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Purpose: Radiation therapy is one of the most common treatments in the fight against prostate
cancer, since it is used to control the tumor (early stages), to slow its progression, and even to
control pain (metastasis). Although many factors (e.g., tumor oxygenation) are known to influence
treatment efficacy, radiotherapy doses and fractionation schedules are often prescribed according to
the principle “one-fits-all,” with little personalization. Therefore, the authors aim at predicting the
outcome of radiation therapy a priori starting from morphologic and functional information to move
a step forward in the treatment customization.
Methods: The authors propose a two-step protocol to predict the effects of radiation therapy on
individual basis. First, one macroscopic mathematical model of tumor evolution was trained on tumor
volume progression, measured by caliper, of eighteen Dunning R3327-AT1 bearing rats. Nine rats
inhaled 100% O2 during irradiation (oxy), while the others were allowed to breathe air. Second, a
supervised learning of the weight and biases of two feedforward neural networks was performed
to predict the radio-sensitivity (target) from the initial volume and oxygenation-related information
(inputs) for each rat group (air and oxygen breathing). To this purpose, four MRI-based indices related
to blood and tissue oxygenation were computed, namely, the variation of signal intensity (∆SI) in
interleaved blood oxygen level dependent and tissue oxygen level dependent (IBT) sequences as well
as changes in longitudinal (∆R1) and transverse

�
∆R∗2

�
relaxation rates.

Results: An inverse correlation of the radio-sensitivity parameter, assessed by the model, was found
with respect the ∆R∗2 (−0.65) for the oxy group. A further subdivision according to positive and
negative values of ∆R∗2 showed a larger average radio-sensitivity for the oxy rats with ∆R∗2 < 0 and a
significant difference in the two distributions (p < 0.05). Finally, a leave-one-out procedure yielded a
radio-sensitivity error lower than 20% in both neural networks.
Conclusions: While preliminary, these specific results suggest that subjects affected by the same
pathology can benefit differently from the same irradiation modalities and support the usefulness of
IBT in discriminating between different responses. C 2016 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4941746]
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network

1. INTRODUCTION

It is widely acknowledged that the success or failure of
prostate cancer radiotherapy depends largely on lesion staging
at the time of diagnosis.1,2 In spite of a high tumor control
probability, especially in early stages, there are degrees of
variability in the tumor response (radio-sensitivity) depend-
ing on different intrinsic (cell line related) and extrinsic

(microenvironment related) factors, which are still under
investigation. Among extrinsic factors, tumor oxygenation
plays a significant role influencing the radio-sensitivity.3,4 For
example, hypoxic tumors may require higher radiation doses
or different fraction schedules to overcome radioresistance.5

Recent preclinical studies have suggested that the tumor radio-
sensitivity, for vascularized and well perfused tumors, can
be increased by administering hyperoxic gas, inhaled during
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irradiation.6–10 While there is still debate whether tumor
oxygenation is a reliable prognostic factor, the assessment of
tumor hypoxia allows the treatment tailoring, exploiting the
subject-specific radio-sensitivity prediction, which is likely to
improve the tumor response.

Oxygen-related data can be gathered by means of various
techniques such as a polarographic electrodes (albeit inva-
sive)11,12 or positron emission tomography (PET) (requiring
the administration of radioactive contrast agents).13 By
contrast, blood oxygen level dependent (BOLD) and/or tissue
oxygen level dependent (TOLD) images, based on functional
magnetic resonance techniques, allow a semiquantitative
and noninvasive assessment of the average tumor oxygen-
ation.6,14–16 In principle, BOLD and TOLD information
increases staging reliability and can be exploited to improve
the predictive ability of advanced prognostic mathematical
tools as well.

In order to predict tumor response to radiation treatment on
a patient-specific basis, a large number of in silico models have
been proposed.17,18 Despite the development of hierarchic
architectures including the description of phenomena across
multiple time and space scales, the lack of their standardized
testing and quantitative validation prevents the model transla-
tion into clinical practice.19–21 Macroscopic approximations,
based on the tumor volume regression measured using
computed tomography and magnetic resonance imaging, suc-
ceeded conversely in predicting tumor response to therapy.22,23

In the past decade, the role of oxygenation in tumor growth and
responsiveness has been tackled using mathematical models
at both macroscopic and microscopic scales.24–26

In Ref. 26, we proposed a macroscopic model including
interdependent dynamics of tumor evolution and oxygenation
based on the following assumptions: (1) the larger the
tumor volume, the greater the hypoxic fraction; (2) tumor
radio-sensitivity is proportional to oxygenation. At the time,
oxygenation could not be assessed and the model validation
was based on volume measurements only. In this paper, we
refined such a model to represent tumor growth and response
to hypofractionated radiotherapy. Our first objective was to
verify whether the tumor radio-sensitivity, estimated by such
a macroscopic model, correlates with oxygenation indices
obtained by interleaved BOLD and TOLD (IBT) MR images
(a posteriori). The second objective was to verify whether
the radio-sensitivity can be assessed at the staging time (a
priori), exploiting tumor volume and oxygenation data. These
objectives were verified by means of experimental procedures
performed on eighteen rats implanted with Dunning R3327-
AT1 prostate cancer and irradiated using a hypofractionation
regimen (subcurative dose).

2. MATERIALS AND METHODS
2.A. Treatment protocol and data acquisition

This study was approved by the Institutional Animal
Care and Use Committee of University of Texas Southwest-
ern Medical Center (protocol 2009-0180). Eighteen male
Copenhagen rats were implanted subcutaneously in the thigh

with Dunning R3327-AT1 prostate tumor fragments of about
1 mm3 from a donor. The tumor size evolution was assessed
weekly, by means of a digital caliper, measuring three
orthogonal diameters (a, b, c). The corresponding volume (V )
was computed by the spheroid formula V = π/6(a, b, c).27

When the tumor volume reached about 1–2 cm3 (mean:
1.2 cm3), the eighteen rats were divided into two groups: the
air group (n= 9) breathed air during irradiation, while the oxy
group (n= 9) breathed 100% O2 for about 15 min, before and
during each radiotherapy session.

The day before irradiation, oxygen enhanced MRI was
acquired. Rats were anesthetized with 3% isoflurane for
induction and maintained with 1.5% isoflurane at 1 l/min. Rats
were placed on a plastic bed with a water warming blanket
to maintain body temperature. A 35 mm home-built solenoid
volume RF coil was used to image the tumors on the thigh
of the rats. MR images were obtained using a small animal
horizontal bore 4.7 T MR scanner (Agilent Technologies,
Palo Alto, CA). Following tumor localization and anatomical
imaging (T2-weighted), images for R1 were acquired using a
sequential variable repetition time (TR) 2-D multislice spin
echo sequence (SEMS). Three slices in the center of the
tumor featured a thickness of 2 mm, a field of view (FOV) of
60×60 mm, an image matrix of 128×128 pixels, a TE/TR
of 20/100, 200, 300, 500, 700, 900, 1500, 2500, 3500 ms,
number of averages of 1, and an acquisition time of 22 min
16 s. IBT images were acquired in two slices using a
2D multislice multiecho spoiled gradient-echo sequence
(MGEMS) for BOLD and R∗2 (thickness = 2 mm, FOV
= 60× 60 mm, matrix = 128× 128, TE/TR = 6–69/150 ms,
echo spacing= 7 ms, flip angle= 20◦, number of averages= 3,
scan time = 57.6 s) and a 2-D multislice spoiled gradient-
echo sequence (GEMS) for TOLD (thickness = 2 mm, FOV
= 60× 60 mm, matrix = 128× 128, TE/TR = 5/30 ms, flip
angle = 45◦, number of averages = 2, scan time = 7.8 s).
Interleaved BOLD (T2*-weighted images) and TOLD (T1-
weighted images) were acquired during baseline air and
oxygen for up to 10 min.

Four indices of oxygenation were assessed: ∆SIBOLD,
∆SITOLD, ∆R1, and ∆R∗2. Percent changes in signal intensity
(∆SI) in BOLD or TOLD response to hyperoxic respiratory
challenge were calculated voxel-by-voxel, as ∆SI = 100
×
�
SIoxy−SIair/SIair

�
and averaged over the region of interest.

Analysis of BOLD images was based on a single echo time
(TE= 20 ms). Local changes in tumor longitudinal relaxation
rate (∆R1, s−1) were calculated voxel-by-voxel as ∆R1
= R1,oxy− R1,air and then averaged out. A similar process
provided variation of the apparent transverse relaxation rate
(∆R∗2, ms−1). Representative R∗2 maps and corresponding
histology are shown in Fig. 1.

Postprocessing of MR images was performed offline using
in-house algorithms developed in MatLab® (MathWorks,
Natick, MA, USA). Table I summarizes the values assessed
for each rat.

The next day rats were anesthetized while breathing either
air or oxygen and, after an equilibration period of at least
15 min, irradiated. Radiation was delivered using a small
animal x-ray irradiator (XRAD 225Cx, Precision X-Ray,
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F. 1. Quantitative R∗2 maps of a small (1.6 cm3) Dunning prostate R3327-AT1 tumor. Upper panel: (Left) Baseline breathing air (mean ± SEM R∗2= 42±1 s−1),
(middle) breathing oxygen (mean ± SEM R∗2= 39±1 s−1), and (right) ∆R∗2 (mean ± SEM =−3.1±1.4 s−1). The R∗2 (1/T ∗2 ) after breathing oxygen had a slower
decay compared to air indicative of less deoxyhemoglobin present. Lower panel: After MR imaging, the tumor was resected from the rat thigh and cut in half.
Both halves were quickly placed in liquid nitrogen or 10% formalin. The tumor tissue that was fixed in 10% formalin was embedded in paraffin and sectioned
for hematoxylin and eosin (H and E) staining. It showed no significant signs of central necrosis, but minimal widespread necroses surrounded by viable tissue.

North Branford, CT) operating at 225 kV and 13 mA,
producing a dose rate of 3.5 Gy/min.

Each rat underwent two radiotherapy sessions with two
doses of 15 Gy a week apart (30 Gy total). The treatment was
planned to be subcurative since the dose (single fraction) at
which there is 50% of tumor control probability (TCD50) is
reported to be about 76 Gy, for the anaplastic AT1 tumor.28

Average curves of volume evolution are shown for both groups
in Fig. 2.

2.B. Mathematical model of tumor evolution

We considered the tumor as consisting of two main regions:
(1) a viable (active) volume of clonogens spontaneously
growing and affected by radiation therapy and (2) a necrotic
volume, not able to proliferate due to either treatment damage
or severe hypoxia, which is physiologically washed out. In
contrast to previous work,26 we did not include an explicit
model of tumor reoxygenation along the treatment course or
its influence on the radio-sensitivity in the present study.

The modeling of tumor proliferation has been often
addressed in the literature.18,19,21 Among the most common
mathematical formulations for the spontaneous tumor growth,
the Gompertzian, Logistic, and exponential equations need

to be mentioned.29,30 The Gompertzian and Logistic curves
feature an initial exponential-like growth that saturates toward
an asymptotic value, similar to what is often reported by
in vitro and in vivo studies. In order to achieve this dual
behavior, they require the setting of two parameters, namely,
the growth rate and the maximum carrying capacity of the
tissue. Conversely, despite the potentially unrealistic indefinite
growth, the exponential curve can be fully defined by its time
constant only. Given the small initial size of the tumors here,
and the short observation time window (less than 2 months),
a simple exponential function was used. We also assumed,
according to the small initial tumor volume, that no necrosis
occurs before treatment, as supported by tumor histology (cf.,
Fig. 1).

At the first irradiation time (tir1), we define Vv (tir1)=V (tir1)
and Vn(tir1) = 0, where Vv and Vn accounts for the active
(viable) and necrotic volumes, respectively, while V is the
overall measured volume. Afterwards, the time evolution of
Vv is regulated by the doubling time Td. Td refers only to the
active volume spontaneous growth and cannot be considered
an index of treatment success (growth delay). It reflects the
cell-line-specific growth rate and, possibly, environmental
factors influencing the cell-cycle and tumor aggressiveness.
The radiation therapy effects are usually modeled by means
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T I. Characteristics of individual Dunning prostate R3327-AT1 tumors. Inhaled gas during irradiation is
shown together with volume at the time of the first irradiation (V0). The four oxygen-related parameters are pre-
sented for each tumor, namely, the variation of signal intensity (BOLD and TOLD) and the change in the relaxation
longitudinal and transverse relaxation rates (∆R1 and ∆R∗2, respectively) caused by oxygen administration during
the IBT acquisition.

Rat Group V0 (cm3) ∆SI(%)BOLD ∆SI(%)TOLD ∆R∗2 (ms−1) ∆R1 (s−1)

1 Air 1.0 −2.10 −0.40 0.0051 0.0539
2 Oxy 1.5 −0.93 0.32 −0.0010 0.046
3 Air 0.9 3.62 2.13 0.0003 0.0475
4 Oxy 1.1 −3.26 1.07 0.0021 0.1213
5 Air 0.9 −0.60 −0.19 −0.0035 0.0928
6 Oxy 0.7 1.43 0.76 0.0017 0.0393
7 Oxy 0.9 4.52 1.97 −0.0010 0.0677
8 Oxy 1.2 3.55 0.77 −0.0015 0.052
9 Air 1.2 4.09 2.51 −0.0008 0.0374

10 Oxy 1.1 7.94 1.40 −0.0033 0.0308
11 Air 1.2 2.43 0.79 0.0091 0.0149
12 Air 1.4 4.01 1.05 −0.0003 0.0099
13 Air 2.1 −0.44 0.59 −0.0004 −0.0064
14 Oxy 1.6 1.64 1.25 −0.0008 0.031
15 Air 0.9 3.76 2.11 0.0006 0.0365
16 Oxy 1.7 2.60 1.03 0.0054 0.0011
17 Oxy 1.7 4.77 1.51 −0.0012 0.0069
18 Air 1.2 3.29 0.72 −0.0006 0.0472

of the linear-quadratic (LQ) model, instead.23,31 It defines the
surviving fraction (SF) as

SF= e
−αd

(
1− d

α/β

)
, (1)

where d is the delivered dose and the tumor radio-sensitivity
is represented by the α (Gy−1) and β (Gy−2) parameters
accounting for double (lethal) and single (possibly reparable)
strand break damage to DNA, respectively. In order to
assess both parameters (α and β), a study including multiple
fractionation strategies would be required (different doses).
In order to overcome this issue, we assumed the ratio
α/β = 6.8 Gy according to previous findings on R3327-AT1
rat prostate tumors.32 Finally, as the damaged cells are not

instantaneously washed out, their dynamics can be described
by an exponential decay with an half-time constant T1/2. In the
time between the two irradiation sessions (tir1 < t ≤ tir2), the
system can be summarized as

Vv (t)=Vv (tir1)SF e
ln(2)
Td

(t−tir1) (2a)

Vn(t)=Vv (tir1)(1−SF)e−
ln(2)
T1/2

(t−tir1)
, (2b)

while for t > tir2, it can be defined as

Vv (t)=Vv (tir2)SF e
ln(2)
Td

(t−tir2), (3a)

Vn(t)= (Vn(tir2)+Vv (tir2)(1−SF))e−
ln(2)
T1/2

(t−tir2)
. (3b)

F. 2. Average evolution curves for the measured tumor volume are shown for air (solid line) and oxy (dotted line) groups separately. Error bars are shown
representing ±σ, the standard deviation across the sample for the specific time point. Although some rats survived up to 56 days, the plot was stopped at day
42, the last measurement available for all tumors.
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F. 3. General scheme showing the two main stages of the data processing. First, the mathematical model is trained using all the measured volume obtaining
a set of parameters (Td, α, T1/2) and the prediction of both viable and necrotic volume evolution for each rat. Second, the radio-sensitivity estimated by the
model is used to train a feedforward neural network to predict it according to five inputs, namely, V (0), ∆SIBOLD, ∆SITOLD, ∆R1, and ∆R∗2. Solid, filled arrows
represent inputs, while solid, unfilled and dashed arrows are the outputs and control variables (e.g., target), respectively. Finally, the dotted arrow represents a
possible feedback performed employing the αNN predicted by the net to set the corresponding parameter of the mathematical model and obtain an estimation of
the tumor response of a new rat.

We assumed α to be constant throughout time due to the
limited amount of data at our disposal and especially the
lack of volume measurements between the two irradiations.
This assumption, along with the specific fractions applied
(same dose delivered at both fractions), allowed us to use
the same surviving fraction definition for all the equations
above [Eqs. (1)–(3b)]. Similarly to our previous work,23,26 the
free parameters (Td, α, and T1/2) were optimized on an animal-
specific basis by means of a custom genetic algorithm in order
to achieve the best total volume fitting (∀t, V (t)∼Vv (t)+Vn(t)).
In the parameter learning, Td, T1/2, and α were bounded in the
range 3–7 days, 1–60 days, and 0.005–0.5 Gy−1, respectively,
according to the prior literature.22,33 The large range for T1/2
was also justified to cope with several dynamics possibly
causing a delay in tumor shrinkage (e.g., edema) not explicitly
modeled. The fitting error for the rth rat (er), minimized during
the optimization, was computed using the following relation:

er =

Nr
i=0

|V (ti)− (Vv (ti)+Vn(ti))|
Ni

, (4)

where i identifies each of the Nr time steps at which measured
volumes are available. Statistical analysis was performed
across the model parameters and the error distributions of
the air and oxy groups using the Wilcoxon–Mann–Whitney
test (5% significance). The Pearson correlation coefficient (P)
between the radio-sensitivity parameter (α) and the oxygen
indices (∆SIBOLD, ∆SITOLD, ∆R1, and ∆R∗2) was computed
separately for the oxy and the air groups.

2.C. Neural network model

The possibility of an early prediction of tumor radio-
sensitivity was investigated using the initial tumor volume
and the four indices of oxygen level, namely, the BOLD
and TOLD signal intensity variation and the change in
longitudinal (R1) and transverse (R∗2) relaxation rates. A
feedforward artificial neural network (ANN), featuring five
input parameters (V (t = 0),∆SIBOLD,∆SITOLD,∆R1, and∆R∗2),
one hidden layer (five neurons), and one output (predicted α),
was implemented using the built-in Neural Network Toolbox
of MatLab® package. For each of the two groups (air and

F. 4. Two examples of fitting curves are reported for a rat belonging to the air group (left panel) and one belonging to the oxy one (right panel). Solid circles
and open squares represent the measured and the predicted volumes. Grey triangles (dotted line) stand for the predicted necrotic volume.
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T II. Model parameters and fitting errors obtained by means of a subject-specific optimization.

Rat Group Td (days) α (Gy−1) T1/2 (days) e (mm3) e (%)

1 Air 7.0 0.0189 60 445.67 12.56
2 Oxy 5.4 0.0468 60 692.35 19.11
3 Air 4.0 0.0468 38 1003.48 41.92
4 Oxy 6.8 0.0189 16 382.63 9.23
5 Air 4.8 0.0282 11 191.74 5.11
6 Oxy 6.9 0.0306 60 813.17 23.62
7 Oxy 4.0 0.0584 12 980.49 37.69
8 Oxy 3.5 0.0723 59 1296.24 31.89
9 Air 5.8 0.0305 60 606.78 17.95

10 Oxy 4.1 0.0561 24 1039.49 25.83
11 Air 5.3 0.0375 44 785.70 26.41
12 Air 4.1 0.0584 58 889.99 25.15
13 Air 6.3 0.0398 60 663.06 15.57
14 Oxy 7.0 0.0329 60 542.66 17.28
15 Air 4.1 0.0422 60 394.28 15.70
16 Oxy 7.0 0.0352 60 453.31 15.36
17 Oxy 5.0 0.0538 53 327.90 13.08
18 Air 6.8 0.0189 60 455.51 11.55

oxy), supervised training was used to estimate the tumor
radiation sensitivity using the values provided by the genetic
algorithm as targets. A complete scheme of the adopted
protocol outlining the two main steps (model fitting and ANN
training) is provided in Fig. 3. The prediction ability of the
two ANNs was assessed by performing a leave-one-out (LOO)
procedure. Out of the nine animals in each group, eight rats
were selected for training and one was left out to compute the
extrapolation error. This was repeated for all the rats in each
group. The prediction error was computed by averaging out
all the extrapolation errors.

3. RESULTS
3.A. Performance of the tumor evolution model

The proposed model achieved an average fitting error of
about 0.7 cm3 (range: 0.2–1.3 cm3, 5%–42%) across the
eighteen rats. Despite the fact that the error was on average
larger for the oxy group (0.8 cm3) than that of the air group
(0.6 cm3), the difference between the two error distributions
was not statistically significant (p = 0.5) and the model was

able to mimic the general volume progression trend in both
cases (Fig. 4).

On average, the radio-sensitivity α was 0.05 and 0.04
Gy−1 for the oxy and air groups, respectively (p= 0.27). The
assessed tumor doubling time (5.4 and 5.5 days on average for
the air and oxy group, respectively) was in accordance with
the reported literature.33 Finally, the T1/2 values showed a large
variability (11–60 days) and frequent saturation toward the
upper bound (Table II). Again, both Td and T1/2 distributions
were not statistically different across the oxy and air groups.

3.B. Radio-sensitivity and oxygenation

A correlation was observed for the radio-sensitivity of the
oxygen-breathing rats with respect of ∆SIBOLD (P= 0.69) and
∆R∗2 (P = −0.65). Both indices are related to the apparent
transverse relaxation rate, but given that R∗2 is a quantitative
measurement, we focused on investigating the role of∆R∗2. The
two groups were further divided according to their variation
of transverse relaxation rate as Airp (air, ∆R∗2 > 0), Airn (air,
∆R∗2 < 0), Oxyp (oxy,∆R∗2 > 0) and Oxyn (oxy,∆R∗2 < 0). While
the Airp (n= 4) and Airn (n= 5) subgroups distributions were

F. 5. Boxplot of the α (alpha) distribution according to the four subgroups identifying numbers of tumors (n) in each group (Airp: air, ∆R∗2 > 0, n = 4; Airn:
air, ∆R∗2 < 0, n = 5; Oxyp: oxy, ∆R∗2 > 0, n = 3; and Oxyn: oxy, ∆R∗2 < 0, n = 6). The central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points.
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F. 6. Example of LOO analysis results of the neural network prediction ability for a single item of both air (left panel) and oxy (right panel) groups. Circle
and cross markers represent the training data and the test item, respectively.

similar and also comparable to Oxyp (n = 3), the Oxyn set
(n = 6) featured the largest median value (Fig. 5) and was
statistically different from Oxyp (p < 0.05).

As expected, fitting accuracy of the ANN (training dataset),
in both the oxy and the air groups, was very high (about 100%).
The corresponding extrapolation errors, provided by the LOO
analysis, were lower than 13% and 19% for oxy and air groups,
respectively (Fig. 6).

4. DISCUSSION AND CONCLUSIONS
4.A. Major findings

The major findings of this work can be summarized as
follows: (1) there was a correlation between ∆SIBOLD and α
(P = 0.69), as well as between ∆R∗2 and α (P = −0.65), in
the oxy group; (2) the sign of ∆R∗2 distinguished two different
distributions of the α parameter in the oxy group; (3) the ANN,
trained to predict the tumor radio-sensitivity given the initial
tumor volume and the MRI indices, yielded an extrapolation
error lower than 20% in both groups.

Provided that oxygenation is one of the main microenvi-
ronmental factors influencing radio-sensitivity,4 a correlation
between MRI indices of oxygenation and α is expected. The
results agree with previous findings in the literature showing a
positive correlation between the variation in the BOLD signal
response and partial O2 pressure (pO2)14,15 and the inverse
relation between R∗2 relaxation rate and the oxygenation level
of the tumor.34

We investigated possible nonlinear (threshold-like) rela-
tions, by means of a further subdivision of the overall dataset
into four subgroups according to the∆R∗2 sign. The Airn (∆R∗2 <
0) and Airp (∆R∗2 > 0) subgroups presented a similar distribu-
tion of the radio-sensitivity, suggesting that the tumors have
comparable microenvironmental conditions. The behavior of
the Oxyp subgroup, showing radio-sensitivity values in the
same range as the Airn and Airp groups, could be ascribed to a
vascularization deficit (immature or defective) which is a quite

common consequence of tumor-related fast angiogenesis.4 For
example, in case of vascular inefficiency, breathing hyperoxic
gas may not increase the oxygen level in the region of inter-
est. Conversely, the radio-sensitivity distribution of the Oxyn

subgroup was significantly different (p < 0.05) from the one of
Oxyp suggesting that a well-vascularized tumor may benefit
from oxygen inhalation. It was previously shown that breathing
oxygen during a single high dose irradiation could significantly
affect the growth of some small Dunning R3327-AT1 prostate
tumors.7,9 An initial study measured absolute pO2 directly
using 19F MRI of the reporter molecule hexafluorobenzene,
but this was invasive requiring injection into the tumor.7 A
later study showed that tumors could be discriminated based
on longitudinal relaxation rate response to an oxygen challenge
prior to any radiation (∆SITOLD and ∆R1).9 Both those studies
examined single high dose radiation of 30 Gy, as opposed to
the split dose applied here.

The introduction of artificial neural networks to predict
the radio-sensitivity at staging time is novel with respect
to standard macroscopic model approach.22–24 The ANN
approach provided prediction accuracy greater than 80% for
the radio-sensitivity, showing that it is likely to predict α on an
individual basis, according to pretreatment data. Despite the
fact that the generalization ability of the ANN needs further
investigation and would benefit from the inclusion of larger
datasets, such a result holds promise.

4.B. Model and data issues

Potential shortcomings of the current study can be summa-
rized in (1) small data cohort, (2) measurement precision,
(3) lack of quantitative relation between MRI indices and
oxygenation, (4) model setting including active and necrotic
tumor dynamics, only. The inclusion of only eighteen tumors
and the further classification of the animals in two or even
four different groups limited the generalization of the work
findings. However, we note that the use of a simplified model,
featuring three free parameters only, makes it suitable to cope
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with small data cohorts. Future prospective studies will involve
a larger tumor dataset.

The MRI images were acquired only twice during the
treatment, namely, the day before each irradiation, but were
not used to compute the tumor size. The assessment of the
tumor volume was carried out by means of digital caliper
measurements, which may have introduced uncertainties we
did not quantitatively evaluate. A mismatch between the actual
volume and the measured value can be due to inter and
intraoperator variability in the diameters measurements, as
well as to a nonspheroidal shape of the tumor. However,
a standardized protocol9 allowed minimizing measurement
uncertainty. We plan to address this issue in future studies
by an image-based (e.g., MRI) approach to tumor volume
assessment. Although the relation between MRI-based indices
and oxygenation still remains subject of intense debate, several
studies support the positive correlation among oxygenation,
∆SIBOLD, ∆SITOLD, and ∆R1 while ∆R∗2 appears inversely
correlated.9,15,34 In the present study, we were not interested
in assessing the absolute tumor oxygenation value per se, but
we were rather interested in investigating the relation between
oxygen-related indices and the tumor responsiveness to the
treatment. It was shown, by means of the neural network
approach, that the aforementioned indices can be used, along
with the initial volume size, to predict the tumor radio-
sensitivity. It has to be remarked that the reference (target)
of the neural network is the radio-sensitivity value predicted
by the model, which is clearly affected by the limitations
in the optimization procedure. Above all, the lack of an
independent validation of the two dynamics (active/necrotic)
may lead to an incorrect parameter setting. This limitation will
be tackled in a future prospective study including multimodal
imaging techniques able to provide metabolic information of
the tumor (e.g., PET-based).35 Finally, some considerations
about the simplification of the tumor evolution to two simple
macroscopic dynamics (viable and necrotic regions) are in
order. First, despite the rough simplification, we were allowed
to mimic the tumor growth using an exponential relation
due to the early stage of the tumors under investigation,
since the leading factor in this case is the uncontrolled cell
duplication as stated in the literature.36,37 Moreover, the tumor
was implanted subcutaneously; therefore, it was not limited
in its growth by surrounding structures. Second, there is
a debate about whether the LQ formulation is suitable for
high dose irradiation.38,39 Recent studies suggest that despite
being less accurate, the prediction obtained using the LQ
is comparable to the one provided by universal survival
curves models in case of tumor presenting heterogeneous
oxygenation, which applies to most of solid tumors.40 This
conclusion is further supported in Ref. 41 where the authors
argue that the LQ model encompassed a better fit irrespective
of treatment doses than did any of the models requiring extra
terms at high doses. However, the large error variability (range:
0.2–1.3 cm3), as well as the large values of the clearance time
constant, suggests that some of the mechanisms that have been
discarded were not negligible. For example, irradiation may
have triggered a local inflammation, or even vascular damage
leading to edema and tumor swelling.42 AT1 tumors were

indeed found to swell substantially following a single dose
of 30 Gy, prior to regression.7 Neglecting these dynamics
should not impair the overall model parameter estimation,
since they usually represent transient states occurring in a short
temporal window following the irradiation. This hypothesis is
supported by be fact that the error obtained comparing the
last measured volume of each rat to the corresponding model
approximation was on average less than 5% across the whole
dataset. We did not aspire to attain perfect volume fitting, so
much as to identify different tumor responsiveness, since large
discrepancies in single values could also be due to data noise.
Therefore, the three-parameter formulation makes the model
more robust and able to mimic the general trend of the volume
regression curve despite data uncertainty.

4.C. Final remarks

In this paper, a macroscopic model of tumor growth and
response to radiation therapy was proposed and trained on
eighteen Copenhagen rats implanted subcutaneously with
Dunning R3327-AT1 prostate cancer and subdivided accord-
ing to the gas breathed during irradiation (air/oxy). The main
goals were to (1) provide an estimation of the individual radio-
sensitivity, (2) correlate radio-sensitivity with scalar indices
of blood and tissue oxygenation, (3) investigate mathematical
methods able to provide an estimation of the tumor respon-
siveness a priori. Despite the limitation of a small dataset,
caliper-based measurements and model dynamics reduction,
the proposed formulation was able to fit the data within about
25% error in 15 of 18 rats. The correlation analysis suggested
a relation between the radio-sensitivity and the changes in
the R∗2 relaxation rate for the oxy group. This hypothesis was
supported by further investigation leading to the finding that
only rats featuring ∆R∗2 < 0 benefit from oxygen inhalation. In
the end, we showed how the radio-sensitivity could be assessed
a priori using a neural network by means of oxygen and
volume-related information. Given that accurate prognosis and
radiotherapy personalization are crucial to provide patients
with the best possible care,4,43 mathematical models able to
predict tumor response to different doses and fractionation are
gaining popularity. Although further tests and validations are
needed to improve their robustness and reliability, we believe
that mathematical models of tumor evolution will play a major
role in the cancer treatment customization in the near future.44

A realistic scenario for the application of mathematical models
to therapy personalization is shown in Fig. 7. It encompasses
an initial parameter setting (model selection) according to the
patient staging using either the literature data or pretreatment

F. 7. General scheme of treatment planning and adjustment using mathe-
matical models.
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information (volume and oxygenation indices). Different
radiotherapy modalities (e.g., fractionation and doses) are
simulated and the predicted outcome employed to select the
one most suitable schedule. A further model refinement can
be performed along the treatment administration period based
on the differences between prediction and measured volume
size along the therapy delivery. This allows for treatment
replanning in case of large discrepancies.
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