatures before any filtering. 

Biofeature processing module: Normalisations and discretisation techniques are applied prior to filtering low-quality and non- 
discriminative biological features like lowly expressed genes or common germline variants (SNPs) (Fig. 2D). 

Feature selection: For each specific biological feature type, feature selection is performed using the Genetic Algorithm in 
conjunction with a designated base estimator (Table S5) tailored to that particular biofeature type (Fig. 2E). 

Classification module: Following feature selection, each biofeature classification using standard machine learning models. The 
class confidences generated are then retained for subsequent use in the final Decision Output module (Fig. 2F). 

Decision Output module: To leverage the complementary information offered from each biofeature type, by default ensemble soft 
voting classification is applied. This method combines the predicted probabilities from all biofeature matrices, aggregating them into a 
single, consolidated average prediction. In this context (Fig. 2G), each predictive model generates a label (either "Non-cancer", 
highlighted in blue, or "Cancer", highlighted in red) along with an associated probability displayed beneath the respective label. During 
the soft voting process, all these output predictive probabilities are consolidated through averaging, culminating in the ultimate 

Fig. 2. Overview of the ELLBA Workflow. ELLBA methodology is divided into two key components, with bioinformatics analysis highlighted in light 
green and machine learning in light blue. The workflow comprises seven core modules, four of which are part of the bioinformatics analysis: Input, 
Mapping, Biofeature Extraction, and Biofeature Processing. The remaining three modules belong to the machine learning component and include 
Feature Selection, Classification, and Decision Output. The process commences with data Input, followed by alignment of raw data to the reference 
genome during Mapping. Subsequently, essential information is extracted across six feature types in the Biofeature Extraction stage. Each distinct 
biofeature then undergoes individual processing and machine learning analysis. To be more specific, following Biofeature Extraction, each bio-
feature is processed in the Biofeature Processing module, where data cleaning and normalisation or discretisation are managed. The remaining 
modules are associated with machine learning analysis. To elaborate further, each individually processed biofeature undergoes Feature Selection 
and Classification. In the final Decision Output, all individual classification outputs, based on the processed biofeatures, are combined using 
ensemble learning (soft voting) to produce a unified final decision. 
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decision (as demonstrated by "Cancer" in the figure). Additional details about soft voting can be accessed in the Supplementary 
Materials. 

3.3. Comparative analysis of normalisation methods for gene and isoform expression data 

Normalisation of gene and transcript expression data is a crucial step in analysing raw-count matrices. While the remaining bio-
feature types (FoCT, Gene fusion, RNA editing, and SNV) are inherently normalised as ratios or discrete values, count matrices require 
normalisation to account for variations in read yield and technical artefacts. Several methods with different assumptions have been 
implemented for this purpose [41], and their performance varies depending on whether these assumptions are met [42]. Most 
commonly, cross-sample normalisation methods are applied. Examples of such approaches include TMM and TMMwsp from the edgeR 
package, RLE from DESeq2, RUV from the RUVseq package (which can also address and rectify batch effects), as well as quantile-based 
methods like Full Quantile (FQ) and Upper Quartile (UQ) normalisation. While these cross-sample methods often exhibit superior 
performance in benchmark studies, they have a notable drawback: the normalisation outcome for a specific gene and sample is 
influenced by the values of other samples. This characteristic hampers their utility in clinical settings, where the objective is the 
normalisation of individual samples and its application to fixed prediction models. 

To address this limitation, we evaluated the performance of two intra-sample normalisation methods, CPM and Reads Per Kilobase 
per Million mapped reads (RPKM), and the aforementioned six cross-sample normalisation methods for all six datasets. This evaluation 
was carried out by incorporating these normalisation methods into the "Biofeature processing module" step of the pipeline and 
assessing their impact on the results. To mitigate the influence of specific machine learning models, our analysis encompassed six 
diverse algorithms: AdaBoost, KNN, LinearSV, Logistic Regression, Naive Bayes, and Random Forest. 

Performance assessment was conducted on all six training datasets applying a 5-fold cross-validation approach with exactly the 
same folds for each biofeature type. The average AUC is then used as the principal quality measure. The results of the gene expression 
normalisation, presented in Fig. 3, consistently demonstrated that CPM normalisation, despite variations between datasets and ML 
models, performed comparably to the more sophisticated cross-sample methods. Specifically, CPM normalisation yielded the highest 
collective mean AUC of 0.81 across all datasets, while RPKM exhibited the lowest performance with 0.58. RLE normalisation ranked 
second highest with a collective mean AUC of 0.79. On an individual dataset basis, CPM normalisation consistently exceeded other 
methods, except in the CRC dataset, where FQ normalisation achieved a slightly higher mean AUC (0.73) compared to CPM (0.70). It is 
worth noting that, despite employing RUVSeq normalisation to account for batch effect, our results showed that CPM normalisation 

Fig. 3. Summary of Various Normalisation Methods. A total of eight normalisation techniques were assessed across all six datasets. Each column 
corresponds to a distinct normalisation method, while each row represents a different dataset employed. The x-axis illustrates the various models 
utilised within each normalisation. and the v-axis depicts the mean AUC score achieved through 5-fold CV. Each model is represented by dots 
indicating the AUC for each CV fold. Additionally, a dashed line indicates the mean AUC across the 5 folds. while a solid line represents the mean 
AUC across all models. 
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outperformed RUVSeq. This observation, indicating that batch effect correction did not significantly impact the ML analysis, highlights 
the robustness of CPM normalisation in combination with ML downstream analysis. 

Similar trends were observed in the analysis of isoform expression normalisation (Fig. S2), following the same evaluation protocol 
as the gene expression analysis. More specifically, CPM normalisation demonstrated favourable performance, achieving the highest 
score with a collective mean AUC of 0.80 across all datasets, while RPKM displayed the lowest performance with 0.60. FQ normal-
isation was rated second, with a collective mean AUC of 0.78. Notably, when evaluating each dataset individually, CPM normalisation 
consistently outperformed the other methods, with the exception of the GBM and CRC datasets. In the GBM dataset, RLE normalisation 
achieved a slightly higher mean AUC of 0.72, compared to CPM’s 0.70. Similarly, in the CRC dataset, TMMwsp exhibited a mean AUC 
of 0.66, while CPM achieved 0.65. Notably, CPM normalisation not only provided very robust results but also exhibited significant 
clinical value. Unlike other methods, CPM normalisation can normalise a single sample independently, making it more time-efficient 
for clinical applications. 

3.4. Optimal classification models for the different biofeature types 

Having established CPM as the default normalisation method for expression-based features, we extensively explored the perfor-
mance of six diverse classifiers: AdaBoost, KNN, LinearSV, Logistic Regression, Naïve Bayes, and Random Forest, using all six bio-
feature types and datasets. These six classifiers were meticulously selected based on their algorithmic diversity, computational 
efficiency, and their capacity to provide a balanced approach to classification, incorporating both linear and non-linear techniques. 
Their selection also took into account the specific characteristics of our dataset and the nature of the features extracted. Emphasising 
diversity was crucial, as these classifiers comprise different modelling paradigms, extracting the most appropriate patterns and 
discrimination functions regarding the distinct feature spaces of the problems involved. Moreover, we have opted for the use of 
standard libraries and well-validated classification methods, ensuring the robustness and reliability of our software implementation. 
Furthermore, we acknowledge the need for diversity not only in individual classifier performance but also in the success and good 
behaviour of the multi-classification approach, i.e., ensemble combination. Recognising that the joint use of different methods ensures 
a good trade-off among their potentially different predictions, we have placed a strong emphasis on diversity to enhance the effec-
tiveness of the ensemble method. This approach aligns with the need for a comprehensive and well-balanced strategy, considering the 
varying strengths of each classifier within the ensemble framework. Additionally, their widespread use in similar bioinformatics 
contexts enhances comparability with existing literature. The performance of each classifier was evaluated using the same stratified 5- 
fold cross-validation approach on each dataset, and the average AUC was reported (Fig. 4). To determine the most suitable classifier for 

Fig. 4. Classifier Selection Overview. Each column in the plot represents a different feature type, while each row corresponds to a different dataset. 
On the x-axis, six classifiers are evaluated, and the y-axis displays the mean AUC score achieved through 5-fold CV. The dashed lines represent the 
average AUC score from the 5-fold CV evaluation. For the first two feature types (gene and isoform expression), AdaBoost with ExtraTrees, is 
highlighted in red, as it is better suited for these feature types. For the remaining feature types, Logistic Regression, is highlighted in blue, as it is 
better suited for these types of features. 
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each biofeature type, we calculated the average mean AUC across all datasets for that biofeature type. Our findings revealed that 
expression-based feature matrices yielded the highest performance when paired with the AdaBoost classifier using the ExtraTrees as 
base estimator. Specifically, AdaBoost achieved the highest mean AUC of 0.86 for gene expression, while KNN exhibited the lowest 
mean AUC of 0.78. LinearSV, Random Forest, and AdaBoost demonstrated similar performance for isoform expression with a collective 
mean AUC of 0.83, while KNN yielded the lowest mean AUC of 0.77. Consequently, we selected the AdaBoost classifier with the 
ExtraTrees base estimator as the optimal choice for both gene and isoform expression analyses. 

Conversely, Logistic Regression emerged as the most suitable classifier for the remaining biofeature matrices, including FoCT, 
fusion genes, RNA editing, and SNVs. More specifically, Logistic Regression achieved the highest collective mean AUC of 0.83 for FoCT, 
while Naïve Bayes exhibited the lowest mean AUC of 0.72. In the case of fusion genes, both Logistic Regression and Naïve Bayes 
performed equally, yielding a collective mean AUC of 0.54, while LinearSV demonstrated the lowest performance with a collective 
AUC of 0.52. Regarding RNA editing and SNVs, Logistic Regression outperformed other classifiers, obtaining a collective mean AUC of 
0.82 and 0.77, respectively, whereas KNN exhibited the lowest performance with a collective AUC of 0.70 and 0.72, respectively. 

3.5. Enhancing predictive output through ensemble learning 

Having thoroughly assessed the performance of each of the six biofeature types in isolation, we delved into the potential benefits of 
combining these diverse, high-dimensional biofeature spaces, each characterised by different scales and distributions. To do so, we 
adopted three ensemble combination techniques: soft voting, majority voting, and stacking, each with its unique approach to inte-
grating predictions from multiple models. Soft voting relies on averaging probabilities, majority voting on majority decisions, and 
stacking employs a meta-model to optimise the fusion of predictions (see Supplementary Materials). 

Our comprehensive evaluation spanned six datasets, assessing performance using key metrics: AUC and the percentage of mis-
classified samples (Fig. 5A-B). While AUC offers a broad measure of model performance, its limitation in discerning specific error types 
prompted us to incorporate misclassification rates for a more nuanced evaluation. Strikingly, ensemble learning consistently outshone 
individual models across all datasets. The selection of the most suitable ensemble technique varied depending on the dataset and the 
metric considered. For AUC, soft voting excelled in NSCLC, CRC, and ESCC, whereas stacking proved superior in GBM, PDAC, and HCC. 
Conversely, when evaluating the percentage of misclassified samples, NSCLC, CRC, PDAC, and HCC demonstrated the best outcomes. 
In GBM and ESCC, majority voting slightly outperformed soft voting. In some instances, multiple ensemble techniques performed 
equally well, such as majority voting and stacking in GBM and CRC, and soft voting and stacking in PDAC and HCC. 

Fig. 5. Performance Overview of Feature Types and Ensemble Learning Methods Across Datasets. Each column in this figure corresponds to a 
specific dataset, with dataset information and the presence of an independent validation set indicated above. (A) The plot displays AUC scores for 
the test sets across all feature types. (B) Dot plots illustrate the percentage of misclassifications for each feature type across different datasets. The 
colourful squares and dots in both figures A and B represent the ensemble learning techniques, while the grey squares and dots represent the 
remaining feature types. 
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A deeper dive into specific datasets revealed intriguing findings. In NSCLC, soft voting achieved an impressive low misclassification 
rate of 12.1%, outperforming gene expression at 15.5%. In GBM, majority and stacking techniques led with a 17.8% misclassification 
rate, surpassing soft voting at 20% and gene expression at 21.1%. For CRC, both soft and majority voting achieved a low misclassi-
fication rate of 13.4%, while gene expression yielded a higher rate of 23.7%. In ESCC, majority voting reached 17.2%, while soft voting 
and other ensemble techniques, as well as gene and isoform expression, hovered around 20.7%. In PDAC, all ensemble techniques 
achieved a comparable rate of 21.7%, while gene expression exhibited a higher rate of 26.1%. Lastly, in HCC, soft voting and stacking 
were equally successful, both at 8.6%, while gene expression performed the worst at 22.6%. For a detailed overview of the computed 
misclassification rates and comprehensive data, please refer to the Supplementary Materials and Fig. S3. Additionally, various eval-
uation metrics are provided in Table S6. 

To reach a broader consensus on which ensemble learning technique consistently outperforms the others, we aggregated the 
misclassification rates across all datasets and calculated their average. The same analysis was extended to the individual models for a 
comprehensive comparison. Fig. 6 presents our final findings, illustrating the overall performance of each model. As previously noted, 
all ensemble learning techniques demonstrated superiority over individual models. Soft voting, with an average rate of 16.08, emerged 
as the frontrunner, followed by majority voting at 16.35, and stacking at 16.53. 

To further reinforce our findings, we conducted a similar analysis but limited it to datasets that possessed an independent external 
validation set. Once again, soft voting demonstrated superior performance with an average rate of 15.73, while majority voting and 
stacking followed with rates of 16.27 and 17.37, respectively. It’s important to emphasise that even the top-performing results ach-
ieved by individual biofeatures fall short, or at the very least, are on par with the ensemble learning’s average performance. In light of 
these discoveries, it becomes evident that ensemble techniques significantly enhance model performance by capitalising on the diverse 
nature of biofeature spaces and adeptly managing their inherent heterogeneity. 

3.6. Biological feature selected interpretation 

Genes detected as discriminative biofeatures should ideally have a causal relation to the analysed phenotype. For gene-expression 
based features putative relations can usually be shown by means of functional enrichment analyses, however for the other biofeature 
types explored in this study, this kind of analysis was not performed before. For example, genes showing RNA editing events with 
significant differences between control and cancer samples should act in relevant cancer pathways. To test this hypothesis, we analysed 
the 216 genes selected as features from the NSCLC dataset by means of the gProfiler. Fig. 7 shows the overrepresented functional 
annotations among these genes. Selected genes are mainly related to immune system functions, signal transduction and regulation of 
vesicle-mediated transport, which might indeed indicate that biologically meaningful features were extracted by means of our 
workflow. 

The analysis of overrepresented functional annotations was specifically conducted for the NSCLC dataset alone, but we examined 
which genes are selected in more than one dataset (see Table S7 for complete list). Interestingly, many genes, mainly related to immune 
system functions, are selected from several studies and could therefore serve as pan-cancer markers. Table 2 offers a concise summary 

Fig. 6. Average Misclassification Percentage Across All Datasets. This graph displays the percentage of average misclassifications for each feature 
type on the x-axis, with feature types arranged from the least to the most misclassifications from left to right. Each dot represents the percentage of 
average misclassifications, providing an overview of the classification performance across all datasets. 
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of genes recurring in more than three, up to six out of six datasets. 

4. Discussion 

In this study, we introduced the ELLBA methodology, a robust and comprehensive multi-level bioinformatics approach tailored for 
analysing lbRNA-Seq data to predict patient outcomes. ELLBA’s core framework centres on the extraction of six distinct biofeature 
types: gene expression, isoform expression, FoCT, gene fusion, RNA editing, and somatic SNVs. These diverse biofeatures aim to 
capture distinct molecular and functional characteristics. Our study design encompassed different cancer types and blood-based 
biosources, employing multi-condition samples from six datasets, followed by comprehensive evaluation across four independent 
validation sets. 

A crucial aspect of our study was to explore the feasibility of intra-sample normalisation methods for the count-based biofeature 
types to improve the clinical applicability of the pipeline. Through the assessment of eight diverse normalisation methods, CPM 
normalisation emerged as a robust method for both gene and isoform expression analyses, performing comparably to the more 

Fig. 7. Presented is a Manhattan plot illustrating the results of an enrichment analysis performed on the genes selected for ensemble learning within 
the NSCLC dataset. The x-axis is dedicated to functional terms, which have been meticulously organised and color-coded based on their respective 
data sources. Simultaneously, the y-axis represents the adjusted enrichment p-values, thoughtfully presented in a logarithmic negative scale. Terms 
of lesser significance are discreetly depicted as faint circles, while encircled numbers within the figure denote statistically significant enriched 
GO terms. 

Table 2 
Concise summary of genes recurring in more than three, up to six out of six datasets. The table includes the following attributes: GeneID, Gene Name, 
Gene Type, Occurrence (indicating in how many datasets the gene was selected as a feature), and a brief description of each gene’s function.  

GeneID Gene Name Gene Type Occurrence Description 

ENSG00000234745.11 HLA-B protein coding 6/6 major histocompatibility complex, class I, B 
ENSG00000206503.13 HLA-A protein coding 5/6 major histocompatibility complex, class I, A 
ENSG00000213492.2 NT5C3AP1 transcribed processed pseudogene 3/6 NT5C3A pseudogene 1 
ENSG00000166710.20 B2M protein coding 3/6 beta-2-microglobulin 
ENSG00000160014.17 CALM3 protein coding 3/6 calmodulin 3 
ENSG00000162852.14 CNST protein coding 3/6 consortin, connexin sorting protein 
ENSG00000115956.10 PLEK protein coding 3/6 pleckstrin 
ENSG00000196126.11 HLA-DRB1 protein coding 3/6 major histocompatibility complex, class II, DR beta 1 
ENSG00000117640.18 MTFR1L protein coding 3/6 mitochondrial fission regulator 1 like 
ENSG00000149781.12 FERMT3 protein coding 3/6 FERM domain containing kindlin 3 
ENSG00000115310.18 RTN4 protein coding 3/6 reticulon 4 
ENSG00000150867.14 PIP4K2A protein coding 3/6 phosphatidylinositol-5-phosphate 4-kinase type 2 alpha  
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sophisticated cross-sample normalisation techniques like TMM or RUVSeq, which additionally corrects for batch effects. Notably, the 
clinical utility of intra-sample normalisation, such as CPM, deserves highlighting, as it enables rapid individual sample normalisation 
and seamless integration with instant predictions using pre-trained machine learning models. This property renders it highly suitable 
and time-efficient for clinical applications. 

Further, we extensively benchmarked the choice of optimal classifiers for each biofeature type. Gene and isoform expression with 
continuous values demonstrated a strong compatibility with the AdaBoost classifier using the ExtraTrees as base estimator. Conversely, 
Logistic Regression exhibited superior performance for biofeature types with ratios (FoCT) or discrete values (remaining biofeatures). 
While most evaluated models performed comparably across each biofeature type, Naive Bayes and KNN consistently ranked lower. 
However, it is important to note that fluctuations in individual biofeature type performance might occur depending on the dataset, 
with no one biofeature type universally excelling. We believe that the variations in classifier performance across the different bio-
feature types in our benchmarking experiment can be attributed to several factors. Gene and isoform expression data might perform 
well with Adaboost due to their complexity and non-linear separability. On the other hand, Logistic Regression might excel with 
biofeatures like FoCT, gene fusion, RNA editing events, and SNVs because of their simpler, more linear relationships. Data size, feature 
importance, noise levels, and the presence of interaction effects could also contribute to these variations. 

Our core finding underscores the superiority of combining information from several biofeatures over relying solely on standard 
Gene Expression. To mitigate fluctuations originating from individual biofeature space limitations and harness their complementary 
information, we introduced three distinct ensemble classification approaches within the ELLBA methodology. These ensemble 
methods, namely soft voting, majority voting, and stacking, integrate predictions derived from all six biofeature types, employing 
diverse strategies. Our findings showed, initially, that ensemble classification always improved predictive accuracy compared to gene 
expression alone. Furthermore, these ensemble learning techniques effectively reduce misclassification rates and enhance overall 
prediction accuracy, underscoring the value of multi-view analysis for liquid biopsy data. It is important to note that the choice of 
ensemble classification technique may vary depending on the dataset. In general, our findings suggest that soft voting is a robust and 
versatile ensemble learning method, a conclusion substantiated by datasets featuring an external validation set. This observation 
underscores the pivotal role of ensemble learning in enhancing the reproducibility and reliability of our results, further solidifying its 
importance in the context of liquid biopsy data analysis. Moreover, we believe that this superiority arises from several key advantages 
of ensemble methods. Firstly, they leverage the complementary information inherent in each biofeature type, capturing distinct as-
pects of the data and thus improving prediction accuracy. Secondly, ensemble methods reduce the impact of noise in individual models 
by combining multiple predictions, enhancing robustness. Additionally, ensemble techniques improve generalisation, reduce variance, 
and handle imbalanced data more effectively. Overall, ensemble learning emerged as a powerful strategy for harnessing the full 
potential of multi-feature data in cancer diagnostics. 

Upon consideration of additional complementary metrics, including balanced accuracy, F1 score, and average Precision score, and 
comparing them with the corresponding metrics from the standard Gene Expression, as well as other biofeatures, we consistently 
observed unaltered results. It is crucial to emphasise that the analysis remains invariant due to the globally robust behaviour of the 
methodology. Our approach is dedicated to enhancing performance across diverse scenarios, irrespective of class distribution, with 
particular attention to cancer precision. This steadfast commitment to robustness underscores the methodology’s reliability. To gain 
deeper insights into the biological significance of our selected features, we conducted a functional enrichment analysis, focusing on 
features that consistently recurred across datasets. The results highlighted that the genes identified as discriminative features, 
particularly those associated with immune system functions may hold significant relevance in cancer pathways. Furthermore, the 
recognition of genes recurring across multiple studies underscores their potential as valuable pan-cancer markers, underscoring the 
strength and applicability of our workflow in uncovering biologically meaningful features. 

Several important considerations emerge from our study. Firstly, the restricted availability of gene fusion data may have affected 
the results, possibly due to the limited depth of sequencing in certain datasets or the use of single-end sequencing in cases such as 
NSCLC, GBM, and CRC datasets. While our fusion detection criteria were not overly stringent, the challenge of accurately capturing 
fusion events with high confidence warrants future exploration, particularly with the potential benefit of paired-end deep sequencing 
for enhancing the identification of these putatively important biomarkers. It is worth noting, that despite the depth of the CRC and the 
switching from PE to SE, we noticed that the Accuracy in the training is 0.60 by selecting 3 features out of the initial filtered ones which 
were 12. Secondly, the robust performance of our workflow on independent validation sets underscores the significance of maintaining 
uniform handling and sequencing protocols for validation data. This is exemplified by the closely aligned accuracy observed in the 
NSCLC dataset and its validation set, both managed by the same group, reinforcing the imperative for standardised procedures even 
across diverse laboratory settings. Finally, despite our comprehensive investigation of normalisation techniques, machine learning 
algorithms, and ensemble learning, there remains potential for enhancing our ensemble learning classifier’s performance. This might 
involve exploring newer algorithms, adapting existing ones, exhaustive hyperparameter exploration, evolutionary-based feature se-
lection, or integration of additional genomic data types. Through ongoing refinement of our machine learning pipeline, we anticipate 
continued progress in the precision and reliability of cancer predictions across diverse datasets. 
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5. Conclusions 

The ELLBA workflow offers a significant contribution to liquid biopsy data bioinformatics analysis. Through multi-feature inte-
gration and ensemble learning, ELLBA presents a comprehensive avenue for patient outcome prediction in liquid biopsy-based cancer 
research. Its flexibility aligns well with upcoming liquid biopsy advancements, facilitating analysis across diverse cancer types and 
biosources. As liquid biopsy gains traction in cancer diagnostics, ELLBA holds promise for advancing precision oncology. Rigorous 
validation in even larger, diverse cohorts, complemented by experimental confirmation, will be pivotal to establishing ELLBA’s clinical 
utility and reliability in liquid biopsy data analysis. With ongoing strides in liquid biopsy technologies and machine learning, ELLBA’s 
continued evolution holds potential as an indispensable tool in liquid biopsy-based cancer research and clinical applications. 
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Abbreviations 

LB Liquid Biopsy 
NGS Next Generation Sequencing 
TEP Tumour-Educated Platelets 
EV Extracellular Vesicles 
CECs Circulating Epithelial Cells 
CTCs Circulating Tumour Cells 
mRNA-Seq mRNA Sequencing 
AUC Area Under the ROC Curve 
FoCT Fraction of Canonical Transcript 
SNV Single Nucleotide Variants 
lbRNA-Seq liquid biopsy-derived RNA-Seq 
ML Machine Learning 
ELLBA Ensemble Learning for Liquid Biopsy Analysis 
CPM Count Per Million 
PCA Principal Component Analysis 
IQR Interquartile Range 
NA Not Applicable 
SNP Single Nucleotide Polymorphisms 
CV Cross-Validation 
KNN K-Nearest Neighbours 
GO Gene Ontology 
exLR-Seq extracellular vesicles Long RNA Sequencing 
scRNA-Seq single-cell RNA sequencing 
NSCLC Non-small Cell Lung Carcinoma 
GBM Glioblastoma multiforme 
CRC Colorectal Cancer 
ESCC Esophageal Squamous-Cell Carcinoma 
PDAC Pancreatic Ductal Adenocarcinoma 
HCC Hepatocellular carcinoma 
FQ Full Quantile 
UQ Upper Quartile 
RPKM Reads Per Kilobase per Million mapped reads 
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