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Abstract

Salinity is one of the most common abiotic stresses in agriculture production. Salt tolerance of rice (Oryza sativa) is an
important trait controlled by various genes. The mechanism of rice salt tolerance, currently with limited understanding, is of
great interest to molecular breeding in improving grain yield. In this study, a gene regulatory network of rice salt tolerance
is constructed using a systems biology approach with a number of novel computational methods. We developed an
improved volcano plot method in conjunction with a new machine-learning method for gene selection based on gene
expression data and applied the method to choose genes related to salt tolerance in rice. The results were then assessed by
quantitative trait loci (QTL), co-expression and regulatory binding motif analysis. The selected genes were constructed into a
number of network modules based on predicted protein interactions including modules of phosphorylation activity,
ubiquity activity, and several proteinase activities such as peroxidase, aspartic proteinase, glucosyltransferase, and flavonol
synthase. All of these discovered modules are related to the salt tolerance mechanism of signal transduction, ion pump,
abscisic acid mediation, reactive oxygen species scavenging and ion sequestration. We also predicted the three-dimensional
structures of some crucial proteins related to the salt tolerance QTL for understanding the roles of these proteins in the
network. Our computational study sheds some new light on the mechanism of salt tolerance and provides a systems
biology pipeline for studying plant traits in general.
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Introduction

Salinity is one of agriculture’s most crucial problems in large

parts of the world [1]. Rice (Oryza sativa L.), which provides a

major food source for about half of the global population, is

considered as the most important cereal crop in agriculture, but it

is salt susceptible [2]. Soil salinity is a major abiotic stress, which

limits rice production in about 30% of the rice-growing area

worldwide [3,4]. Under the heavy pressure of global population

explosion and global climate change, studying rice salt tolerance is

of high importance. Genetic improvements leading to salt

tolerance of cereal crops in molecular breeding could help

maintain stable global food supply [5]. Some traditional cultivars

and landraces have been identified as tolerant to abiotic stresses,

despite their undesirable agronomic traits such as tall plant stature,

photosensitivity, poor grain quality and low yield. For example,

Pokkali, an Indian landrace, can maintain high K+/Na+ ratio in

shoot in a high salinity environment, and it could be a donor of

salt-tolerance strains in breeding programs. FL478, an F2-derived

F8, inherited the salt tolerance property in recombinant inbred

lines from parents Pokkali and IR29. FL478 is also an improved

indica cultivar used as a salt-susceptibility standard [6].

With years of continuous exploration, some general molecular

mechanisms of salt tolerance in plants have been revealed. The

high-salinity environment mainly disrupts the ironic and osmotic

equilibrium of cells, and as a result, genes in several pathways are

activated in response to high sodium concentration. Pathways

related to ion pumps [7], calcium [8], SOS pathway [9], ABA

(abscisic acid) [10], mitogen-activated protein kinases [11], glycine

betaine [12], proline [13], reactive oxygen species [14], and

DEAD-box helicases [15] are of significance in high salinity

environment. They play different roles in maintaining high K+/

Na+ ratio, synthesizing and segregating ions, and controlling ion

concentration [16]. The genes and transcription factors that

encode or regulate these components often demonstrate irregular

activities in a high salinity environment. At the cell level, the most

significant activities in dealing with excessive salt in plants is

pumping ions out of a cell to keep the ion equilibrium, while the

vacuole located in the cell helps store some ions. In salt-resistant

detoxifying mechanisms, especially sequestration by vacuole [17],

many salt tolerance genes with high level of activities in a high

salinity environment are related to vesicle, membrane and ion

transport. For example, H+-ATPase as a proton pump on

cytoplasmic vesicle maintains the ion equilibrium of the cell by

pumping H+ to the vacuole to retain pH and transmembrane

proton gradient [18]; Na+ transporter plays an important role in

maintaining high Na+/K+ ratio in various tissues [19,20].

However, the global picture of salt tolerance mechanisms,
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especially rice-specific salt tolerance mechanisms is still unclear; for

example, how ABA induces H2O2 control and how a plant

transduces signals in response to salt tolerance are largely

unknown.

Multiple sources of data can enhance the understanding of salt

tolerance. The genetic variations of different rice responses to salt

stress may shed some light on the roles of various genes in salt

tolerance. The availability of rice genome sequencing [21,22]

further paved the way for in-depth study of rice salt tolerance.

Oryza sativa microarray gene expression data have provided

information on regulatory networks of salinity response. Kawasaki

et al. analyzed the initial phase of salt stress in rice based on gene

expression profiles [23]. Huang et al. identified a zinc finger

protein named DST that regulates drought and salt tolerance in

rice [24]. Zhang et al. studied OsGAPC3 over-expression in rice

tolerance [25]. Mito et al. found that expression of DREB- and

ZAT- related genes might be involved in the salt tolerance of the

AtMYB102 chimeric repressor line [26]. Schmidit et al. examined

transcription factors like heat shock factors (HSFs) in response to

salinity environment and they characterized OsHsfC1b as playing

a role in ABA-mediated salt stress tolerance in rice [27].

Nevertheless, these studies were mainly focused on a single gene

or some isolated genes, and they lack systems-level understanding

of the global molecular mechanism of salt tolerance given that salt

resistance reacts in a coordinated and effective manner. In view of

these findings, we conducted a systems-level study to fill the gap

between isolated genes and the global mechanism of salt tolerance.

Among tens of thousands of genes in microarray data, it is

challenging to choose the set of genes that are most relevant to salt

tolerance [28,29]. Biologists often use a volcano plot method,

which reflects both fold of change and its statistical significance at

the same time in a heuristic fashion [30]. However, such a method

may not be sufficient to discover some complex relationships

between genes and a certain phenotype, trait, or condition [31].

Some statistical methods for clustering and classification are

extensively used to deal with this problem [32,33]. Several

machine-learning methods, such as random forest [34] and

SVM-RFE (support vector machine recursive feature elimination)

[35] were also developed for this purpose. RFE is commonly used

for feature selection, and it eliminates features iteratively until

getting the minimum subset of features. By combining SVM with

the RFE procedure, SVM-RFE becomes an effective method in

selecting and ranking genes in microarray data analyses

[36,37,38]. In this study, we improved the volcano plot method

using bootstrapping SVM-RFE to select informative genes related

to salt tolerance from microarray datasets.

There are both challenges and advantages in analyzing rice

data. For crops, there are typically limited experimental data

available, and little bioinformatics work has been done on these

data. On the other hand, crops, especially rice, have rich data

related to traits, such as Quantitative Trait Locus (QTLs). QTLs

are stretches of DNA containing or linked to genes that underlie a

quantitative trait. It is a classical and widely used breeding method

in identifying the actual genes underlying a trait in breeding

experiments. With the availability of rice genome sequence, QTLs

provide useful relationships between genes in a QTL region and its

corresponding trait [39,40]. In this work, we used QTLs in

validating selected informative gene sets. We also used predicted

protein-protein interactions to build a protein network of

informative genes. Some crucial genes in the network with QTL

evidence were studied by protein structure prediction, co-

expression and gene regulatory motif analysis. Our computational

study provides useful hypotheses for studying salt tolerance and

may help improve molecular breeding of rice in salinity.

Figure 1. Improved volcano plot of GSE14403. The horizontal axis represents MergeValue obtained by bootstraps SVM-RFE. The vertical axis
shows the –log(p-value) from t-test. Black dots indicate selected probes with MergeValue threshold of 0.5 and t-test p-value threshold of 0.05. Red
stars indicate selected probes mapped on QTL region. Blue dots indicate unselected probes.
doi:10.1371/journal.pone.0064929.g001
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Results

Using the microarray data, GSE14403, to compare salinity

susceptible and resistant rice genotypes with the Gene Expression

Omnibus (GEO), we chose the threshold as 0.05 in t-test p-value

and 0.5 in MergeValue (as described in the Method section) to

obtain 556 probes in the improved volcano plot in Figure 1. We

assume that many of these 556 genes are related to salt tolerance,

and they are listed in Table S1. Table 1 lists the gene enrichment

result using AgriGO [41], a plant-specific GO term enrichment

analysis. In molecular functions, the chosen genes are over

represented in the categories of iron binding, cation binding, ion

binding and heme binding–all of which may be active due to the

high ion concentration in salinity. The significant behavior of these

genes in oxidoreductase activity may be related to electron

transport in complex chemical reactions that balances the charges

during ion transport. The oxidoreductase activity may also be

related to reactive oxygen intermediates (ROI) that are produced

in response to oxidative stress due to a water deficit during salinity

stress [14]. ROI can seriously disrupt normal metabolism through

oxidative damage on lipids [42,43], proteins and nucleic acids

[42,44]. The increased oxidoreductase activity is consistent with

known activation of the antioxidative enzymes such as catalase

(CAT), ascorbate peroxidase (APX), guaicol peroxidase (POD),

glutathione reductase (GR), and superoxide dismutase (SOD)

under salt stress in plants [16]. In biological processes, the cellular

nitrogen compound metabolic process is over represented. As

proline and glycine betaine accumulate under stress, they are

correlated with osmotic adjustment to improve plant salinity

tolerance [45]. Proline is also involved in scavenging free radicals,

stabilizing subcellular structures and buffering cellular redox

potential under stresses. Polyamines can be synthesized under salt

tolerance [46]. In this sense, we speculate these nitrogen-

containing compounds may be synthesized in ‘‘the cellular

nitrogen compound metabolic process.’’ In cellular components,

according to the gene enrichment analysis, most of the chosen

genes are related to vesicle and membrane, which is consistent

with the detoxifying mechanism of salt resistant genotypes,

especially in sequestration by vacuole [17]. It is plausible to infer

that some of these chosen proteins on membranes act as

transporting ions outside the cell or to the vacuole to maintain

pH, transmembrane proton gradient [18], and high K+/Na+ ratio

[19].

In order to assess the performance of improved volcano plot, we

developed a Microarray-QTL test by using the QTL information

as a criterion to evaluate the reliability of chosen genes. As shown

in Table 2, our chosen genes are compared with the QTL regions

mapped in the whole genome and these genes show high statistical

Table 1. GO term enrichment analysis on gene selected from microarray by AgriGO.

GO term Ontology Description
Number in
selected gene set

Number in
Background p-value FDR

GO: 0034641 P cellular nitrogen compound metabolic process 17 459 2.40E-05 0.011

GO: 0005506 F iron ion binding 19 432 7.10E-07 0.0002

GO: 0016491 F oxidoreductase activity 32 1141 4.30E-06 0.0006

GO: 0043169 F cation binding 51 2582 0.00014 0.01

GO: 0043167 F ion binding 51 2584 0.00015 0.01

GO: 0020037 F heme binding 9 205 0.00055 0.031

GO: 0046906 F tetrapyrrole binding 9 217 0.00082 0.039

GO: 0031982 C Vesicle 131 7454 3.40E-06 0.0001

GO: 0016023 C cytoplasmic membrane-bounded vesicle 131 7445 3.20E-06 0.0001

GO: 0031988 C membrane-bounded vesicle 131 7445 3.20E-06 0.0001

GO: 0031410 C cytoplasmic vesicle 131 7454 3.40E-06 0.0001

GO: 0031224 C intrinsic to membrane 23 820 8.10E-05 0.002

GO: 0016021 C integral to membrane 21 804 0.0004 0.0083

Ontology ‘‘P’’ indicates Biological Process, Ontology ‘‘F’’ indicates Molecular Function, and Ontology ‘‘C’’ indicates Cellular Component. ‘‘Number in selected gene set’’ is
the number of genes in the query gene list. ‘‘Number in background’’ is the number of genes in the proteome. P-value represents the statistical significance of the gene
enrichment test. FDR means False Discovery Rate.
doi:10.1371/journal.pone.0064929.t001

Table 2. Evaluation of choosing salt-tolerance genes by QTLs.

Methods Sample Size Original QTL region Flanking region with length of the QTL region

Number of
Hits

Percentage of
Population

Microarray-QTLs
test
p-value

Number of
Hits

Percentage of
sample

Microarray-QTL
test
p-value

Improved Volcano
Plot

556 selected 34 6.12% 4.21e-7 94 16.91% 7.44e-18

The Number of hits and the percentage of samples depict the number and percentage of the chosen genes that can be mapped into the (extended) QTLs regions. The
Microarray-QTL test p-value means the statistical significance of these chosen genes according to the QTLs.
doi:10.1371/journal.pone.0064929.t002
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significance in related QTL regions by our Microarray-QTL test.

We also compared the performance of other feature selection

methods in Document S1.

We constructed a rice salt tolerance protein interaction network

using the 556 genes selected by improved volcano plot methods as

the nodes and protein-protein interaction data from DIPOS as the

edges [47]. By merging the isoforms, the network contains 189

nodes and 705 edges, as visualized by Cytoscape [48] in Figure 2.

By analyzing the constructed network, we identified 17 modules

with nodes located in QTL and flanked QTL region. Including

flanked regions could help give some tolerance to the errors in

QTL mapping [49]. Table 3 shows the functions of these

identified modules related to known salt tolerance mechanisms.

The largest module in this network contains 51 genes of 47

merged nodes and 372 edges. Figure 3 depicts the radical layout of

this module and Table S2 shows the node annotation in detail.

The GO enrichment analysis reveals related salt tolerance

activities in Table 4, and protein phosphorylation represents the

most significant function. It is known that protein phosphorylation

plays a vital role in ion homeostasis under salinity stress in

Arabidopsis [50,51]. Under the salinity stress, phosphorylation

often becomes active in signaling pathways; for example, MAPK

transduces salt and other abiotic stress signals. In rice, Os-MAPK5

as a kinase can be triggered by salt, drought, wounding, cold, and

ABA, resulting in an increase in tolerance to these abiotic stresses

[10]. The Na+/H+ antiporter SOS1 mediates Na+ efflux. SOS2,

a Ser/Thr protein kinase with N-terminal kinase catalytic domain

regulates the activity of SOS1. SOS3, which senses salt stress-

induced Ca2+ signature, thereby activating SOS2 to transduce the

salt stress signal. Abscisic acid-mediated phosphorylation also plays

a significant role in many activities within cytoplasmic proteins in

rice under salinity stress [52]. The largest module that we

identified includes these genes and others related to phosphory-

lation in nucleotide binding and kinase activities.

At the transcription level, we also checked whether the 51 genes

in the largest module are transcriptionally co-regulated by

examining if the promoter regions of these genes share conserved

motifs as the regulatory elements. Three candidate motifs are

predicted, and only one motif is validated by sequence comparison

with known cis regulatory motifs in the PLACE database [53] as

shown in Figure 4 and Table S3. This conserved motif is detected

as ‘‘TCTCTCTCT’’, the CTRMCAMV35S motif, which is a

CT-rich motif found in a 60-nt region downstream of the

transcription start site of the CaMV 35S RNA, and can enhance

gene expression [54]. We also formed arbitrary reference gene sets

selected randomly in whole genome scale and Chi-Square test on

the validated motif showed significant statistical significance at p-

value of 4.72e-13 (Table S4). We also checked the co-expression

among the genes in this module. The averaged Pearson correlation

coefficient of expression profiles inside the module is 0.402,

comparing to 0.241 between genes in the module and randomly

selected 51 genes in whole genome (Document S2). The motif

analysis and co-expression analysis provide some support that this

module is likely co-regulated.

At the whole genome level, we mapped all 556 selected genes,

QTL regions and extended QTL regions by their individual

positions on the rice genome of MSU Rice Genome Annotation

(Osa1) Release 6 [55] in Figure 5 using Circos [56]. Some selected

genes are located in the QTL and extended QTL regions. We also

mapped the 51 genes in the largest module on the genome,

together with their interactions.

We mapped the 51 genes of the largest module to the KEGG

pathway (http://www.genome.jp/kegg/pathway.html). Three

genes can be mapped to their Arabidopsis orthologs in the

Plant-Pathogen Interaction Pathway [57,58], as depicted in

Figure 6. In this environmental adaptation pathway, CNGCs

(Os02g0789100) is a cyclic nucleotide gated channel, CDPK

(Os01g0622600) is a calcium-dependent protein kinase, and

CaMCML (Os01g0505600) is the calcium-binding protein

CML. All three of these proteins interact with each other and

cooperate together in response to calcium ion signaling.

One of the most interesting genes is LOC_Os01g52640.3,

which is a hub gene in the largest module and overlaps with a

QTL region. This gene corresponds to a hypothetical protein

Figure 2. Salt-tolerance protein interaction modules that are
related to QTLs. Red nodes represent the proteins located in QTL
regions. Yellow nodes represent the proteins located in flanked regions
with the lengths of the QTL regions.
doi:10.1371/journal.pone.0064929.g002
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Os01g0725800, which interacts with 32 of the 51 proteins in the

module. It contains four InterPro domains, namely, IPR000719,

IPR001680, IPR011046, and IPR011009. IPR011009 domains

can also be found in RIO kinase (IPR018935), a SPA1-related,

serine/threonine-specific and tyrosine-specific protein kinase. This

protein also has an ortholog in Arabidopsis thaliana as SPA4 (SPA1-

RELATED 4), which is a binding protein and a signal transducer.

We applied MUFOLD [59,60] to predict the structure for

LOC_Os01g52640.3. Using the identified templates of 2GNQ,

3EMH, and 3DM0 in PDB, we constructed the model for the

protein region of 196–627 for the protein with the length of 432, as

shown in Figure 7. The protein structural model contains the

WD40 structure motif repeats, each with a typtophan-aspartic acid

(W-D) dipeptide termination. As WD40 proteins often play

important roles in signal transduction and transcription regulation

[61], the structure prediction suggests that this protein may be

related to signal transduction in the salt resistance process.

We also applied MUFOLD for structure predictions of hub

proteins LOC_Os01g59580.1 and LOC_Os01g46720.1, each of

which has a node degree of 30. According to the remote homology

detection, LOC_Os01g59580.1 has a template 2QKW, which is

in the process of phosphorylation (GO: 0006468), and plays a role

as ATP binding (GO: 0005524), protein binding (GO: 0005515)

and protein serine/threonine kinase activity (GO: 0004674) [62].

LOC_Os01g59580.1 may have these activities as well. LO-

C_Os01g46720.1 has templates 1PKD, 3EZR, 2W06 and 2W17,

which are involved in anaphase-promoting complex-dependent,

proteasomal ubiquitin-dependent protein catabolic process (GO:

0031145), and cyclin-dependent protein kinase activity (GO:

0004693). The details of predicted structural models are described

in Document S3.

Besides exploring the largest module related to phosphorylation

activity in a systems biology point of view, we also explored the

other 16 identified modules in a similar fashion. Among these

modules, Module 3 has divergent functions, but other modules

converge to consistent functions related to salt tolerance. Module 2

of cytochrome P450 [63], Module 6 of ubiquitin activity [64,65],

and Module 16 of cytokinin dehydrogenase [66,67] are related to

ABA mediated in salt tolerance. Module 4 of peroxidase precursor

[68], Module 9 of flavonol synthase [69,70], and Module 15 of the

aldo/keto reductase (AKR) family [71] are all related to ROS-

scavenging in salt tolerance. Module 13 of O-methyltransferase

[72] is associated with sodium sequestration. Some previous

experimental studies on the abiotic stress of plants based on gene

expression patterns also linked salt tolerance to aspartic proteinase

nepenthesin [73] in Module 5, starch [74] in Module 7,

glucosyltransferase [73] in Module 8, glycosyl hydrolases [75] in

Module 10, MYB family [73] in Module 11, gibberellin receptor

GID1L2 [76] in Module 12, phosphatidylethanolamine-binding

[77] in Module 14, and cysteine synthase [78] in Module 17. A

detailed analysis on each of these 16 modules can be found in

Document S4.

Discussion

In this paper, we focus on the salt tolerance mechanism of root

tissue in rice. As there are commonly three samples in just one

genotype of one condition on microarray experiments in contrast

to tens of thousands of probe sets, it is a great challenge to

determine feature selection on this small-sample, but high-

dimension data. Classical statistical feature selection methods,

such as t-test assume the samples follow some specific distribution

as its hypothesis; however, the limited number of samples narrows

the usage of these statistical methods. From the feature selection

prospective, the volcano plot method uses two dimensions of fold

change and t-test p-value to select genes in microarray analysis. It

is a fast, simple, and widely used method. However, the fold

change of each differential expression gene does not necessarily

Figure 3. The largest module in the salt tolerance protein interaction network. Black nodes indicate genes covered by QTLs. Yellow nodes
indicate genes covered by extended QTLs.
doi:10.1371/journal.pone.0064929.g003
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reveal the nature of biological meaning. In this case, using

machine-learning methods could be a good alternative in

microarray analysis. The improved volcano plot method using

some specific criteria like MergeValue based on an SVM-RFE

procedure could improve the performance. The improved method

used all three salt resistant genotypes as a whole to mine the

common pattern of salt tolerance, which helps overcome the

disadvantage of a limited number of samples. The improved

Table 4. AgriGO term enrichment analysis on the 51 genes in the largest module.

GO term Ontology Description
Number of
genes

Number in
Background p-value FDR

GO: 0016310 P Phosphorylation 9 1080 4.9e-06 0.00033

GO: 0006468 P protein amino acid phosphorylation 8 887 8.8e-06 0.00033

GO: 0006796 P phosphate metabolic process 9 1206 1.2e-05 0.00033

GO: 0006793 P phosphorus metabolic process 9 1206 1.2e-05 0.00033

GO: 0043687 P post-translational protein modification 8 1236 8.8e-05 0.002

GO: 0034641 P cellular nitrogen compound metabolic process 5 459 0.00016 0.0027

GO: 0006464 P protein modification process 8 1359 0.00017 0.0027

GO: 0043412 P macromolecule modification 8 1406 0.00021 0.003

GO: 0009069 P serine family amino acid metabolic process 5 538 0.00034 0.0043

GO: 0044267 P cellular protein metabolic process 8 2166 0.0031 0.033

GO: 0006520 P cellular amino acid metabolic process 5 918 0.0034 0.033

GO: 0044106 P cellular amine metabolic process 5 918 0.0034 0.033

GO: 0019538 P protein metabolic process 9 2770 0.0041 0.036

GO: 0009308 P amine metabolic process 5 1002 0.0049 0.041

GO: 0001883 F purine nucleoside binding 9 1171 9.3e-06 0.00012

GO: 0001882 F nucleoside binding 9 1171 9.3e-06 0.00012

GO: 0000166 F nucleotide binding 11 1686 5.2e-06 0.00012

GO: 0005524 F ATP binding 9 1071 4.6e-06 0.00012

GO: 0030554 F adenyl nucleotide binding 9 1171 9.3e-06 0.00012

GO: 0032559 F adenyl ribonucleotide binding 9 1074 4.7e-06 0.00012

GO: 0032555 F purine ribonucleotide binding 9 1218 1.3e-05 0.00012

GO: 0032553 F ribonucleotide binding 9 1218 1.3e-05 0.00012

GO: 0017076 F purine nucleotide binding 9 1317 2.3e-05 0.00019

GO: 0016301 F kinase activity 9 1464 5.1e-05 0.00039

GO: 0004672 F protein kinase activity 7 1102 0.00026 0.0018

GO: 0016773 F phosphotransferase activity, alcohol group as
acceptor

7 1238 0.00051 0.0032

GO: 0004674 F protein serine/threonine kinase activity 6 949 0.00069 0.004

GO: 0016772 F transferase activity, transferring phosphorus-
containing groups

9 2197 0.00091 0.005

GO: 0005488 F Binding 21 8681 0.0015 0.0076

One gene can be in multiple GO families. In ‘‘Ontology’’, ‘‘P’’ indicates biological process and ‘‘F’’ indicates molecular function.
doi:10.1371/journal.pone.0064929.t004

Figure 4. Detected motif in the upstream sequences of the largest module.
doi:10.1371/journal.pone.0064929.g004
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method also used a bootstraps approach to make the feature

selection more robust.

We incorporated the QTL information with transcription

profiles to identify genes related to drought response. For a given

QTL, there may be 25–30 genes per cM (,270 kbp in rice) [79].

Given so many possible genes in a QTL region associated to a

phenotype, the proposed Microarray-QTL test, which used the

same mechanism as GO term enrichment analysis, could help

evaluate the relative relevance of these QTL genes to the

phenotype quantitatively. Furthermore, we also combined pre-

dicted protein-protein interactions, protein structure prediction

and gene regulatory motif analysis in studying potential genes

related to salt tolerance. Such a systems approach is powerful in

providing high-confidence predictions of salt-tolerant genes. Our

study may provide richer and more concise predictions than a

study done by Cotsaftis et al. [80], which only used the expression

level of the gene probes in transcript profiling to predict salt-

tolerant genes.

Walia et al. [5] summarized the following components in the

salinity response based on their microarray study: 1) adaptive

response, 2) non-adaptive response, 3) response to salt injury, and

4) heritable responses conferring tolerance. While these general

categorizations are important, they do not provide a detailed

mechanism, especially in terms of genes involved and these

Figure 5. The whole genome mapping of selected genes and their interactions. Blue lines in the outer circle represent all the 556 selected
genes. Red regions on the chromosome are the QTLs while the grey and yellow regions are the extended QTLs with one QTL length at each side of
the flanking region. Inside the circle, green links show the protein-protein interactions among 51 genes in the largest module.
doi:10.1371/journal.pone.0064929.g005
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processes. Our study serves as an attempt to fill this gap.

According to our constructed network, one kernel module of

phosphorylation activity is detected. The role of phosphorylation

in abiotic stress has been actively studied in recent years in

addition to its relationship to salinity stress [81], cold stress [82]

and heat stress [83]. Our result shows the central role of

phosphorylation and redox action in salt tolerance, with implica-

tion of activity in signal transduction and oxidation. As our protein

interaction networks were constructed from predicted interaction,

our predictions of network modules may have significant false

positives, which need further biological experiments to validate.

Our study may provide some useful hypotheses for researchers

to design experiments for studying salt resistance and some

guidance for molecular breeders to improve traits. Since some key

proteins have been predicted and mapped to QTLs in our study,

which means researchers could conduct experiments to clone and

validate these genes. We plan to apply our computational pipeline

to study other traits and other species.

Materials and Methods

Data Source
We obtained rice microarray data from Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), which

contains 14 datasets, 182 platforms, 5,210 samples and 374 series

Figure 6. Part of the Arabidopsis Plant-Pathogen Interaction pathway in KEGG ( www.genome.jp/kegg-bin/show_
pathway?ath04626+AT1G18210+AT3G51850+AT1G01340), where white boxes indicate that no genes have been assigned, green boxes
have known genes in Arabidopsis, and boxes highlighted in red show the three mapped genes in the largest module.
doi:10.1371/journal.pone.0064929.g006

Figure 7. Predicted structural model of protein Os01g0725800.
doi:10.1371/journal.pone.0064929.g007

Table 5. GSE14403 resistant samples description.

No Sample Genotype Repeats
Stress
condition Class Label

1 GSM359902 FL478 1 Control +1

2 GSM359903 FL478 2 Control +1

3 GSM359904 FL478 3 Control +1

4 GSM359905 FL478 1 Salt-treated 21

5 GSM359906 FL478 2 Salt-treated 21

6 GSM359907 FL478 3 Salt-treated 21

7 GSM359913 IR63731 1 Control +1

8 GSM359914 IR63731 2 Control +1

9 GSM359915 IR63731 3 Control +1

10 GSM359916 IR63731 1 Salt-treated 21

11 GSM359917 IR63731 2 Salt-treated 21

12 GSM359918 IR63731 3 Salt-treated 21

13 GSM359919 Pokkali 1 Control +1

14 GSM359920 Pokkali 2 Control +1

15 GSM359921 Pokkali 3 Control +1

16 GSM359922 Pokkali 1 Salt-treated 21

17 GSM359923 Pokkali 2 Salt-treated 21

18 GSM359924 Pokkali 3 Salt-treated 21

doi:10.1371/journal.pone.0064929.t005
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of Oryza sativa. Among these datasets, we used GSE14403

submitted by Ute Baumann January 13, 2009 and last updated

August 2, 2012 to analyze salt tolerance. Unlike other datasets

such as GSE3053 and GSE13735, this dataset contains the largest

size of samples ever gathered related to salt tolerance of roots. The

data were generated from Affymetrix Rice Genome Array (GPL

2025 in GEO), which contains 57,381 probes and each probe

corresponded to an individual gene.

In the dataset GSE14403, we used salt resistant genotypes

FL478, Pokkali and IR63731, and salt susceptible genotype IR29

under control and salinity-stressed conditions during vegetative

growth, which ranged from GSM359902 to GSM359924. We

merged these three salt-tolerant plants together as the salt-tolerant

group. In the microarray experiments that collected the data [80],

seedlings were cultured in sand and irrigated with a nutrient

solution for 22 days (salt-treated) and 30 days (control) after

germination, respectively. Salinity treatment was applied by

adding NaCl and CaCl2 (5:1 molar concentration) in two steps

over a period of 3 days (final electrical conductivity: 7.4 dS m21)

to prevent osmotic shock. All plants were harvested on day 30. All

the data were collected from the root tissue of the plants. Table 5

gives the specific description of the data used, and the class label

(21/1) is according to the different stress conditions. Table 6

shows 17 QTLs (13 unique QTLs) detected with salt tolerance in

Gramene (http://www.gramene.org/qtl/). We mapped these

QTLs regions using Gramene annotation of the rice genome of

MSU Rice Genome Annotation (Osa1) Release 6 [55].

We obtained predicted protein-protein interaction data from

Database of Interacting Proteins in Oryza Sativa (DIPOS) (http://

csb.shu.edu.cn/dipos/) [47]. This database used two different but

complementary methods, i.e., interologs and domain interactions

based methods to predict protein interactions for rice. DIPOS

contains 14,614,067 pairwise interactions among 27,746 proteins,

covering about 41% of the whole Oryaza sativa proteome.

Data Preprocessing
The preprocessing step intended to overcome the noises,

including missing probes and mislabeled probes. We conducted

the analysis using Bioconductor [84]. We used Bioconductor’s affy

package for estimation of expression values by Robust Multi-chip

Average (RMA) [85]. The RMA procedure consists of three steps:

a background adjustment, quantile normalization and summari-

zation. As there are 123 probe sets designed for control in this

microarray, the dataset excluded these probe sets and 57,258 valid

probe sets were obtained for further analysis.

Choice of Gene List using Improved Volcano Plot
We proposed an improved volcano plot method to choose genes

in this dataset. The improved method has a new measure

MergeValue for selecting genes. The detail of this method is

described in Document S5.

Validate Gene List from QTL
Firstly, we identified QTLs zone in the genome using Gramene

QTL database (http://www.gramene.org/qtl/), where there are

17 QTLs ranging from chromosomes 1,3,4,5,6,7,9. Secondly, we

mapped the candidate genes detected by the microarray probe sets

to the genome. Thirdly, we defined a criterion named Microarry-

QTLs (Eq.(1)) to evaluate the statistical significance of chosen

genes related with the specific trait.

P(X~k)~

m

k

� �
N{m

n{k

� �

N

n

� � ð1Þ

where N is the total number of valid genes in the microarray, m is

number of valid genes covered by QTLs, n is the number of

chosen genes by microarray feature selection method, and k is the

number of chosen genes that are covered by QTLs. The

Microarray-QTL test follows a Hypergeometric distribution, and

the p-value reveals significance of chosen genes related with

specific QTLs.

Motif Analysis on Promoters
To determine whether chosen genes are transcriptionally co-

regulated, a motif analysis could help to find conserved motif

regulatory elements in their promoters. We first used MEME [86]

to predict motifs on the upstream region of 1,000 bps from the

translation start site of the chosen genes. Then we used FIMO [87]

to conduct a Chi-squared test on the significance of these motifs in

comparison to randomly selected genes in the genome. We

compared the identified motifs with known plant motifs from the

PLACE database [53] using CompariMotif [88]. For each pair of

compared motifs, if their similarity score is more than 4 and the

percentage of their matched positions is more than 80%, these two

motifs were considered identical.

Supporting Information

Table S1 556 genes selected by Improved Volcano Plot.

(XLS)

Table S2 51 genes in the largest module.

(XLS)

Table S3 Motif of the largest module discovered by
PLACE database.

(XLS)

Table 6. QTLs related to salt tolerance in rice from the
Gramene QTL library.

No. QTL name Chr Mapped positions Note

1 AQEM001 1 33,956,950–37,713,775

2 AQEM006 1 9,820,009–11,232,822

3 AQEM008 1 33,956,950–37,713,775 Same as 1

4 AQGR001 1 38,530,957–38,531,467

5 AQGR002 3 22,798,284–22,830,744

6 AQCL001 3 484,860–485,333

7 AQCL002 4 33,663,984–33,664,487

8 AQEM009 4 19,928,370–22,355,854

9 AQCL003 5 18,874,932–18,875,558

10 AQEM002 6 21,605,889–24,919,236

11 AQCL004 6 22,862,400–22,862,821

12 AQEM003 7 4,573,316–7,739,951

13 AQEM004 7 2,633,784–4,575,215

14 AQEM010 7 2,633,784–4,575,215 Same as 13

15 AQEM005 7 2,633,784–4,575,215 Same as 13

16 AQEM011 7 2,633,784–4,575,215 Same as 13

17 AQEM007 9 14,362,062–17,837,010

doi:10.1371/journal.pone.0064929.t006
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Table S4 Chi-Square test on the validated motif of the
largest module.
(XLS)
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MUFOLD.
(DOC)

Document S4 Annotation for modules identified from
the constructed network.

(DOC)

Document S5 Choice of gene list using improved
volcano plot.

(DOC)

Author Contributions

Conceived and designed the experiments: JW YL DX. Analyzed the data:

JW LC YW JZ. Wrote the paper: JW DX.

References

1. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell

Environ 25: 239–250.

2. Maas EV, Hoffman GJ (1977) Crop salt tolerance-current assessment. Journal of

Irrigation and Drainage Division, Proceedings of the American Society of Civil

Engineers 103: 115–134.

3. Tanji KK (1990) Nature and extent of agricultural salinity. Agricultural salinity
assessment and management 71: 1–17.

4. Wu R, Garg A (2003) Engineering rice plants with trehalose-producing genes

improves tolerance to drought, salt and low temperature. ISBN News Report
http://www.isb.vt.edu.

5. Walia H, Wilson C, Condamine P, Liu X, Ismail A et al. (2005) Comparative

transcriptional profiling of two contrasting rice genotypes under salinity stress
during the vegetative growth stage. Plant Physiol 139(2): 822–35.

6. Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP

mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.)

using recombinant inbred lines. Philippine Agricultural Scientist 85: 68–76.

7. Pons R, Cornejo M, Sanz A (2011) Differential salinity-induced variations in the
activity of H+-pumps and Na+/H+ antiporters that are involved in cytoplasm

ion homeostasis as a function of genotype and tolerance level in rice cell lines.
Plant Physiology and Biochemistry 49(12): 1399–1409.

8. White PJ, Broadley MR (2003) Calcium in plants. Annals of botany 92(4): 487–

511.

9. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview.
Arch. Biochem. Biophys. 444, 139–158.

10. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, et al. (2004) The MKK2

pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15(1),

141–52.

11. Zhang T, Liu Y, Yang T, Zhang L, Xu S, et al. (2006). Diverse signals converge
at MAPK cascades in plant. Plant Physiol. Biochem. 44, 274–283.

12. Rhodes D, Hanson AD (1993). Quaternary ammonium and tertiary sulfonium

compounds in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 357–
384.

13. Thiery L, Leprince A, Lefebvre D, Ghars MA, Debabieux E, et al. (2004)

Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis
thaliana. J. Biol. Chem. 279, 14812–14818.

14. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic

stress. Physiologia Plantarum 133(3): 481–489.

15. Vashisht AA, Tuteja N (2006). Stress responsive DEAD-box helicases: A new
pathway to engineer plant stress tolerance. J. Phytochem. Photobiol. 84, 150–

160.

16. Narendra Tuteja (2007) Mechanisms of High Salinity Tolerance in Plants.

Methods in Enzymology 428: 419–438.

17. Apse M, Aharon G, Snedden W, Blumwald E (1999) Salt tolerance conferred by
overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science

285(5431): 1256–1258.

18. Niu X, Narasimhan M, Salzman R, Bressan R, Hasegawa P, et al. (1996) NaCl
Regulation of Plasma Membrane H+-ATPase Gene Expression in a Glycophyte

and a Halophyte. Plant Physiol 111: 679–718.

19. Ren Z, Gao J, Li L, Cai X, Huang W, Chao D et al. (2005) A rice quantitative
trait locus for salt tolerance encodes a sodium transporter. Nature Genetics

37(10): 1141–1146.

20. Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A Two-Staged

Model of Na(+) Exclusion in Rice Explained by 3D Modeling of HKT
Transporters and Alternative Splicing. PLoS One 7(7): e39865.

21. Yu J, Hu S, Wang J, Wong G, Li S, et al. (2002) A draft sequence of the rice

genome (Oryza sativa L. ssp indica). Science 296(5565): 79–82.

22. Yu J, Wang J, Lin W, Li S, Li H, et al. (2005) The Genomes of Oryza sativa: A
history of duplications. PLOS Biology 3(2): 266–281.

23. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, et al. (2001) Gene

expression profiles during the initial phase of salt stress in rice. Plant Cell 13:
889–905.

24. Huang X, Chao D, Gao J, Zhu M, Shi M et al. (2009) A previously unknown

zinc finger protein, DST, regulates drought and salt tolerance in rice via

stomatal aperture control, Genes & Development. 23: 1805–1817.

25. Zhang X, Rao X, Shi H, Li R, Lu Y (2011) Overexpression of a cytosolic
glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt toler-

ance in rice. Plant Cell Tiss Organ Cult 107: 1–11.

26. Mito T, Seki M, Shinozaki K, Ohme-Takagi M, Matsui K (2011) Generation of
chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant

Biotechnology Journal 9: 736–746.

27. Schmidt R, Schippers JH, Welker A, Mieulet D, Guiderdoni E et al. (2012)
Transcription factor OsHsfC1b regulates salt tolerance and development in

Oryza sativa ssp. japonica, AoB Plants. pls011.

28. Blum A, Langley P (1997) Selection of relevant feature and examples in machine
learning. Artificial Intelligence 97(1–2): 245–271.

29. Guoyon I, Elisseeff A (2003) An introduction to variable and feature selection.
Journal of Machine Learning Research 3: 1157–1182.

30. Cui X, Churchill G (2003) Statistical tests for differential expression in cDNA

microarray experiments, Genome Biology 4: 210.

31. Liang Y, Zhang F, Wang J, Joshi T, Wang Y, et al. (2011) Prediction of
Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE. PLoS ONE

6(7): e21750.

32. Eisen M, Spellman P, Brown P, Bostein D (1998) Cluster analysis and display for

genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868.

33. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, et al. (2001) Gene
expression profiles in hereditary breast cancer. The New England Journal of

Medicine 344: 539–558.

34. Lai H, Han B, Li L, Chen Y, Zhu L (2010) An Intefrated Semi-Random Forests
Based Approach to Gene Selection for Glioma Classification, Acta Biophys Sin

26(9): 833–845.

35. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer
classification using support vector machines, Machine Learning 46: 389–422.

36. Furlanello C, Maria S, Serler M, Giuseppe J (2003) An accelerated procedure

for recursive feature ranking on Microarray Data. Neural Networks 16: 641–
648.

37. Duan K, Rajapakse J (2004) A variant of SVM-RFE for gene selection in cancer
classification with expression data, Computational Intelligence in Bioinformatics

and Computational Biology. CIBCB 904. 7–8: 49–55.

38. Ding Y, Wilkins D (2006) Improving the performance of SVM-RFE to select
genes in microarray data, BMC Bioinformatics 7 (Suppl 2): S12.

39. Koyama M, Levesley A, Koebner R, Flowers T, Yeo A (2001) Quantitative

Trait Loci for Component Physiological Traits Determining Salt Tolerance in
Rice, Plant Physiology 125: 406–422.

40. Seaton G, Haley C, Knott S, Kearsey M, Visscher P (2002) QTL Express:

mapping quantitative trait loci in simple and complex pedigrees, Bioinformatics
18 (2): 339–340.

41. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for

the agricultural community. Nucl Acids Res. 38: W64–W70.

42. Fridovich I (1986), Biological effects of the superoxide radical. Arch. Biochem.

Biophys 247: 1–11.

43. Wise R, Naylor A (1987) Chilling-enhanced photooxidation: evidence for the
role of singlet oxygen and superoxide in the breakdown of pigments and

endogenous antioxidants. Plant Physiol 83: 278–282.

44. Imlay J, Linn S (1988), DNA damage and oxygen radical toxicity, Science 240:
1302–1309.

45. Vinocur B, Altman A (2005). Recent advances in engineering plant tolerance to
abiotic stress: Achievements and limitations. Curr. Opin. Biotech. 16, 123–132.

46. Wang Y, Nil H (2000) Changes in chlorophyll, ribulose biphosphate

carboxylase–oxygenase, glycine betaine content, photosynthesis and transpira-
tion in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol.,

75: 623–627.

47. Sapkota A, Liu X, Zhao X, Cao Y, Liu J, et al. (2011) DIPOS: database of
interacting proteins in Oryza sativa. Mol. BioSyst. 7: 2615–2621.

48. Smoot M, Ono K, Ruscheinski J, Wang P, Ideker T(2011) Cytoscape 2.8: new

features for data integration and network visualization, Bioinformatics 27(3):
431–432.

49. Jannink J, Bink Mc, Jansen Rc (2001) Using complex plant pedigrees to map

valuable genes. Trends in plant science 6 (8): 337–42.

A Computational Study of Salt Tolerance in Rice

PLOS ONE | www.plosone.org 11 June 2013 | Volume 8 | Issue 6 | e64929



50. Liu J, Zhu J (1998) A calcium sensor homolog required for plant salt tolerance.

Science 280 (5371): 1943–5.
51. Zhu J (2003) Regulation of ion homeostasis under salt stress. Curr. Opin. Plant

Biol. 6(5), 441–5.

52. Gupta K, Gupta B, Ghosh B, Sengupta DN (2012) Spermidine and abscisic
acid-mediated phosphorylation of a cytoplasmic protein from rice root in

response to salinity stress, Acta Physciologiae Plantarum 34(1): 29–40.
53. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory

DNA elements (PLACE) database: 1999. Nucleic acids research 27(1): 297–300.

54. Pauli S, Rothnie HM, Chen G, He X, Hohn T (2004). The cauliflower mosaic
virus 35S promoter extends into the transcribed region. J Virol. 78: 12120–

12128.
55. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, et al. (2007) The TIGR

Rice Genome Annotation Resource: improvements and new features. Nucleic
Acids Research 35: D883–D887.

56. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al.(2009) Circos: an

Information Aesthetic for Comparative Genomics. Genome Res 19: 1639–1645.
57. de Wit PJ (2007) How plants recognize pathogens and defend themselves. Cell

Mol Life Sci 64: 2726–32.
58. Jones JD, Dang JL (2006) The plant immune system. Nature 444: 323–9.

59. Zhang J, Wang Q, Vantasin K, Zhang J, He Z, et al. (2011)A multi-layer

evaluation approach for protein structure prediction and model quality
assessment. Proteins Volume 79, Issue Supplement S10: 172–184.

60. Zhang J, Wang Q, Barz B, He Z, Kosztin I, et al. (2010) MUFOLD: A new
solution for protein 3D structure prediction. Proteins 78(5): 1137–1152.

61. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient
regulatory-protein family of WD-repeat proteins. Nature 371(6495): 297–300.

62. Xing W, Zou Y, Liu Q, Liu J, Luo X, et al. (2007) The structural basis for

activation of plant immunity by bacterial effector protein AvrPto. Nature
449(7159): 243–7.

63. Kitahata N, Saito S, Miyazawa Y, Umezawa T, Shimada Y, et al. (2005)
Chemical regulation of abscisic acid catabolism in plants by cytochromeP450

inhibitors, Bioorganic & Medicinal Chemistry 13(14): 4491–4498.

64. Ko J, Yang S, Han K (2006) Upregulation of an Arabidopsis RING-H2 gene,
XERICO, confers drought tolerance through increased abscisic acid biosyn-

thesis. Plant Journal 47: 343–355.
65. Dreher K, Callis J (2007) Ubiquitin hormones and biotic stress in plants, Ann.

Bot. (Lond.) 99: 787–822.
66. Wang R, Pandey S, Li S, Gookin T, Zhao Z, et al. (2011) Common and unique

elements of the ABA-regulated transcriptome of Arabidopsis guard cells, BMC

Genomics 12: 216.
67. Sreenivasulu N, Harshavardhan V, Govind G, Seiler C, Kohli A (2012)

Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth
retardation under long-term drought stress?. Gene 506(2): 265–273.

68. Dionisio-Sese M, Tobita S (1998) Antioxidant responses of rice seedlings to

salinity stress, Plant Science 135(1): 1–9.
69. Fini A, Brunetti C, Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced

flavonoid biosynthesis and the antioxidant machinery of plants, Plant Signal
Behav. 6(5): 709–711.

70. Agatia G, Biricoltib S, Guidic L, Ferrinib F, Finib A, et al. (2011) The
biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone

salinity in L. vulgare leaves, Journal of Plant Physiology 168(3): 204–212.
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