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Abstract

Consumption of high fat, high sugar (western) diets is a major contributor to the current high 

levels of obesity. Here, we used a multidisciplinary approach to gain insight into the molecular 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
†Corresponding author: Yasmin L. Hurd, Ph.D., Hess Center for Science and Medicine 10th Floor, Room 201 1470 Madison Avenue 
New York, NY 10029, Tel: 212-824-9314, yasmin.hurd@mssm.edu.
*Current address: Biobehavioral Imaging & Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural 
Research Program, Baltimore, MD 21224

All authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2018 December 28.

Published in final edited form as:
Mol Psychiatry. 2020 September ; 25(9): 2058–2069. doi:10.1038/s41380-018-0120-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms underlying susceptibility to diet-induced obesity (DIO). Using positron emission 

tomography (PET), we identified the dorsal striatum as the brain area most altered in DIO-

susceptible rats and molecular studies within this region highlighted regulator of G-protein 

signaling 4 (Rgs4) within laser-capture micro-dissected striatonigral (SN) and striatopallidal (SP) 

medium spiny neurons (MSNs) as playing a key role. Rgs4 is a GTPase accelerating enzyme 

implicated in plasticity mechanisms of SP MSNs, which are known to regulate feeding and 

disturbances of which are associated with obesity. Compared to DIO-resistant rats, DIO-

susceptible rats exhibited increased striatal Rgs4 with mRNA expression levels enriched in SP 

MSNs. siRNA-mediated knockdown of striatal Rgs4 in DIO-susceptible rats decreased food intake 

to levels comparable to DIO-resistant animals. Finally, we demonstrated that the human Rgs4 gene 

locus is associated with increased body weight and obesity susceptibility phenotypes, and that 

overweight humans exhibit increased striatal Rgs4 protein. Our findings highlight a novel role for 

involvement of Rgs4 in SP MSNs in feeding and DIO-susceptibility.

Introduction

Obesity has reached epidemic proportions1 and yet efficacious treatment options for this 

disease remain limited. The vast majority of cases are attributed to positive energy balance, 

which arises from a combination of overeating and lack of physical activity2. Along with 

such factors, the contribution of underlying behavioral and metabolic disturbances, 

especially in “susceptible” individuals, likely accentuates obesity risk. Therefore, in addition 

to policy initiatives3, efforts to decrease obesity prevalence should also be directed at 

identifying predisposing factors. One approach involves studying populations with known 

susceptibility or resistance to obesity. Though this type of approach cannot be easily 

undertaken in humans, it can be used in animal models. Here we examined a well-

characterized model of susceptibility to diet-induced obesity (DIO), the Osborne-Mendel 

(OM) rat, which develops severe obesity and metabolic deficits only after exposure to high-

energy diets, and the S5B/Pl (S5B) rat, which is DIO-resistant after similar exposure4–8. In 

addition to DIO susceptibility, in the absence of high-fat diet exposure, OM and S5B rats 

exhibit differences in sensory9, 10, anxiety11, hedonic12, arousal13, satiety14, and reward15–17 

mechanisms, and abnormalities in such systems are also observed in human obesity18, 19. 

Furthermore, the OM-S5B model has been used to examine neurobiological mechanisms 

relevant to obesity susceptibility and related comorbidities, such as depression20.

The unique metabolic, neurobiological, and behavioral sensitivity to DIO in OM and S5B 

rats renders these strains a relevant laboratory model for investigating neurobiological 

mechanisms involved in DIO susceptibility and resistance in the absence of obesity 

manifestation. As such, we characterized behavioral and metabolic profiles of OM and S5B 

rats and used small animal positron emission tomography (PET) to identify, in an unbiased 

manner, brain areas where the two strains were characterized by differences in brain 

metabolic activity. Our efforts revealed that, compared to S5B rats, OM animals exhibited a 

marked decrease in brain metabolic activity in the dorsal striatum. Transcriptional profiling 

in this region identified Rgs4, a G-protein signaling regulator, as being upregulated in OM 

rats and this was paralleled by observations at the level of Rgs4 gene locus-specific histone 

modifications, striatal cell-specific Rgs4 expression, striatal Rgs4 protein expression, and 
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striatal Rgs4 function. Additionally, striatal Rgs4 knockdown in OM rats decreased food 

intake to levels comparable to S5B rats. Finally, we extended the relevance of these 

observations to humans by showing that striatal Rgs4 was associated with increased body 

weight and obesity susceptibility phenotypes.

Materials and methods

Animals

Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were bred at Pennington Biomedical 

Research Center (Baton Rouge, LA). Male Sprague-Dawley (SD) control rats were 

purchased from Charles River (Wilmington, MA). All rats were individually housed under 

standard laboratory conditions (22 ± 2 °C, 50 ± 10% relative humidity) with ad libitum 
access to both normal rat chow (unless otherwise stated) and water and kept in a 12hr/12hr 

light-dark reverse cycle with the lights off at 0700hr and on at 1900hr. All studies were 

conducted in agreement with the National Academy of Sciences Guide for the Care and Use 

of Laboratory Animals and institutional animal care and use committee protocols. For OM 

and S5B rats fed normal chow or a high fat diet (HF) (Table S1), starting at 2 months of age, 

food intake (24 hr home cage feeding) was monitored for 8 weeks. Body weight was also 

assessed. For SD rats, food intake was monitored for 2 weeks. Body weight was assessed at 

the end of the 2-week period at approximately 4 months of age.

Tissue Harvesting and Preparation

Each animal was deeply anesthetized. The brain was rapidly removed and frozen in an 

isopentane and dry ice bath and stored in a –80°C freezer and sectioned at 20°C into 14μm 

thick slices. Slices were mounted onto microscope slides and stored at −80°C. 

Retroperitoneal and epidydimal fat was dissected from 5-month-old rats, weighed, and the 

total expressed as percentage of body weight.

Palatable feeding during limited access conditions

We used 5-month-old naïve OM and S5B rats or 4-month-old naïve SD rats. All procedures 

were conducted 3-5 hours into the dark cycle. Rats were placed in chambers that contained 

either 5g of Froot Loops® (FL) (3.75 kcal/g; 89.6% carbohydrate (40% sugar), 7.2% fat, 

and 3.2% protein) or 5g of chow (Lab Diet, St. Louis, MO; laboratory rodent diet 5001: 4.07 

kcal/g: 57.9% carbohydrate (5% sugar), 13.5% fat, 28.5% protein) for 20-minute sessions. 

FL and chow were available on alternate days and amounts consumed were measured for 

each session.

Intraperitoneal Glucose Tolerance Test (IPGTT)

OM, S5B and SD rats from the above limited access paradigm (1 month later) were fasted 

overnight and on the next day, at 3-4 hours into their dark cycle were secured in a 

Decapicone® (Harvard Apparatus, Holliston, MA) and the left lateral tail vein catheterized. 

Glucose (Sigma-Aldrich, St. Louis, MO), dissolved in sterile water to generate a dose of 2 

g/kg, was injected intraperitoneally (IP) and blood glucose (mg/dL) was measured at 0, 30, 

60, and 120 minutes post injection using a handheld glucometer (Freestyle Flash, Abbot 

Diabetes Care, Alameda, CA).
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Small animal positron emission tomography (μPET)

OM and S5B rats from the limited access feeding and IPGTT experiments were scanned 

between 8-9 months of age. Rats were fasted overnight to normalize blood glucose and 

control for variability in FDG uptake21. Rats were scanned on a μPET R4 tomograph 

(Concorde CTI Siemens, Knoxville, TN) as previously described22. Awake uptake protocols 

with [18F]FDG (2-fluoro-2-deoxy-D-glucose) and μPET allow the measurement of brain 

metabolism and assessment of subtle changes in regional brain-glucose utilization in 

response to a stimulus or environment. In brief, rats were injected IP with ~1 mCi [18F]FDG 

30 minutes prior to image acquisition (uptake period) and then scanned for 20 minutes using 

a static imaging protocol. This in-vivo IP dosing regimen leads to similar brain glucose 

uptake as intravenous (IV) administration23 and ex-vivo IP administration of 2-deoxy-D-

glucose leads to similar brain glucose uptake at 30 minutes as the original ex-vivo IV 

technique developed by Sokoloff and colleagues24. All μPET images were processed as 

previously25 using the Pixel-Wise Modeling Software Suite (PMOD Technologies, 

Switzerland). Images were analyzed for differences at the voxel-level with statistical 

parametric mapping (SPM) using methods previously described22.

Quantitative PCR (qPCR)

We used 5-month old naïve OM and S5B rats and 4-month old naïve SD rats. Rats were 

sacrificed and their brains removed and frozen. Brains were sectioned (20 μm thickness) at 

the striatum level using a cryostat (Microm HM560, Thermo Scientific, Rockford, IL) and a 

dissecting microscope and sterile scalpel blades were used to dissect out dorsal striatum. 

Slides were kept on dry ice throughout the tissue isolation procedure. Total RNA was 

isolated with the RNAGEM Tissue Plus extraction kit (ZyGEM, Hamilton, New Zealand) 

following this kit’s instructions. After RNA extraction, cDNA was first synthesized from 5 

μl RNA using qScript cDNA Supermix reagent (Quanta BioSciences, Gaithersburg, MD) 

according to the manufacturer’s instructions then diluted 1:2 with PCR-grade water for a 

final volume of 40 μl. First-strand synthesis was performed in a MyCycler thermal cycler 

(Bio Rad, Hercules, CA) set to: (i) 25°C for 5 min, (ii) 42°C for 30 min and (iii) 85°C for 5 

min, and then kept at 4°C until collected. Synthesized cDNA was stored at −30°C and 

extracted RNA at −80°C. TaqMan gene expression FAM-labeled assays (Applied 

Biosystems, Carlsbad, CA) were used to quantify mRNA expression. All assays were 

performed in triplicate. The ddCt method was used to determine relative mRNA expression. 

To calculate relative expression, 18S rRNA was simultaneously measured in each well using 

a VIC-labeled probe (4319413E, Applied Biosystems). If either probes’ Ct value for a given 

replicate was identified as an outlier, using Grubb’s method, then this animal’s values were 

removed from the analysis.

Receptor autoradiography

We used 5-month-old naïve OM and S5B rats. Slides with mounted brain sections at the 

level of dorsal striatum that were stored at −80°C were gradually brought back to room 

temperature and then exposed to receptor autoradiography procedures using [3H]spiperone, 

[3H]SCH23390, [3H]MPEP, and [3H]SR141716A as previously described21, 26–28. 

Radioactivity concentrations were verified via liquid scintillation counting. For 
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[3H]spiperone and [3H]SCH23390 experiments, slides were placed in BAS-TR 2025 (GE 

Healthcare, Piscataway, NJ) phosphor imaging plates for 7 days along with [14C] standards 

(GE Healthcare, Piscataway, NJ) (calibrated against 3H-impregnated brain paste standards). 

Imaging plates were developed using an FLA-7000 phosphorimager (GE Healthcare, 

Piscataway NJ). Using Multigauge® software (GE Healthcare, Piscataway, NJ), regions of 

interest (ROIs) were drawn on the dorsolateral (DLST) and dorsomedial striatum (DMST) of 

each section. Values were averaged and initially expressed as PSL/mm2 and subsequently 

converted to dpm/mg with the use of [14C] standards. For [3H]MPEP and [3H]SR141716A 

experiments, slides were imaged using a β-imager (Biospace Lab, France). Scanning and 

image analysis methods were performed as previously described21.

Western Blotting

We used 5-month old naïve OM and S5B rats. Approximately 50 mg of pulverized dorsal 

striatum punches per animal were used to generate total protein extracts using 20 ml/g RIPA 

buffer (Thermo Scientific, Rockford, IL, USA) containing protease (cOmplete Mini, EDTA-

free protease inhibitor cocktail, Roche, Basel, Switzerland) and phosphatase inhibitors (Halt 

phosphatase inhibitor cocktail, Thermo Scientific). The protein was diluted in Laemmli 

buffer, denatured (for 5 min at 95°C), subjected to electrophoresis, and transferred onto 

nitrocellulose membranes. The membranes were blocked in Odyssey blocking buffer (LI-

COR, Lincoln, NE, USA) and incubated at 4°C overnight with primary antibodies. We used 

a validated29 rabbit polyclonal antibody to target Rgs4 (ABT17; 1:1000, Millipore, Billerica, 

MA) and a monoclonal mouse antibody against Gapdh (1:5000, Millipore). Membranes 

were subsequently incubated with goat anti-rabbit IRDye 800 (LI-COR) and goat anti-

mouse IRDye 680 secondary antibodies (LI-COR) at room temperature for 1h. Membranes 

were imaged on the LI-COR infrared imaging system (LI-COR) and quantified using 

average integrated density values. Gapdh levels were used to control for total protein 

content.

Formalin-fixed human postmortem brain tissue sections (putamen) were sourced from the 

Banner Sun Health Research Institute (Sun City, AZ). Samples were exposed to protein 

isolation procedures as previously described30 but with minor modifications. Briefly, 

samples were homogenized in buffer (100 mM Tris-HCl, ph 6.8, 2% w/v SDS, 20% v/v 

glycerol, 4% β-mercaptoethanol) containing protease (cOmplete Mini, EDTA-free protease 

inhibitor cocktail, Roche, Basel, Switzerland) and phosphatase inhibitors (Halt phosphatase 

inhibitor cocktail, Thermo Scientific) followed by heating of samples at 105°C for 20 min 

and then ice cooling for 5 min. Protein content was quantified using the EZQ Protein 

quantification kit (Molecular Probes/Invitrogen, Grand Island, NY) and then flash frozen on 

dry ice and stored at −80°C. For western blotting we used an RGS4 antibody (sc-6204, 

1:500, Santa Cruz Biotech, Dallas, TX) previously validated for use in human postmortem 

brain tissue31 along with procedures as described above (the ABT17 antibody used in rat did 

not react with human RGS4).

Chromatin immunoprecipitation (ChIP)

We used 5-month-old naïve OM and S5B rats. Fresh tissue was prepared for ChIP as 

previously described32. Briefly, two bilateral dorsal striatum punches/rat (2 punches per 
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subject) were collected and processed. Chromatin were immunoprecipitated with either anti-

H3K9me3 (ab8898) or anti-H3K4me3 (ab8580) antibody (Abcam, Cambridge, MA) then 

enrichment was measured using quantitative PCR (SYBR Green; Roche, Basel, 

Switzerland), normalized to each sample’s non-immunoprecipitated (input) fraction. Each 

reaction was run in triplicate and analyzed using the ddCT method as above. Primer 

sequences for various Rgs4 loci were as follows: (i) promoter region (forward: 

CCAGCGAGTCCTTTGCACAT; reverse: ACAGCTTCTTTGCAGAGCAGAA), (ii) 1.5 kb 

upstream of promoter (forward: TGCCCTAACCACCCACCTT; reverse: 

ATACCTATTCCCCTCTTTAACATTTGTC).

[35S]GTPγS autoradiography

We used 5-month-old naïve OM and S5B rats and tissue from adult Rgs4 wild-type (WT) 

and knockout (KO) mice. [35S]GTPγS autoradiography was assessed using previously 

published protocols33. Briefly, slides with 20 μm-thick sections were thawed at RT and a 

pap-pen was used to mark the area around tissue sections to contain fluid and to minimize 

incubation volume. Slides were then placed horizontally and incubated in pre-incubation 

buffer (50 mM Tris-HC1 (pH 7.4), 1 mM EDTA, 100 mM NaCl, and 5 mM MgC12) for 20 

min at 20°C (0.6 ml per slide), after which the buffer was removed by aspiration. Slides 

were then incubated for 1 h at 20°C in the above buffer with the addition of 2 mM guanosine 

diphosphate and 1 μM dipropylxanthine (DPCPX), and then removed by aspiration. Finally, 

slides were incubated in pre-incubation buffer containing also 80-100 pM [35S]GTPγS, 2 

mM GDP, 1 mM dithiothreitol, and 1 μM DPCPX in combination with either excess buffer 

or CCG-63802 (500 nM) for 90 min at 20°C. Nonspecific binding was assessed in parallel in 

the presence of 10 pM GTPγS. The incubation cocktail was removed by aspiration, and 

sections were washed twice at 0°C for 5 min each time in washing buffer (50 mM TrisHCl 

and 5 mM MgCl2, pH 7.4), rinsed in Millipore water for 30 s, air-dried, and apposed to 

BAS-SR 2040 (GE Healthcare, Piscataway, NJ) phosphorimaging plates for 3 days. 

[35S]GTPγS binding was assessed as described in the autoradiography section.

siRNA-mediated transcriptional silencing

Adult male SD rats were placed with bilateral steel cannulas directed at dorsal striatum 

(bregma: AP +1.7 mm, DV: −3.5 mm, ML: ±2.4 mm,) and injected into this region with 

either Rgs4-targeted (L-087936-02-0005) or non-targeted control (D-001810-10-05) siRNAs 

(On-targetplus SMARTpool, Dharmacon, GE Life Sciences, Lafayette, CO) and sacrificed 7 

days later to verify Rgs4 downregulation. OM and S5B rats received the same siRNA into 

the dorsal striatum but without the use of cannulas. Delivery of siRNAs was achieved using 

the in vivo jetSI 10 mM delivery reagent (403-05, Polyplus transfection, Illkrich, France). 

Two (2 μl each) injections per hemisphere (4 μl total/hemisphere) in a dorsoventral gradient 

were performed.

Laser capture microdissection

To measure Rgs4 expression in discrete striatal cells, striatonigral (SN) and striatopallidal 

(SP) pathways were physically separated using a combination of fluorescent retrograde 

tracers and laser-capture microdissection (LCM). In brief, red Lumafluor retrobeads (0.5 μL 

per hemisphere) were targeted to the pallidum (AP −0.24 mm, DV +7.45 mm, ML ±3.45 
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mm, 10°) while green Lumafluor retrobeads (1.0 μL per hemisphere) were targeted to the 

midbrain (ventra tegmental area/substantia nigra) (AP −5.02 mm, DV +8.50 mm, ML ±1.00 

mm, 0°). About 5-7 days after stereotaxic surgery, OM, S5B or SD rats were euthanized 

with CO2, and brains were immediately flash-frozen in isopentane then stored at −80°C. 

Prior to LCM, brains were coronally cryosectioned (10 μm thickness), rinsed in a series of 

ethanol and xylene to respectively dehydrate and clear the tissue. Immediately after 

processing the cryosections, neurons were identified under fluorescent light and ~750 cells 

from each pathway were separately collected. RNA was extracted using TRIzol, cDNA was 

generated from RNA using Quanta Bioscience’s cDNA synthesis system, and then gene 

expression was measured with predesigned TaqMan assays (as above) and analyzed using 

the ddCt method.

In-situ hybridization

Slides containing brain tissue at the level of dorsal striatum and stored at −80°C were 

gradually brought back to room temperature and then fixed with 4% paraformaldehyde, 

dehydrated in ethanol washes, delipidated in chloroform, rinsed in ethanol, and air-dried. All 

solutions were made with autoclaved 0.1% diethylpyrocarbonate-treated water and racks and 

staining dishes were also treated with this solution to inactivate RNases. An antisense 

riboprobe (complementary to Rgs4 target mRNA) generated by PCR (forward primer: 

ATGGCCTTCCCTCCTTTG; reverse primer: GGGAGCTCTGGGGACATT) was 

transcribed by the addition of the SP6 RNA polymerase enzyme and radiolabeled with 

[35S]uridine 5′-[α-thio] triphosphate (1000–1500 Ci/mmol; Perkin Elmer, Waltham, MA). 

Brain sections were hybridized for 16 hrs with radiolabeled probes (~4 × 106 cpm/slide) in a 

humidified chamber at 55–65 °C (depending on the stringency requirements) under 

appropriate hybridization buffer conditions. The brain sections were carried through post-

hybridization washes and air-dried. Control experiments were carried out using sense RNA 

probes to validate the specificity of the antisense hybridization signal. Slides were apposed 

to BAS-SR 2040 (GE Healthcare, Piscataway, NJ) phosphor imaging plates for 

approximately 3 days along with [14C] standards (GE Healthcare, Piscataway, NJ). Imaging 

plates were developed using an FLA-7000 phosphorimager (GE Healthcare, Piscataway NJ). 

Using Multigauge® software (GE Healthcare, Piscataway, NJ), regions of interest (ROIs) 

were drawn on the dorsal striatum of each section. Mean values were initially expressed as 

PSL/mm2 and subsequently converted to dpm/mg with the use of the aforementioned [14C] 

standards.

Brain slice electrophysiology

Male 4-5-month-old OM and S5B rats were anesthetized with isoflurane and decapitated. 

The brain was rapidly removed and placed in an ice-cold modified artificial cerebrospinal 

fluid consisting of (in mM): NMDG, 93; KCl, 2.5; NaH2PO4, 1.2; NaHCO3, 30; HEPES, 

20; Glucose, 25; Ascorbic acid, 5; Sodium pyruvate, 3; MgCl2, 10; CaCl2, 0.5. Coronal 

hemisections (280 μm) containing the striatum were cut using a vibratome (Leica VT1200S, 

Buffalo Grove, IL, USA). Slices were incubated in a HEPES-modified aCSF containing (in 

mM): in mM: NaCl, 109; KCl, 4.5; NaH2PO4, 1.2; NaHCO3, 35; HEPES, 20; Glucose, 11; 

Ascorbic acid, 0.4; MgCl2, 1; CaCl2, 2.5, maintained at 34-35 °C for ~20 minutes, and then 

allowed to stabilize at room temperature for at least 30 minutes prior to initiating recordings. 
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During recordings, slices were placed in a small volume recording chamber (RC-26, Warner 

Instruments), continuously superfused with aCSF containing (in mM): NaCl 126, KCl 3, 

MgCl2 1.5, CaCl2 2.4, NaH2PO4 1.2, NaHCO3 26, glucose 11, Ascorbic acid, 0.4, 

picrotoxin 0.05, at a rate of 2 mL/min using a peristaltic pump and maintained at 30-32°C 

using an in-line solution heater. During LTD recordings, caffeine (50 μM) was also included 

in the recording aCSF in order to minimize the influence of endogenous adenosine at both 

pre and postsynaptic receptors. Extracellular recordings were performed using a GeneClamp 

500B amplifier (Molecular Devices), and filtered (high pass, 1 Hz; low pass, 10 kHz) using a 

signal conditioner (Brownless 440, Pacer Scientific, Los Angeles CA). Recording 

micropipettes were pulled from borosilicate glass (BF150-86-10, Sutter Instruments, Novato 

CA) and filled with aCSF. Under stereomicroscopic visualization, the pipette was lowered 

via a micromanipulator into the dorsal striatum, and a constant current stimulus isolation 

unit (DS-3, Digitimer, LTD) was used to elicit glutamatergic-driven population spikes (PS) 

via 0.1 ms duration pulses delivered to a twisted bipolar formvar-insulated nichrome 

stimulating electrode. Signals were acquired directly to PC using WinLTP software 

(WinLTP Ltd, Bristol UK) and an A/D board (PCI 6251, National Instruments, Austin TX). 

Input-output curves were obtained in each slice by averaging 3 responses at each stimulus 

intensity (10-120 μA). For LTD experiments, baseline intensity was set to 30-50% of the 

maximum signal response, and responses were obtained every 30s. After obtaining ≥10 

minutes of stable baseline, 4 high-frequency stimuli (HFS, 100 Hz, 1s duration) were 

delivered at 10s intervals. Post HFS recordings were obtained for ≥30 minutes to assess 

LTD.

Online databases

We used the Generic Genome Browser (v. 2.16) (human data assembly GChr37, build 

NCBI_77.1) and data from the Rat Genome Database website (http://rgd.mcw.edu)34 to 

explore quantitative trait loci mapping relevant to Rgs4 and obesity-related traits.

Statistics

Sample sizes for experiments (animal and non-animal) were chosen based on either prior 

experimental work or power calculations from pilot experiments. Rats and mice were 

assigned randomly to each experimental group. and experiments were not blinded to 

experimental conditions. Depending on experiment, we used two-sample paired and 

unpaired t-tests or single factor and multifactor ANOVAs with Holm-Šídák post-hoc tests, 

taking repeated measures into account if appropriate. All statistical tests were evaluated at 

the p≤0.05 level (two tailed). All data are expressed as mean ±SEM.

Results

Behavioral and metabolic abnormalities in DIO-susceptible OM rats coincide with 
decreased metabolic activity in the dorsal striatum

We exposed OM and S5B rats to either normal chow or a high fat diet (Table S1) for 8 

weeks to assess differences in DIO between strains. As expected, high fat diet-fed OM rats 

consumed significantly more calories (Fig. 1a), gained significantly more weight (Fig. 1b), 

and exhibited significantly greater adiposity (expressed relative to body weight) than normal 
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chow-fed OM rats (Fig. 1c). In contrast, high fat diet-fed S5B rats did not show any 

significant increase in body weight (Fig. 1b) or adiposity (Fig. 1c) compared to normal 

chow-fed S5B rats, even though they consumed significantly more calories (Fig. 1a). As 

above, chow-fed OM rats exhibited significantly greater body weight (Fig. 1d) and food 

intake (Fig. 1e) than chow-fed S5B rats but the two strains did not differ in adiposity (Fig. 

1f). OM rats also had significantly higher glucose intolerance compared to S5B rats (Fig. 

1g).

We next compared normal chow-fed, age-matched SD rats (control) that were stratified into 

low (SDL) and high body weight (SDH) groups to control for weight differences between 

the S5B and OM rats. Comparisons between SDL and SDH rats were similar with respect to 

body weight (Fig. 1h) and food intake (Fig. 1i). In contrast to S5B and OM rats, however, 

SDL and SDH rats differed in adiposity (Fig. 1j) and did not differ in glucose intolerance 

(Fig. 1k). Food intake was further examined by measuring intake of a high-energy, sucrose-

rich “snack food” (Froot Loops®; FL) or chow during limited access conditions. OM rats 

consumed significantly more chow (Fig. 1l) and FL than S5B rats (Fig. 1m). In contrast, 

SDL and SDH rats did not differ in chow or FL intake (Figs. 1n, o).

We performed in vivo whole-brain metabolic mapping using small animal PET (μPET) and 

[18F]fluoro-2-deoxy-D-glucose (FDG)35, which allowed us to profile, in an unbiased, non-

invasive manner, brain-wide differences in metabolic activity patterns between OM and S5B 

rats during freely-moving conditions. Compared to S5B rats, OM rats exhibited significantly 

lower FDG uptake in several brain areas including striatum (caudate putamen, CPu), 

hippocampus/dentate gyrus (CA1/DG), cerebellum (CB) and reticular (Rt) and tegmental 

(Tg) nuclei (Fig. 1p). Notably, the most widespread and pronounced decrease in FDG uptake 

was observed in the dorsal striatum bilaterally (Fig. 1p).

Striatal Rgs4 regulates feeding and is associated with DIO-susceptibility

Given the significantly lower FDG uptake in dorsal striatum of OM rats, and the proposed 

involvement of this region in food craving, ingestive behavior and obesity, we profiled 

striatal gene expression in OM and S5B rats for transcripts known to influence striatal 

signaling, plasticity and reward/aversion. Compared to S5B rats, OM rats exhibited 

significantly greater mRNA expression of Rgs4, Drd1a, Drd2l, Grm5, and Cnr1 (Fig. 2a).

Next, we examined whether the above differentially-expressed transcripts were also altered 

at the protein/receptor level. In vitro autoradiography with [3H]spiperone, [3H]SCH23390, 

[3H]MPEP, and [3H]SR141716A was used as previously described21, 26–28 to respectively 

assess striatal dopamine D2 receptor (D2R), dopamine D1 receptor (D1R), metabotropic 

glutamate receptor 5 (mGluR5), and cannabinoid receptor 1 (CB1R) levels in dorsal 

striatum. No significant differences between the two strains were observed for any of the 

receptors (Fig. S1). In contrast, Rgs4 protein levels in dorsal striatum, determined via 

western blotting using an anti-Rgs4 antibody for use in rats29, 36, was significantly greater in 

OM relative to S5B rats (Fig. 2b). There were no differences in dorsal striatal Rgs4 levels 

between SDH and SDL rats (Fig. S2).
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Increased Rgs4 in OM rats was also observed at the epigenetic level using chromatin 

immunoprecipitation (ChIP)32, which assessed the enrichment of repressive (3meH3K9) and 

permissive (3meH3K4) histone modifications at the Rgs4 gene locus. Compared to S5B rats, 

OM rats exhibited significantly lower enrichment of the repressive 3meH3K9 modification 

at a highly conserved region of the Rgs4 gene (Fig. 2c). In contrast, no significant 

differences in 3meH3K4 enrichment were observed (Fig. 2d), overall suggesting that 

repressive epigenetic regulatory mechanisms are associated with the differential regulation 

of the Rgs4 gene between the two strains.

Rgs4 is a GTPase accelerating enzyme that negatively modulates G-protein activity37. To 

probe functional differences in Rgs4-dependent G-protein activity in striatum between OM 

and S5B rats, we used [35S]GTPγS autoradiography and the selective Rgs4 inhibitor 

CCG-6380238. Since Rgs4 acts to terminate G-protein activity, we expected that Rgs4 

inhibition via CCG-63802 would increase striatal [35S]GTPγS binding. First, we validated 

this assay at measuring Rgs4-specific G-protein activity using brain tissue from Rgs4 

knockout (KO) and wild-type (WT) mice. As expected, tissue sections containing dorsal 

striatum from WT mice exposed to CCG-63802 (0.5 μM; IC50=1.4 μM38) exhibited 

significantly greater (~69%) striatal [35S]GTPγS binding than vehicle-exposed sections, 

whereas CCG-63802 did not increase [35S]GTPγS binding (~2.9%) in Rgs4 KO mice (Fig. 

S3), indicating that CCG-63802 effects on [35S]GTPγS are mediated via Rgs4. As expected, 

CCG-63802 (0.5 μM) led to a significant increase (~45%) in dorsal striatum [35S]GTPγS 

binding in S5B rats (Fig. 2e) whereas it led to a much smaller, marginally significant 

increase in [35S]GTPγS binding in OM rats (~13%) (Fig. 2e). OM rats have significantly 

higher Rgs4 in dorsal striatum and exhibited significantly lower CCG-63802-stimulated 

[35S]GTPγS binding in this region compared to S5B rats suggesting that increased striatal 

Rgs4 mRNA and protein coincide with increased Rgs4 function in OM rats relative to S5B 

rats, though it is noteworthy to point out that effects of Rgs4 on [35S]GTPγS binding can be 

complex as previously Rgs4 was shown to increase [35S]GTPγS binding in cells (but not in 

tissue)39.

Rgs4 is necessary for striatal plasticity, and specifically dopamine-mediated regulation of 

long-term depression (LTD), a marker of presynaptic glutamatergic function, in dorsal 

striatum40. Given the differences in striatal Rgs4 and FDG uptake in OM rats and S5B rats, 

we also examined whether the two strains differed in measures of glutamate function in 

dorsal striatum, as assessed using extracellular recordings of glutamatergic-driven 

population spikes in OM and S5B brain slices. We found that OM and S5B rats showed no 

significant differences in baseline glutamatergic transmission, demonstrated using input-

output curves of stimulation intensity vs. response (Figs. 2f, g). In addition, LTD elicited by 

high-frequency stimulation did not significantly differ between groups (Fig. 2h) indicating 

that general presynaptic glutamate function in the striatum is identical between the two 

strains.

The lack of presynaptic glutamate functional differences between the two strains indicated 

that presynaptic glutamate input into dorsal striatum could not account for the significantly 

lower FDG uptake in OM rats. Instead, it suggested that lower striatal FDG uptake in OM 

rats may be driven by a postsynaptic mechanism. The vast majority (~95% in rodents) of the 
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dorsal striatum consists of two cell types, striatonigral (SN) and striatopallidal (SP) medium 

spiny neurons (MSNs), with each differing in their neurochemical makeup, anatomical 

connectivity (dorsal SN MSNs mainly project to substantia nigra whereas dorsal SP MSNs 

mainly project to the globus pallidus) and their synergistic and complementary effects on 

behavior41. The FDG-PET metabolic mapping results indicated that the striatal deficits we 

had identified in OM rats extended into the globus pallidus region bilaterally, mapping the 

known anatomical projection pattern of SP MSNs (Fig. 2i). Interestingly, SP MSNs in 

particular have been implicated in both human and animal obesity42, and Rgs4 has been 

shown to modulate striatal plasticity mechanisms in SP MSNs40. Nevertheless, the MSN 

expression profile of Rgs4 has not been previously described. To address this paucity, we 

first injected latex retrobeads (Lumafluor) into the globus pallidus (red fluorescence) or the 

substantia nigra (green fluorescence) of SD rats, to respectively label, capture, and 

transcriptionally profile dorsal striatal SP and SN MSNs (Figs. 2j, k). We found that Rgs4 

mRNA (and Drd2 mRNA which is enriched in SP MSNs41 serving as positive control) was 

selectively enriched in SP compared to SN MSNs (Fig. S4). The same approach was then 

implemented in OM and S5B rats. Like SD rats, Rgs4 was enriched in SP MSNs of OM rats 

(Fig. 2l). In contrast, Rgs4 was not enriched in SP MSNs of S5B rats (Fig. 2m).

To examine a mechanistic role for striatal Rgs4 in regulating food intake we used an siRNA 

approach to inhibit striatal Rgs4 mRNA. We first validated the approach in SD rats by 

injecting siRNA bilaterally into the dorsal striatum (Fig. 2n). Compared to the scrambled 

control, the Rgs4-targeting siRNA led to a 40% decrease in Rgs4 mRNA in SD rats as 

assessed using in situ hybridization32 (Figs. 2o, p). As expected, siRNA-mediated inhibition 

of Rgs4 in SD rats led to a significant reduction in food intake (Fig. 2q). siRNA-mediated 

Rgs4 inhibition was then performed in OM rats injected bilaterally into the dorsal striatum 

with the siRNA constructs (Rgs4-targeting or scrambled). S5B rats were injected with the 

scrambled siRNA only. As expected, OM rats consumed significantly more food than S5B 

rats prior to siRNA injection (Fig. 2r) and Rgs4 inhibition significantly decreased their food 

intake (Figs. 2r, s).

Rgs4 is associated with increased body weight and obesity susceptibility traits in humans

SP MSNs have been implicated in human obesity43, but a role for Rgs4 has not been 

described. To extend the relevance of our findings to humans, we first explored whether the 

RGS4 gene was associated with features of obesity in humans using publicly-available 

databases. We found that the RGS4 genomic locus coincided with several quantitative trait 

loci (QTL) significantly associated with obesity-related phenotypes such as body weight and 

adiposity (Fig. 3a). These findings raised the possibility that overweight humans, like the 

overweight DIO-susceptible OM rats, also exhibited elevated striatal RGS4. To test this 

hypothesis, we examined RGS4 protein levels in human postmortem striatal tissue from 

normal, otherwise healthy subjects who according to their body mass index (BMI) were 

classified as either normal weight (BMI: 18.5-24.9) or overweight (non-obese) (BMI: 25- 

29.9) (Fig. 3b & Table S2). The anti-Rgs4 antibody used for our rat experiments did not 

react with human RGS4 and thus we used an antibody previously reported for use with 

human postmortem brain tissue31. Our results revealed two distinct bands (at ~25 kDa and 

~35 kDa) corresponding to two human RGS4 isoforms previously reported31. As 
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hypothesized from our rat experiments, we found that overweight subjects had significantly 

greater RGS4 protein levels (~35 kDa band) compared to normal weight controls (Fig. 3c). 

No difference between the two groups however was detected in the smaller (~25 kDa) band.

Discussion

The striatum regulates compulsive-like food seeking behavior42 and is implicated in human 

and animal obesity44. Within this brain region, disturbances in SP MSNs in particular are 

believed to be critically involved in obesity43. Here we report that striatal Rgs4, an 

intracellular G protein signaling regulator, mediates feeding in rats. In addition, we report 

this gene’s association with body weight and DIO susceptibility in rats and humans, 

providing novel translational evidence that striatal Rgs4 regulates feeding and obesity-

related traits.

We show that DIO-susceptible (but not obese) OM rats exhibit normal adiposity, have 

enhanced predisposition to overconsumption of a palatable high-energy snack food, and 

show lower brain metabolic activity in various brain regions but most prominently in the 

dorsal striatum. The lower striatal brain activity in OM rats did not coincide with a decrease 

in presynaptic glutamatergic signaling, indicating that the striatal activity deficit in OM rats 

may be due to decreased postsynaptic metabolic activity in striatal MSNs, as opposed to 

activity at corticostriatal terminals. Indeed, focusing on this region, we discovered that OM 

rats exhibited significantly greater striatal Rgs4 levels and striatal Rgs4 function compared 

to DIO-resistant S5B rats. Notably, striatal Rgs4 expression was predominantly enriched in 

SP MSNs compared to SN MSNs in OM rats, however, this was not the case in S5B rats. 

Since normal SD rats, which like OM rats can develop obesity in response to high fat 

diets45, also exhibited enrichment of Rgs4 in SP MSNs, this finding indicates that discrete 

MSN Rgs4 enrichment patterns are associated with DIO susceptibility and resistance. 

Interestingly, we observed increased striatal Rgs4 levels in overweight human subjects and 

additionally, found evidence of genetic association of Rgs4 with obesity-related human 

traits. While Rgs4 interacts with several different receptor systems expressed in the striatum, 

including dopamine receptors46, 47,48–51, mGluR552, 53, adenosine 2a receptors40, opioid 

receptors54, 55, and muscarinic 4 receptors56, 57 and therefore it is possible that some of our 

observations may be associated with striatal Rgs4 action at these sites, our collective 

findings demonstrate the novel and critical role of striatal Rgs4 in feeding and in DIO 

susceptibility and resistance.

Indeed, the vast majority of human obesity cases arise from DIO, which is characterized by 

symptoms such as compulsive overeating, impaired inhibitory control and negative 

emotionality (e.g. anxiety, stress), features which are also prominent in drug addiction, and 

as such, the concept of food addiction as an etiological factor contributing to DIO has 

recently gained traction among scientists58. Although not traditionally associated with 

overeating or obesity, emerging evidence suggests that brain regions such as the striatum, 

and specifically, imbalances between SP and SN MSNs, which are heavily involved in 

substance abuse/addiction59, are also implicated in overeating/obesity.43 Thus these circuits 

may represent a promising therapeutic target for hyperphagia and obesity-related disorders.
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Figure 1. Behavioral and metabolic abnormalities in DIO-susceptible OM rats coincide with 
decreased metabolic activity in the dorsal striatum
(a) High fat (HF)-fed OM rats (n=8) exhibited significantly increased caloric intake (kcal) 

relative to both chow (CH)-fed OM rats (n=8) and HF-fed S5B rats (n=8) (two-way repeated 

measures (RM) ANOVA, interaction effect, F(21, 196)=11.2). (b) HF-fed OM rats (n=10) 

exhibited significantly increased body weight relative to both CH-fed OM rats (n=10) and 

HF-fed S5B rats (n=10) (two-way RM ANOVA, interaction effect, F(21, 252)=30.1). (c) HF-

fed OM rats (n=4) exhibited significantly increased adiposity compared to CH-fed OM rats 

(n=4) and to HF-fed S5B rats (n=4) (two-way ANOVA, interaction effect, F(1, 12)=19.04). 

(d) CH-fed OM rats (n=10) (separate cohort from above) weighed significantly more than 

S5B (n=10) (separate cohort from above) rats (unpaired t-test; t=10.2, df=18). (e) CH-fed 

OM (n=8) rats consumed significantly more food than S5B (n=8) rats (unpaired t-test; 

t=3.59, df=14). (f) CH-fed OM (n=4) and S5B (n=4) rats did not differ in adiposity (n=4) 

(unpaired t-test). (g) CH-fed OM rats (n=7) exhibited greater glucose intolerance compared 

to S5B (n=8) rats (two-way RM ANOVA, interaction effect F(3,39)=2.56, p=0.06, 60 min: 

t=3.1, df=52). (h) SDH rats (n=6) weighed significantly more than SDL rats (n=6) (unpaired 

t-test, t=6.92, df=10). (i) SDH rats exhibited significantly greater food intake compared to 

SDL rats (unpaired t-test, t=2.29, df=10). (j) SDH rats exhibited increased adiposity 

compared to SDL rats (unpaired t-test; t=3.87, df=10). (k) SDH and SDL rats did not differ 

in glucose tolerance (unpaired t-test). (l) CH-fed OM (n=6) and S5B (n=7) rats did not differ 

in CH intake during limited access sessions (two-way RM ANOVA). (m) CH-fed OM rats 

(n=6) exhibited rapid escalation of Froot Loops® (FL) intake and consumed significantly 
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more FL than CH-fed S5B (n=7) rats (two-way RM ANOVA, interaction effect, 

F(3,33)=9.48, p<0.001, session 3: t=3.49, df=44, session 4: t=5.81, df=44). (n, o) SDL and 

SDH rats did not differ in CH or FL intake (two-way RM ANOVA). (p) Statistical 

parametric map from FDG uptake images overlaid onto MRI showing that CH-fed OM rats 

(n=5) exhibited significantly lower FDG uptake than CH-fed S5B rats (n=5) (unpaired t-test, 

t=2.71; df=8; p≤0.05, uncorrected) in several regions (hippocampus, CA1, dorsal subiculum, 

DS, dentate gyrus, DG, cerebellum, CB, tegmental nuclei, Tg, reticular nuclei, Rt, 

amygdala, AM, brainstem nuclei, BN, nucleus accumbens, NAc, vertical diagonal band, 

lateral preoptic, VDB/LPO) with the most notable effect in dorsal striatum (caudate 

putamen, CPu); L=left, R=right.*p≤0.05, **p≤0.01, ***p≤0.001
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Figure 2. Striatal Rgs4 regulates feeding and is associated with DIO-susceptibility
(a) Transcriptional profiling in dorsal striatum demonstrated that OM rats (n=7) exhibited 

significantly greater mRNA expression (unpaired t-tests) of Rgs4 (t=3.22; df=12), Drd1a 
(t=2.32; df=12), Drd2L (t=2.46; df=12), Grm5 (t=2.81; df=12), and Cnr1 (t=2.48; df=12) 

than S5B rats (n=7). (b) OM rats (n=8) had significantly greater Rgs4 protein in dorsal 

striatum compared to S5B rats (n=8) (unpaired t-test, t=7.74; df=14) (representative blots 

shown). (c) Compared to S5B (n=8), OM rats (n=8) exhibited significantly lower enrichment 

of the repressive 3meH3K9 histone mark (unpaired t-test, t=2.28; df=14) but not (d) the 

permissive 3meH3K4 at a highly conserved genomic region (~1.5 kb upstream of 

transcriptional start site (TSS)) of Rgs4. (e) OM (n=6) and S5B (n=6) rats did not differ in 

basal [35S]GTPγS binding but the Rgs4 inhibitor CCG-63802 (0.5 μM) led to a significant 

increase in [35S]GTPγS binding in dorsal striatum in S5B rats (n=6) (paired t-test, t=6.29; 

df=5) and to a smaller, marginally significant increase in [35S]GTPγS binding in OM rats 

(n=6) (paired t-test, t=2.38; df=5; p=0.06). (f, g) Representative extracellular recordings 

from the dorsal striatum of S5B and OM rats. The glutamatergic-driven population spike 

(PS) increased with increasing stimulation intensity. Summary input-output (I/O) curves 

from all slices revealed no significant group differences between S5B (n = 12 slices, 3 rats) 

and OM rats (n = 12 slices, 3 rats; two-way repeated measures (RM) ANOVA, F(1,22) = 0.87, 

p = 0.36). (h) Summary time course of long-term depression (LTD) elicited by high 

frequency stimulation (HFS; 100 Hz, 1s duration trains delivered 4 times at 10 s intervals). 

Inset shows representative traces from a control (S5B) brain slice, prior to (pre) and 30 

minutes following HFS (post). No significant differences in LTD were observed between 

S5B and OM rats (two-way RM ANOVA, F(1,22) = 0.29, p = 0.59). (i) Coronal and sagittal 

planes of SPM images shown in Figure 1p indicating that the lower FDG uptake observed in 

dorsal striatum of OM rats extends to the globus pallidus (white arrow). Red line denotes 

location of sagittal plane. L=left, R=right. (j) Strategy for dissecting striatonigral (SN) 
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(green) and striatopallidal (SP) (red) projection pathways using retrograding latex beads. (k) 

Representative microscopy image (20×) of latex bead accumulation in SN and SP MSNs. (l, 
m) Rgs4 mRNA is selectively enriched in SP compared to SN MSNs (unpaired t-test, 

t=3.15; df=4) of OM (n=3) but not S5B (n=3) rats. (n) Targeted cannula placement for 

siRNA delivery to dorsal striatum. (o) Representative in situ hybridization autoradiograms 

from rats injected with scrambled (n=4) or Rgs4-targeted siRNA (n=4). (p) siRNA-mediated 

inhibition of striatal Rgs4 in SD rats significantly decreased striatal Rgs4 mRNA (unpaired 

t-test, t=4.55; df=6) and (q) 24-hr food intake (unpaired t-test, t=2.51; df=6). (r) OM and 

S5B rats differed in 24-hr food intake (unpaired t-test, Pre; t=3.01; df=40) but siRNA-

mediated Rgs4 inhibition decreased food intake (two-way RM ANOVA, interaction effect, 

F(12,48)=1.45, p=0.17; Session 4 (t=2.60; df=56), Session 6 (t=3.38; df=56), and Session 7 

(t=2.52; df=56)) in OM rats (n=4) but not in scramble controls (OM; n=4; S5B; n=3). (s) 

Cumulative food intake from days 4-7 from adjacent figure (one way ANOVA, F(2, 8)=6.94; 

p=0.018). *p≤0.05, **p≤0.01, ***p≤0.001
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Figure 3. Striatal Rgs4 is associated with increased body weight in humans
(a) Quantitative trait locus (QTL) data showing that human RGS4 is associated with obesity-

related traits including body weight and adiposity. (b) Body mass index (BMI) used to 

stratify normal weight (NW; n=8) and overweight (OW; n=6) human subjects (unpaired t-

test, t=10.81, df=12). (c) Coronal human brain section showing representative region of 

dorsal striatum sampled for downstream analysis (red asterisk, putamen). (d) Overweight 

human subjects (n=6) exhibit significantly greater striatal Rgs4 (~35 kDa) protein levels than 

normal weight controls (n=8) (unpaired t-test; t=2.23; df=12). *p≤0.05, ***p≤0.001
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