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Abstract: The emergence of low-cost air quality sensors may improve our ability to capture variations
in urban air pollution and provide actionable information for public health. Despite the increasing
popularity of low-cost sensors, there remain some gaps in the understanding of their performance
under real-world conditions, as well as compared to regulatory monitors with high accuracy, but
also high cost and maintenance requirements. In this paper, we report on the performance and the
linear calibration of readings from 12 commercial low-cost sensors co-located at a regulatory air
quality monitoring site in Dallas, Texas, for 18 continuous measurement months. Commercial AQY1
sensors were used, and their reported readings of O3, NO2, PM2.5, and PM10 were assessed against
a regulatory monitor. We assessed how well the raw and calibrated AQY1 readings matched the
regulatory monitor and whether meteorology impacted performance. We found that each sensor’s
response was different. Overall, the sensors performed best for O3 (R2 = 0.36–0.97) and worst for
NO2 (0.00–0.58), showing a potential impact of meteorological factors, with an effect of temperature
on O3 and relative humidity on PM. Calibration seemed to improve the accuracy, but not in all cases
or for all performance metrics (e.g., precision versus bias), and it was limited to a linear calibration in
this study. Our data showed that it is critical for users to regularly calibrate low-cost sensors and
monitor data once they are installed, as sensors may not be operating properly, which may result
in the loss of large amounts of data. We also recommend that co-location should be as exact as
possible, minimizing the distance between sensors and regulatory monitors, and that the sampling
orientation is similar. There were important deviations between the AQY1 and regulatory monitors’
readings, which in small part depended on meteorology, hindering the ability of the low-costs sensors
to present air quality accurately. However, categorizing air pollution levels, using for example the Air
Quality Index framework, rather than reporting absolute readings, may be a more suitable approach.
In addition, more sophisticated calibration methods, including accounting for individual sensor
performance, may further improve performance. This work adds to the literature by assessing the
performance of low-cost sensors over one of the longest durations reported to date.

Keywords: low-cost sensors; air pollution; criteria air pollutants; co-location; meteorological factors;
air quality index

1. Introduction

Ambient air pollution is a major environmental stressor, posing a huge but modi-
fiable health burden, particularly in urban environments. In a recent study, particulate
matter with a diameter less than 2.5 µm (PM2.5) was estimated to result in 8.9 million
(95% confidence interval (CI): 7.5–10.3) premature deaths globally; more than the num-
ber of deaths from cigarette smoking [1]. These deaths were categorized into five cause
categories, which have been convincingly associated with air pollution: ischemic heart
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disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), lung cancer, and
lower respiratory infections (LRIs). Other research has also associated elemental carbon
(EC), nitrogen dioxide (NO2), and Ozone (O3), amongst other pollutants, with premature
mortality and a wide spectrum of diseases, including adverse birth outcomes, respiratory
outcomes in children and adults, and cardiometabolic outcomes [2]. The health burden of
air pollution is not fully elucidated and could increase as more evidence emerges on the
adverse effects of various pollutants on new health outcomes such as autism, cognitive de-
cline, neurodegenerative diseases such as dementia, Alzheimer’s, and Parkinson’s disease,
diabetes, and obesity [3]. Higher air pollution exposures and the associated adverse health
effects are unequally distributed, with lower socioeconomic classes and ethnic minorities
suffering the most overall [4,5].

To study the myriad of health effects of air pollution and devise adequate air quality
guidelines, standards, and exposure mitigation strategies, human exposure to air pollution
must be first assessed. The assessment of ambient air pollution, and subsequently the
assignment of human exposures, can be done using a wide variety of methods, which are
broadly classified as measurement, modeling, or the use of air pollution exposure surro-
gates, such as proximity to major roadways or traffic density within certain distances from
a residence [2]. Air pollution measurements from fixed-site reference-grade and regulatory
monitors may be considered as the gold standard, as they offer direct observations (rather
than estimations) of pollutant concentrations and subsequent exposures and, importantly,
undergo stringent quality assessment and control. These regulatory monitors can mea-
sure multiple pollutants with a high degree of accuracy and high temporal resolution.
However, due to their high costs and maintenance requirements, they are only present
in limited quantities and have a low spatial coverage [6]. In addition, their locations are
selected based on regulatory purposes, rather than scientific ones [7] (e.g., siting based on
random selection may be considered the gold standard for data collection and analysis).
This hinders the ability to characterize the profile of urban air pollution (exposures) and
its well-established spatial variability, which can vary by five times within a single city
block [8,9]. Moreover, due to the lack of an established study design when installing these
devices, the measurements collected from these sources may not be adequate for estimating
exposures and scaling them to larger geographies. Capturing the large variability of air
pollution within urban areas is critical, as it underpins the ability of epidemiological studies
to pinpoint adverse health effects and risk assessment studies to identify hotspots and the
distribution of pollutants and attributable health burdens by, for example, socioeconomic
class or ethnicity. Despite these limitations, numerous studies have had to rely on insuf-
ficient spatial data from fixed-site and regulatory monitors over the years, due to lack of
feasible alternative methods.

In recent years, an important advancement in air pollution measurement technology
has occurred: the development and deployment of low-cost and portable air quality
sensors. Low-cost air quality sensors are flooding the market, and sensors are being used
more often for numerous applications, which continue to expand [10] and can somewhat
mimic application of regulatory and reference-grade monitors. The emergence of low-
cost sensors has generated great interest among researchers and community members
hoping to better understand the intersection of local air quality and health through broader
geographic deployment. Low-cost sensors were also identified as an integral aspect of
a ‘changing paradigm of air pollution monitoring’, consisting of a shift from reliance on
government and regulatory monitoring to the use of low-cost, portable, easy-to-operate
sensors; made possible by advances in microfabrication techniques, microelectromechanical
systems, and energy efficient radios and sensor circuits [11]. Low-cost sensors can result
in spatially denser monitoring and resolved pollution measurements, which can advance
research, policy, and practice, and more effectively direct programs and resources to address
local pollution, health, and environmental justice. Other potential applications include
air pollution warnings, epidemiological studies, and model validation. Some studies
investigated data fusion methods by combining low-cost sensor measurements with well-
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established air quality models and evaluated the resulting air pollution maps [12,13].
Low-cost sensors also offer data at fine temporal resolution, and such data may be used
to study the correlations between air pollution concentration and acute or short-term
health effects. Despite the increasing popularity of these sensors, only a few studies have
examined their performance (i.e., accuracy, precision, reliability, and reproducibility) under
real-world conditions and against regulatory air quality monitors. This is a crucial and
under-researched field; given the proliferation of low-cost sensors and their data, and the
associated interpretation challenges [14]. The validity and uncertainty of low-cost sensor
measurements over a range of different meteorological and aerosol loading environments
need to be better quantified, and this was flagged as a research gap [15].

To understand the state of the research in this field, we conducted a literature review
including twenty-five recent studies, as summarized in Table S1. As shown in Table S1,
low-cost sensors, and the corresponding reference monitors used for comparison, measured
either one or multiple gaseous and particulate pollutants, most commonly nitrogen oxide
(NO), NO2, O3, carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), PM2.5,
particulate matter with a diameter of less than 10 µm (PM10), and particulate matter with a
diameter of less than 1 µm (PM1). Many studies also measured meteorological parameters
that may impact the performance of the low-cost sensors, such as relative humidity (RH),
temperature (Temp), dew point (DP), atmospheric pressure (P), wind speed (WS), and
wind direction (WD). One study measured ambient light (AL) [16]. Most studies evaluated
low-cost sensor performance through co-location with a regulatory or a refence-grade
monitor, without applying additional calibration methods. Some studies suggested that
RH can hinder the accuracy of optical particle sensors, because of the detection of water
droplets in addition to particulate matter [17], and cautioned against using low-cost sensors
for measuring particulate matter in high RH conditions [10,18–20]. Many sensors failed in
periods of high and sustained RH [21]. Sensor performance seemed to be negatively affected
at higher air pollution concentrations [19], including during sand and dust storms, with a
trend toward underestimating at those levels and when RH was >75%. Moreover, low-cost
air quality sensors can suffer from a degraded response over time, leading to the drift of
measured concentrations; while gaseous sensors of a specific pollutant can suffer from
cross-sensitivities to other pollutants, generating false sensor responses [22,23]. Research
also suggests that the r2 values for low-cost sensors have a wide range, when evaluated
against field reference monitors; for example, between 0.4–0.8 [22]. These variabilities,
uncertainties, and unknowns can result in a lack of confidence in data quality and in
users not knowing if, and which, low-cost sensors may fit their intended applications.
Quantifying the performance of sensors in real-world conditions is critical to ensure sensors
will be used in a manner commensurate with their data quality [15].

In the face of their limitations and remaining knowledge gaps, low-cost sensors
present new opportunities for ubiquitous monitoring and hold a lot of promise, due
to their small size, low-cost, and ease of use. Their deployment can provide a more
complete assessment of the spatiotemporal variability of urban pollution when, compared
to traditional monitoring, and identify hotspots and concentrations affecting personal and
community exposures. They may also allow communicating the state of air quality, through
for example, established air quality categories and indices with health implications for
the public [24–26], such as the Air Quality Index (AQI); used by the U.S. Environmental
Protection Agency (USEPA) to allow information about air quality and its impacts on health
to be relayed to the public, so they can avoid harmful situations [27].

In this work, we explore the performance and calibration of 12 commercial low-cost
sensors co-located at a regulatory (reference) air quality monitoring site in Dallas, Texas,
for 18 continuous months; the longest assessment duration, to the best of the authors’
knowledge. AQY version 1 (AQY1) sensors, manufactured by Aeroqual, New Zealand,
were selected for this study. We assessed how well the raw and calibrated low-cost air
quality sensors’ readings matched readings from the reference monitor, and whether
meteorological factors impacted the sensors’ performance. This work adds to a growing,
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but limited, body of literature assessing the performance of low-cost sensors in real-world
environments, with one of the longest assessments. As shown in Table S1, only a handful
of studies have assessed the performance of AQY sensors, and particulate matter was the
pollutant most studied. In this study, our data spanned a realistic range of concentrations
and meteorological variables, captured by 12 sensors operated at the same location. We
used the well-established co-location method and inspected precision, bias, and mean error
for four criteria pollutants with adverse health effects: O3, NO2, PM2.5, and PM10. We also
systematically investigated the impact of the meteorological factors, Temp, RH, WS, and
WD on accuracy parameters. Finally, we compared the low-cost sensor readings with the
reference monitor’s readings using AQI categories; as such, investigating this potential
option for utilizing and communicating data from low-cost sensors.

2. Materials and Methods
2.1. Low-Cost Sensors and Pollutants Evaluated

We evaluated 12 low-cost air quality sensors of the same type: AQY1. These units
were first released in June 2018 [28], and at the time of purchase (August 2018), they were
the latest version on the market. The research team looked at a few different ‘low-cost’ air
quality sensors, and the Aeroqual AQY1 devices were selected for use in the project based
on multiple criteria. First, the cost of the sensors, approximately USD 4000/device, was
in the mid-range of costs for low-cost sensor options, with some options costing as little
as a few hundred dollars and other over USD 10,000. The units also monitored multiple
pollutants, including PM and gases, which was a positive factor that led to the final selection
of the AQY1 units.

The AQY1 units report the minute-by-minute concentrations of four criteria pollutants:
NO2 and O3, both measured in parts per billion (ppb), and PM2.5 and PM10, both measured
in microgram per cubic meter (ug/m3). The AQY1 units contain two separate sensor boards
to measure pollutants: one for measuring gases, and the other for measuring particles. The
units also collect information on RH and Temp at the same resolution as the pollutant data.
The AQY1 units come fully assembled out of the box and are ready to be plugged into a
power source and used.

To calibrate and evaluate the performance of the low-cost sensors, the 12 units were
all co-located at the same reference site in Hinton, Dallas, where a high-cost regulatory air
quality monitor was operating continuously. The Hinton monitor is operated by the City
of Dallas for the Texas Commission on Environmental Quality (TCEQ) [29] and records
all pollutants measured by the AQY1 units, in addition to Temp, RH, and wind data (WS
and WD) [30], which we used to investigate the impact of meteorological variables on the
low-cost sensor performance. All data from the Hinton, Dallas reference site is available
from the TCEQ’s website at https://www.tceq.texas.gov/cgi-bin/compliance/monops/
daily_summary.pl?cams=401, accessed on 14 September 2019. We obtained and used the
RH, Temp, WS, and WD to investigate whether the performance of the low-cost sensors
was affected by meteorology. This co-location procedure follows co-location calibration
protocols recommended by the USEPA, and the AQY1 user guide [28]. By locating the
low-cost air quality sensors at the same site as the reference (regulatory) monitor, the data
from the two could be compared under real-world conditions, to assess the performance
of the low-cost sensors. In addition, calibration factors can be calculated for the low-cost
sensors to increase the accuracy of their data and achieve a better fit with the data measured
by the regulatory air quality monitor. Furthermore, the AQY1 user guide recommends
that at the regulatory co-location site there should ideally be some hourly values for
O3 > 60 ppb, NO2 > 40 ppb, and PM2.5 > 50 ug/m3. These conditions were also met in
this study.

Except as noted below, both the low-cost sensors and the reference air quality monitor
operated continuously for a period of 18 months, and their measurements were times-
tamped and later matched using the timestamp to conduct the analyses. As the reference
air quality monitor only reported hourly averages for the four pollutants, the minute-by-
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minute readings of the AQY1 monitors were converted into hourly averages. This approach
allowed managing the noise in the data, by averaging the minute-by-minute readings, as
reported by the AQY1 monitors, to hourly averages, comparable to the regulatory monitor.
No further assessment or correction for noise was undertaken in this study.

Measurements for this study were taken continuously between 11 February 2019 and
31 August 2020, which we used as the start and end dates for all our analyses. Each AQY1
unit had both Wi-Fi and cellular capabilities, to allow for connection and periodic data
transfer to a proprietary Aeroqual Cloud system.

There are essentially three options for secure data retrieval by users. First, the user can
login into the Cloud system, choose a date range for download, and instantly download
data from single or multiple AQY1 units over the selected time frame. This may be
considered a manual user process. Second, the user can choose to have the Cloud auto-
generate daily/weekly/or monthly reporting emails for each AQY1 unit. This is considered
an automated process. Finally, is the option we used: the user can use an application
program interface (API). Through the API, the user can send a request to the Cloud
including a beginning and end date (selected time frame) and the device IDs the user
is interested in. The response to this request will be the requested data, which can then
be reformatted as needed for storage and analysis. We did not use the option of auto-
generating periodic reports by e-mail, and although we were downloading data periodically,
we did not conduct periodical checks or analysis of the data. We recommend that users
utilize this automatic retrieval option and have a plan in place to check the data, which may
have helped in better managing data quality control and assurance. Each AQY1 unit also
has an onboard computer, which includes a memory card where the data is automatically
stored if connection to the Aeroqual Cloud system is lost. Once a connection has been
re-established, the unit will upload all saved data to the Aeroqual Cloud system.

Beyond the cellular capabilities mentioned above, the AQY1 units have Wi-Fi capa-
bilities, which is only relevant if the user is in close proximity to the unit. Through the
Wi-Fi capability, the data from the AQY1 unit can be retrieved directly from the device
itself via the device’s internal web server. Any Wi-Fi enabled device can connect directly to
the AQY unit and download the data. For this project, all data were collected using the
Cloud system’s API feature and a source code developed in Python to download the data
to a local database for analysis.

The Cloud system also includes a function to calibrate each unit, which in our case
was done through co-location at the reference monitor site (Hinton). This function allows
a user to upload data from the reference monitor, for comparison with the AQY1 unit’s
data, and automatically calculates new calibration factors (as discussed in Section 2.3).
The user then needs to manually apply the new calibration factors to the AQY1 unit’s
data in the cloud system. From that point onwards (after manually applying the new
calibration factors), these factors are implemented in the cloud system, until the next time
new reference monitor data is uploaded or new calibration factors are manually entered by
the user.

We recommend that future users utilize the automated daily/weekly/or monthly
reporting emails for each AQY1 unit, periodically check the quality of the data, and replace
sensors or recalibrate as needed. In addition, there is no clear guidance on how much data
are needed for calibration, and it took us some time to decide on the 1-month of data for
calibration, as will be discussed next. The process described above, in addition to needing
1-month of data for each calibration led to relatively large amounts of missing data in the
calibrated dataset.

Over the course of data collection for this study, a total of 11 sensor boards required
replacement, due to failure and their limited lifetime. Data collected during these events
(between the time the sensor was reported as faulty until it was replaced) was excluded
from the comparison to the reference air quality monitor. Additionally, some data were
missing due to power loss at the site, which sometimes required an in-person power re-set
and did not happen immediately (data collection was in Dallas, Texas, while the research
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team was in College Station, Texas, ≈ 180 miles away). The percentage of data lost due
to power losses, in addition to data collected between the time the sensor was reported
as faulty until it was replaced and calibrated (which was sometimes not immediate, as
described above), was approximately 20% of the overall data and was not included in the
analysis. When conducting data analysis, both the unavailable data, due to faulty sensor
replacement and need for a new calibration, and missing data due to power loss, were
treated as ‘Not Available’ (N/A).

2.2. Site Set-Up and Instrumentation

The reference air quality monitor had the following parameters: USEPA Site Number
was 481130069, located at 1415 Hinton Street, 75235, with the following site coordinates:
latitude: 32◦49′12′′ North (32.8200660◦), longitude: −96◦51′36′′ West (−96.8601230◦). The
low-cost air quality sensors were placed approximately 7 inches apart, sensor to sensor,
near the regulatory monitoring station’s inlet for gases, which is shown circled in red in
Figure 1. The location of each sensor’s inlet is shown in Figure S1. The distance from
the regulatory monitoring station’s inlet for gases to the AQY1 monitors was between 15
and 25 feet, and both inlets were at approximately the same height of 10 feet. However,
the regulatory monitoring station’s instruments for PM2.5 and PM10 were mounted on a
ground level cement pad, approximately 29 feet from the AQY1 monitors, and at a height
difference of 7 feet 5 inches (Figure S2). This was the only possible installation, due to the
site’s set-up and space availability.
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Table 1 shows the details of the instruments used in the AQY1 units and the reference
monitor at Hinton, highlighting the different gases and particle measurement methods,
which contributed to the difference in readings.
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Table 1. AQY1 and reference monitor instrumentation, pollutant ranges, and lower detectable limits.

AQY1 Units’ Instrumentation 1 Range Lower
Detectable Limit

PM2.5 (Optical Particle Counter using Laser Scattering)—includes a
pump for active sampling 0–1000 µg/m3 1 µg/m3

PM10 (Optical Particle Counter using Laser Scattering)—includes a
pump for active sampling 0–1000 µg/m3 1 µg/m3

O3 (Gas Sensitive Semiconductor) 0–200 ppb 1 ppb

NO2 (NO2 is reported as the difference between the Ox and O3 sensors
according to the equation
[NO2] = [Ox] − 1.1 × [O3]. The Ox sensor is a Gas Sensitive
Electrochemical sensor)

0–500 ppb 2 ppb

Reference Monitor Instrumentation Range Lower
Detectable Limit

PM2.5 and PM10 (Beta Attenuation Mass Monitor 1020 2)
—active sampling 0–10,000 µg/m3 Less than 1.0 µg/m3

O3 (API Teledyne T400, UV Absorption O3 Analyzer 3)
—active sampling

Min: 0–100 ppb full scale
Max: 0–10,000 ppb full scale (selectable,
dual-range supported)

<0.4 ppb

NO2 (API Teledyne T200E 4 Chemiluminescence NO/NO2/NOx
Analyzer)—active sampling

Min: 0–50 ppb full scale
Max: 0–20,000 ppb full scale (selectable,
dual-range supported)

<0.2 ppb

1 Information extracted from correspondence between the manufacturer and research team member JJ and con-
firmed via https://dozuki-prod-us-east-1-documents.s3.amazonaws.com/SPAHibXIfEj2AY4H.pdf#pdfjs.action=
download (accessed on 29 November 2021); 2 https://metone.com/wp-content/uploads/2020/10/BAM-10
20-N.pdf (accessed on 29 November 2021); 3 https://www.teledyne-api.com/products/oxygen-compound-
instruments/t400 (accessed on 29 November 2021); 4 https://www.teledyne-api.com/products/nitrogen-
compound-instruments/t200 (accessed on 29 January 2022).

2.3. Linear Calibration

Each of the 12 units had a unique ID and was investigated separately. We expected that
each sensor would have a different performance, and as such, we planned on conducting
the calibration and performance assessment separately for each sensor (i.e., the calibration
factors were calculated separately for each sensor and not for all sensors together). The
device IDs for the 12 units were: AQY1-BA-479A; AQY1-BA-480A; AQY1-WilburSpare-07;
AQY1-WilburSpare-08; AQY1-WilburSpare-09; AQY1-WilburSpare-10; AQY-BA-353; AQY-
BA-431; AQY-BA-432; AQY-BA-464; AQY-BA-480; and AQY-BA-481.

The raw and calibrated data from the low-cost sensors were compared against the
reference monitor’s data, separately for each pollutant and each AQY1 unit, at 1-h intervals.
The data calibration was conducted as follows. The two data sets (the low-cost sensors
versus the reference monitor’s data) were plotted against each other in a scatter plot. The
slope and offset of the linear least squares fit line of the data was then calculated, and
these parameters were used to calculate the new gain and offset calibration factors for each
pollutant and each AQY1 unit (as distinct from the default gain (1) and offset (0)). The
formulas used to calculate the new gain and offset for the AQY1 units were

New Gain =
Current Gain

Slope
(1)

New Offset = Current Offset + (
Intercept

Current Gain
) (2)

These factors were then entered into the Aeroqual Cloud system [31], which applies
the calibration factors to the raw values using the equation below.

Calibrated Value = Gain∗(Raw Value−Offset) (3)

https://dozuki-prod-us-east-1-documents.s3.amazonaws.com/SPAHibXIfEj2AY4H.pdf#pdfjs.action=download
https://dozuki-prod-us-east-1-documents.s3.amazonaws.com/SPAHibXIfEj2AY4H.pdf#pdfjs.action=download
https://metone.com/wp-content/uploads/2020/10/BAM-1020-N.pdf
https://metone.com/wp-content/uploads/2020/10/BAM-1020-N.pdf
https://www.teledyne-api.com/products/oxygen-compound-instruments/t400
https://www.teledyne-api.com/products/oxygen-compound-instruments/t400
https://www.teledyne-api.com/products/nitrogen-compound-instruments/t200
https://www.teledyne-api.com/products/nitrogen-compound-instruments/t200
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As the equation outlines, the offset represents a shift in each raw data point, either
positive or negative, and the gain was a multiplier for the value, after the shift from the
offset. When first installed, a new unit has default calibration values of 1 (gain) and
0 (offset). Applying the calibration equation with these default values does not alter the
reported data, which are therefore treated as raw data in our analyses.

We calibrated each unit after it had collected a minimum of 1 months’ worth of data,
with the first calibration occurring in February 2019. In February 2019, all units had
been at the Hinton site and had collected data for one month. The literature does not
establish firm recommendations as to the amount of data needed before a calibration can
be conducted or between maintenance calibration(s); however, more data may provide for
a better calibration. The manufacturer (Aeroqual) suggests a minimum of 3 days, when
using hourly data [31]. After the calibration interval is complete, the new calibration
values (both gain and offset) were calculated using the data from the AQY1 unit and the
reference monitor at the same location using slopes and intercepts from this data. After
they were calculated, the new calibration values (both gain and offset) were entered into the
Aeroqual Cloud system and applied, and the data from that point forward were considered
to be calibrated data. In September 2019, the units were calibrated again using the same
methodology as above, as we had originally planned to move them to different sites across
Dallas for another field study, but this plan was halted due to delays in the field study (not
discussed here, but part of the bigger project). As such, every unit was calibrated twice, in
February and September 2019, and again if a sensor had to be replaced due to its limited
lifetime. Units AQY-BA-480 and AQY-BA-481 were only calibrated in September 2019, as
they were purchased later than all other units, in June 2019, as back-up units for the other
field study planned.

Due to the nature of the study, and the question that was being asked, we did not
repeat calibrations of the low-cost sensors on a set schedule, and did not specifically conduct
maintenance calibrations (i.e., regularly re-calibrating on a set schedule, for example, every
three months). Therefore, in this study, we did not address the drift or change in low-cost
sensor performance over time and do not make recommendations as to how calibration
should be conducted or maintained, as this was not the objective of our work. Researchers
interested in accessing the data for further analysis can reach out with their request to HK
or KJ on the research team.

2.4. Data Analysis

To assess the performance of the AQY1 units against the refence monitor, we conducted
an exploratory data analysis, regression analysis, and analysis of covariance (ANCOVA).
The reference air quality monitor’s data were considered the ‘True Values’ for pollutants,
and free from error. Data obtained from AQY1 units were labeled as ‘Raw Data’, while
calibrated data were labeled as ‘Calibrated Data’. We briefly describe these next. All
analyses were conducted using R and JMP (SAS product).

The exploratory data analysis was conducted using multiple summary statistics and
graphics, where we used both the raw and the calibrated data for each pollutant and each
AQY1 unit separately, to assess the performance of the low-cost sensors. We calculated and
present the descriptive (summary) statistics for the whole datasets using the raw data from
all low-cost sensors, the calibrated data from all low-cost sensors, the reference monitor’s
readings, and the differences between the low-cost sensors and the reference monitor’s
readings. We also plotted the time series to visually elucidate the trends over time. Finally,
we compared and assessed the differences between the readings from the low-cost sensors
and the reference monitor using the mean average percentage error (MAPE). We selected
this metric because it is easy to interpret. Its calculation is shown below:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (4)
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where N is the number of observations, yi is the reference monitor’s reading, and ŷi is the
raw or calibrated reading from the low-cost sensor.

Measurements from the reference air quality monitor (assumed to be free from mea-
surement error) were plotted on the x-axis, and measurements from the low-cost sensors
(which are subject to measurement error) were plotted on the y-axis in scatter plots. As the
performance of each AQY1 unit was expected to be different, the accuracy (regression) anal-
ysis was carried out separately for each sensor and each pollutant. We assessed systematic
bias by inspecting the slope of the estimated regression line and the intercept. A deviation
from the slope of 1 indicates a proportional discrepancy between the reference monitor
and a low-cost monitor and indicates that a low-cost monitor is subject to a proportional
systematic error. A non-zero intercept represents an absolute discrepancy or an absolute
systematic error. We also calculated the root mean square error (RMSE) for the regression
line, as follows:

RMSE =

√√√√ 1
(N− 2)

N

∑
i=1

(yi − ŷi)
2 (5)

where N is the number of observations, yi is the reference monitor’s reading, and ŷi is the
raw or calibrated reading from the low-cost sensor.

We also obtained meteorological data from the Hinton site and investigated how the
performance of each unit was affected depending on meteorological conditions: Temp,
RH, WD, and WS. To analyze the potential impact of meteorological conditions on the
performance of the low-cost sensors, the differences between the low-cost sensor data and
the reference monitor’s data were analyzed using the analysis of covariance (ANCOVA)
model, with the Device ID as a categorical factor and meteorological variables as covariates
(continuous variables), to assess the effects of meteorological variables on measurement
errors in the low-cost sensor data.

2.5. Comparison with the United States Environmental Protection Agency’s Air Quality
Index Categories

In addition to the above analysis, which relied on comparing the absolute air pollutant
readings from the low-cost sensors and the reference air quality monitor, we also conducted
an analysis of the performance of the low-cost sensors using the AQI categories put forward
by the USEPA [27]. The AQI is an index value, which runs from 0 to 500, and is calculated
using the concentration measurements of the pollutant of interest. It is applicable to the
four pollutants measured by the low-cost sensors: NO2, O3, PM2.5, and PM10. The AQI is
split into six categories, each with a different level of health concerns, ranging from ‘Good’,
which corresponds to little or no health-related risk, to ‘Hazardous’, which corresponds to
an emergency level health concern.

The equation used to calculate the AQI uses a time-averaged value of the measured
concentration of each pollutant. The time used to calculate the average concentration in
the AQI equation varies by pollutant. For NO2, a 1-h average is used, for O3, either a 1-h
or an 8-h average is used, and for both PM2.5 and PM10, a 24-h average is used [32]. The
equation used to calculate the AQI is shown below.

AQI =
(AQI_hi)− (AQI_lo)

(CONC_hi)− (CONC_lo)
∗ (CONCi −CONC_lo) + (AQI_lo) (6)

where CONC_i = the average value of the pollutant over the corresponding period
of time as above; CONC_lo = the concentration value at the low end for the given
AQI level; CONC_hi = the concentration value at the high end for the given AQI level;
AQI_hi = the maximum AQI index value for the given CONC_i; AQI_lo = the mini-
mum AQI index value for the given CONC_i (United States Environmental Protection
Agency, 2020b).

The AQI_hi, AQI_lo, CONC_hi, and CONC_lo values required in the above equation
were provided by the USEPA and are presented in Table S2. We used the equation above,
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and values shown in Table S2, to calculate the AQI levels using readings from both the
low-cost air quality sensors and the reference monitor and compared the two.

3. Results
3.1. Descriptive Summary Statistics and Comparison between the AQY1 Monitors and the
Reference Monitor

Table 2 shows the descriptive (summary) statistics for both the raw and the calibrated
data from all the AQY1 monitors against the reference monitor at the Hinton site, for the
four pollutants studied. Note that, as we show later, the performance varied considerably
by device, but Table 2 is meant to give a general overview of the combined data. Results by
Device ID are considered to be more meaningful.

Table 2. Descriptive (Summary) Statistics Comparison Between the AQY1 Monitors and the Reference
(Hinton) Monitor. Results by Device ID may be more meaningful.

Ozone

Data Set O3 Raw AQY1
Data (ppb)

O3 Calibrated
AQY1 Data

(ppb)

O3 Reference
Monitor

(Hinton) Data
(ppb)

O3 Reference
Monitor
(Hinton)

Data—O3 Raw
AQY1 Data
(Absolute

Difference)

O3 Reference
Monitor
(Hinton)

Data—O3 Raw
AQY1 Data
(Difference

in %)

O3 Reference
Monitor
(Hinton)

Data—O3
Calibrated
AQY1 Data
(Absolute

Difference)

O3 Reference
Monitor
(Hinton)

Data—O3
Calibrated
AQY1 Data
(Difference

in %)

Number of
records 163,584 163,584 136,632 Not Applicable Not Applicable Not Applicable Not Applicable

Missing records
(%) 31,382 (19.2%) 74,322 (45%) 955 (7%) Not Applicable Not Applicable Not Applicable Not Applicable

Minimum 0 0 0 0 Not Applicable 0 Not Applicable

1st Quartile 23.5 19.6 16 −7.5 −47% −3.4 −21%

Median 33.1 31.3 27 −6.1 −23% −4.3 −16%

Mean 35 32.7 27.2 −7.8 −29% −5.2 −19%

3rd Quartile 44.6 43.9 38 −6.6 −17% −5.6 −15%

Maximum 121 138.7 85 −36 −42% −53.7 −63%

Nitrogen Dioxide

Data Set NO2 Raw AQY1
Data (ppb)

NO2 Calibrated
AQY1 Data

(ppb)

NO2 Reference
Monitor

(Hinton) Data
(ppb)

NO2 Reference
Monitor
(Hinton)

Data—NO2 Raw
AQY1 Data
(Absolute

Difference)

NO2 Reference
Monitor
(Hinton)

Data—NO2 Raw
AQY1 Data
(Difference

in %)

NO2 Reference
Monitor
(Hinton)

Data—NO2
Calibrated
AQY1 Data
(Absolute

Difference)

NO2 Reference
Monitor
(Hinton)

Data—NO2
Calibrated
AQY1 Data
(Difference

in %)

Number of
records 163,584 163,584 136,632 Not Applicable Not Applicable Not Applicable Not Applicable

Missing records
(%) 31,382 (19.2%) 67,772 (41%) 3026 (22%) Not Applicable Not Applicable Not Applicable Not Applicable

Minimum −109.0 0.0 0.0 109 Not Applicable 0.0 0%

1st Quartile −11.0 0.0 2.8 13.8 493% 2.8 100%

Median −2.4 0.0 4.8 7.2 150% 4.8 100%

Mean −3.4 5.6 7.3 10.7 147% 1.7 23%

3rd Quartile 6.6 5.5 8.8 2.2 25% 3.3 38%

Maximum 208.5 110.9 45.7 −162.8 −356% −65.2 −143%
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Table 2. Cont.

Particulate Matter with a Diameter Less than 2.5 µm

Data Set
PM2.5 Raw
AQY1 Data

(ug/m3)

PM2.5 Calibrated
AQY1 Data

(ug/m3)

PM2.5 Reference
Monitor

(Hinton) Data
(ug/m3)

PM2.5 Reference
Monitor
(Hinton)

Data—NO2 Raw
AQY1 Data
(Absolute

Difference)

PM2.5 Reference
Monitor
(Hinton)

Data—NO2 Raw
AQY1 Data
(Difference

in %)

PM2.5 Reference
Monitor
(Hinton)

Data—NO2
Calibrated
AQY1 Data
(Absolute

Difference)

PM2.5 Reference
Monitor
(Hinton)

Data—NO2
Calibrated
AQY1 Data
(Difference

in %)

Number of
records 163,584 163,584 136,632 Not Applicable Not Applicable Not Applicable Not Applicable

Missing records
(%) 24,677 (15%) 62,269 (38%) 241 (0.18%) Not Applicable Not Applicable Not Applicable Not Applicable

Minimum 0 0 0 0 Not Applicable 0 Not Applicable

1st Quartile 1.8 2.7 4.2 2.4 57% 1.5 36%

Median 3.1 7.7 8 4.9 61% 0.3 4%

Mean 4.3 11.2 9 4.7 52% −2.2 −24%

3rd Quartile 5.3 15.6 12.2 6.9 57% −3.4 −28%

Maximum 866.7 156.2 77 −789.7 −1026% −79.2 −103%

Particulate Matter with a Diameter Less than 10 µm

Data Set PM10 Raw AQY1
Data (ug/m3)

PM10 Calibrated
AQY1 Data

(ug/m3)

PM10 Reference
Monitor

(Hinton) Data
(ug/m3)

PM10 Reference
Monitor
(Hinton)

Data—NO2 Raw
AQY1 Data
(Absolute

Difference)

PM10 Reference
Monitor
(Hinton)

Data—NO2 Raw
AQY1 Data
(Difference

in %)

PM10 Reference
Monitor
(Hinton)

Data—NO2
Calibrated
AQY1 Data
(Absolute

Difference)

PM10 Reference
Monitor
(Hinton)

Data—NO2
Calibrated
AQY1 Data
(Difference

in %)

Number of
records 163,584 163,584 136,632 Not Applicable Not Applicable Not Applicable Not Applicable

Missing records
(%) 34,883 (21%) 68,098 (42%) 321 (2.4%) Not Applicable Not Applicable Not Applicable Not Applicable

Minimum 0 0 0 0 Not Applicable 0 0%

1st Quartile 3.5 7 11 7.5 68% 4 36%

Median 5.6 17.5 18 12.4 69% 0.5 3%

Mean 7.24 23.14 20.83 13.59 65% −2.31 −11%

3rd Quartile 8.7 31.9 27 18.3 68% −4.8 −18%

Maximum 968.7 971.7 721 −247.7 −34% −250.7 −35%

The reference monitor reported 46 negative readings for O3, 185 negative readings for
NO2, 579 negative readings for PM2.5, and 359 negative readings for PM10. As there cannot
be real negative pollutant concentrations in ambient air, and as our underlying assumption
is that the reference monitor’s readings were the true values of the pollutants and free from
error, we replaced these negative values with zeros in all our analyses. Since the objective
of this work was not to assess the performance of the reference monitor at the Hinton site,
this practice was considered acceptable. Next, we overview the differences between the
reference and the AQY1 monitors, by pollutant.

3.1.1. Ozone

The difference between the reference and the AQY1 monitors for the overall dataset
was reduced after the calibration for all summary statistics, except for the maximum
value; indicating that overall, the calibration seemed to achieve its intended purpose. The
general trend in the data was that the AQY1 monitors tended to overestimate O3 values
across all summary statistics. Therefore, it seems that the AQY1 monitors may have over-
reported the true O3 concentrations, with the potential for specifically overreporting at the
highest O3 concentrations by up to 63% (calibrated data), as compared to the reference
monitor (Table 2).
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3.1.2. Nitrogen Dioxide

The difference between the reference and the AQY1 monitors for the overall dataset
was reduced after the calibration for all summary statistics, except for the 3rd quartile
value, indicating that overall, the calibration seemed to achieve its intended purpose.
The general trend in the data was that the AQY1 monitors tended to underestimate NO2
values across the minimum, 1st quartile, median, mean, and 3rd quartile, but overestimate
the maximum NO2 value, with a large deviation in the raw dataset (356%), which was
reduced, but remained high, in the calibrated dataset (143%). Therefore, it seems that
the AQY1 monitors may underreport the true NO2 concentrations with the potential for
specifically overreporting at the highest NO2 concentrations by up to 143% (calibrated
data), as compared to the reference monitor. The AQY1 monitors recorded many negative
NO2 readings in the raw dataset, which were corrected after applying the calibration
factors (Table 2).

3.1.3. Particulate Matter with a Diameter Less Than 2.5 µm

The difference between the reference and the AQY1 monitors for the overall dataset
was reduced after the calibration for all summary statistics, indicating that overall, the
calibration seemed to achieve its intended purpose. The general trend in the data was
that the AQY1 monitors tended to underestimate PM2.5 values across the 1st quartile
and median (i.e., lower ends of the air pollution range), and overestimate across the
mean, 3rd quartile, and maximum calibrated values (i.e., higher ends of the air pollution
range). Therefore, it seems that the AQY1 monitors may have underreported the true PM2.5
concentrations but with the potential for overreporting at the highest concentrations by up
to 103% (calibrated data), as compared to the reference (Table 2), but this also varied by
device (data not shown).

3.1.4. Particulate Matter with a Diameter Less Than 10 µm

The difference between the reference and the AQY1 monitors for the overall dataset
was reduced after the calibration for all summary statistics, except the maximum value,
which only slightly increased (≈1%), indicating that overall, the calibration seemed to
achieve its intended purpose. The general trend in the data was that the AQY1 monitors
tended to underestimate PM10 values across the 1st quartile and median (i.e., lower ends
of the air pollution range), and overestimate across the mean, 3rd quartile, and maximum
calibrated values (i.e., higher ends of the air pollution range). Therefore, it seems that
the AQY1 monitors may have underreported the true PM10 concentrations, but with the
potential for overreporting at the highest PM10 concentrations by up to 35% (calibrated
data), as compared to the reference monitor (Table 2), but this also varied by device (data
not shown).

3.1.5. Mean Average Percentage Error

We also assessed the differences between readings from the reference monitor and the
AQY1 monitors using MAPE. The detailed results are shown in Table S3 in the Supplemen-
tary Material.

For O3, the MAPE (%) ranged from 20% (AQY-BA-353) to 84% (AQY-BA-432) in the
raw data, and from 5% (AQY-BA-353) to 45% (AQY-BA-480) in the calibrated data. For
NO2, the MAPE (%) ranged from 145% (AQY1-WilburSpare-09) to 361% (AQY-BA-431)
in the raw data, and from 26% (AQY-BA-480 and AQY-BA-481) to 106% (AQY-BA-464)
in the calibrated data. For PM2.5, the MAPE (%) ranged from 41% (AQY-BA-464) to 68%
(AQY1-BA-479A) in the raw data, and from 29% (AQY1-WilburSpare-07) to 132% (AQY1-
BA-480A) in the calibrated data. For most AQY1 monitors, the MAPE increased in the
calibrated PM2.5 data, which is problematic. For PM10, the MAPE (%) ranged from 36%
(AQY-BA-464) to 63% (AQY-BA-353 and AQY1-WilburSpare-09) in the raw data, and from
20% (AQY1-WilburSpare-07) to 77% in the calibrated data (AQY1-BA-479A and AQY1-
BA-480A). As such, these results show that there were high variations between the AQY1
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monitors, and according to the pollutants examined, and that the performance based on
the MAPE deteriorated in the PM2.5 dataset.

3.1.6. Time Series Plots

We also plotted the time series to elucidate the pollutant trends over time, comparing
between the AQY1 monitors and the reference monitor. While there were differences between
the AQY1 monitors, the general trend was that the time series patterns were consistent across
the AQY1 and the reference monitors, where the high and low readings generally coincided.
Select examples are shown in Figures S3–S6 in the Supplementary Material.

3.2. Regression Analysis

Table 3 contains a summary of regression analyses of for all the data, while the regres-
sion lines for the calibrated data, separately by AQY1 monitor, are shown in full in the
Supplementary Material (in the ‘Underlying Regression Analysis Results’ section). For O3,
it can be observed from Table 3 that the performance (bias and precision) of the low-cost
monitors varied considerably by monitor. In general, calibration seemed to improve accu-
racy significantly, except for AQY1-WilburSpare-07, AQY-BA-480, and AQY-BA-481 (for
which the bias in the calibrated data seems to be larger or about the same). There seemed to
be a non-negligible absolute systematic error (non-zero intercept that is significantly differ-
ent from 0) and/or non-negligible proportional systematic error (slope that is significantly
different from 1) in the data from some monitors (e.g., AQY1-WilburSpare-07, AQY-BA-464,
AQY-BA-480, and AQY-BA-481), even after calibration. The RMSE values in Table 3 are
precision estimates for the measurements from the monitors. It appears that calibration
improved the precision in general (except for AQY1-WilburSpare-07, AQY-BA-464, AQY-
BA-480, and AQY-BA-481). For the calibrated data, R2 ranged from 0.36 to 0.97, with an
average of 0.84. All AQY1 monitors, expect AQY1-WilburSpare-07 and AQY-BA-464 had
an R2 of 0.86 or above.

There were many negative values in the raw NO2 data obtained by the AQY1 monitors,
which is problematic. Those negative values were corrected by calibration. In general,
calibration seemed to improve accuracy (except for AQY1-WilburSpare-07 and AQY-BA-
464). There seemed to be a non-negligible absolute systematic error and/or non-negligible
proportional systematic error in the NO2 data from several monitors (AQY1-WilburSpare-
07, AQY1-WilburSpare-08, AQY-BA-353, AQY-BA-431, AQY-BA-432, AQY-BA-464, and
AQY-BA-481), however, even after calibration. The RMSE values were large in general,
which indicates that the precision of the monitors was low. It appears that calibration
improved the precision in general. The scatterplots of the reference NO2 data and the
AQY1 monitors NO2 data, showed a much wider spread around the regression compared
to those for O3 (data not shown). For the calibrated data, R2 ranged from 0.00 to 0.58, with
an average of 0.35 and a median value of 0.37.

For PM2.5, the performance (bias and precision) of the AQY1 monitors varied by
monitor. In general, calibration seemed to decrease the bias in PM2.5 data obtained from
the AQY1 monitors. The RMSE values, however, were larger for the calibrated data, which
indicates that the precision of PM2.5 data from the low-cost monitors may have deteriorated
after calibration, except for AQY-BA-481. For the calibrated data, R2 ranged from 0.20 to
0.39, with an average of 0.32 and a median value of 0.33.

For PM10, the performance (bias and precision) of the AQY1 monitors varied by
monitor. In general, calibration seemed to improve accuracy. Like PM2.5, but unlike O3 or
NO2, the RMSE values for the calibrated PM10 data were larger (the precision is lower) than
those for raw PM10 data, except for AQY-BA-481. For the calibrated data, R2 ranged from
0.36 to 0.54, with an average of 0.47 and a median value of 0.49. One monitor reported no
PM10 data for the whole project duration: AQY-BA-480. This was due to the PM10 sensor
in the device being deactivated in the Cloud system by the manufacturer.
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Table 3. Summary of Regression Analysis for O3, NO2, PM2.5, and PM10 Data from the AQY1
Monitors. Results are shown by device.

y: Raw O3 Data y: Calibrated O3 Data

Device ID b0 b1 R2 RMSE n b0 b1 R2 RMSE n

AQY1-BA-479A 12.03 1.00 0.82 7.18 11,653 1.89 1.05 0.92 4.67 9561

AQY1-BA-480A 9.63 1.14 0.69 11.49 10,910 4.97 1.03 0.91 4.93 8819

AQY1-WilburSpare-07 6.31 0.81 0.73 7.40 9159 11.86 0.69 0.56 9.45 4341

AQY1-WilburSpare-08 11.96 0.80 0.83 5.54 10,854 2.96 0.91 0.93 3.98 5433

AQY1-WilburSpare-09 14.03 0.98 0.96 2.90 11,284 0.76 0.94 0.97 2.67 9914

AQY1-WilburSpare-10 12.85 0.77 0.87 4.54 11,563 1.81 1.09 0.93 4.45 9471

AQY-BA-353 2.49 1.11 0.93 4.42 9928 −0.58 1.08 0.94 4.02 4868

AQY-BA-431 9.98 0.99 0.77 8.31 11,485 5.67 1.04 0.87 6.35 9393

AQY-BA-432 12.57 1.13 0.64 12.92 11,312 5.78 1.00 0.89 5.35 9578

AQY-BA-464 13.29 0.40 0.59 5.05 6591 13.62 0.92 0.36 18.64 6041

AQY-BA-480 18.55 0.49 0.73 4.46 8835 7.71 1.57 0.86 9.13 5646

AQY-BA-481 14.10 0.60 0.77 4.90 9559 7.15 1.54 0.89 8.07 5646

y: Raw NO2 Data y: Calibrated NO2 Data

Device ID b0 b1 R2 RMSE n b0 b1 R2 RMSE n

AQY1-BA-479A −4.72 0.76 0.25 9.71 9912 −0.83 1.00 0.40 7.00 7821

AQY1-BA-480A −12.96 0.95 0.18 15.38 8770 −0.99 0.72 0.43 6.80 6680

AQY1-WilburSpare-07 −19.69 0.45 0.02 20.30 7916 −0.29 0.05 0.14 1.01 4525

AQY1-WilburSpare-08 −7.58 0.57 0.19 7.59 8850 −0.92 0.76 0.29 8.82 4891

AQY1-WilburSpare-09 −4.60 0.72 0.29 8.47 9161 0.73 1.08 0.35 11.49 7817

AQY1-WilburSpare-10 −6.26 0.80 0.22 11.02 9912 −2.52 1.08 0.46 9.10 7821

AQY-BA-353 0.01 0.56 0.08 11.20 7953 −0.49 0.54 0.24 6.39 4295

AQY-BA-431 −14.64 1.02 0.19 15.80 9545 −1.14 0.75 0.30 9.09 7454

AQY-BA-432 −7.31 0.69 0.18 11.04 9172 −1.38 0.68 0.44 6.20 7401

AQY-BA-464 −14.28 0.66 0.02 27.48 5727 8.30 −0.05 0.00 12.84 5190

AQY-BA-480 −15.12 0.81 0.06 23.48 7462 −4.52 0.90 0.58 6.49 4010

AQY-BA-481 −7.02 0.47 0.02 22.47 8211 −3.26 0.67 0.53 5.32 4010

y: Raw PM2.5 Data y: Calibrated PM2.5 Data

Device ID b0 b1 R2 RMSE n b0 b1 R2 RMSE n

AQY1-BA-479A 2.52 0.33 0.25 4.01 12,328 2.88 1.28 0.25 14.13 10,161

AQY1-BA-480A 2.15 0.30 0.28 3.37 12,685 3.36 1.33 0.30 12.88 10,518

AQY1-WilburSpare-07 1.07 0.17 0.41 1.51 9614 3.08 0.64 0.29 7.24 4691

AQY1-WilburSpare-08 1.63 0.24 0.32 2.46 12,642 2.61 1.08 0.30 11.28 7108

AQY1-WilburSpare-09 1.44 0.18 0.22 2.27 12,683 2.81 0.88 0.20 11.30 10,514

AQY1-WilburSpare-10 1.25 0.21 0.39 1.85 12,206 2.47 1.04 0.35 9.14 10,039

AQY-BA-353 1.32 0.23 0.34 2.20 12,663 4.14 1.20 0.36 10.78 7467

AQY-BA-431 2.23 0.35 0.36 3.12 12,131 0.85 0.84 0.38 6.50 10,323

AQY-BA-432 1.84 0.27 0.33 2.66 12,661 0.86 0.73 0.31 6.96 10,853

AQY-BA-464 2.98 0.41 0.31 4.63 6987 1.36 0.73 0.35 6.62 6435

AQY-BA-480 1.65 0.28 0.32 2.95 10,023 0.39 1.30 0.35 10.36 5726

AQY-BA-481 2.66 0.35 0.00 37.59 10,023 −0.44 1.08 0.39 7.86 5726
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Table 3. Cont.

y: Raw PM10 Data y: Calibrated PM10 Data

Device ID b0 b1 R2 RMSE n b0 b1 R2 RMSE n

AQY1-BA-479A 4.07 0.35 0.42 7.47 12,269 6.36 1.11 0.40 22.58 10,122

AQY1-BA-480A 2.13 0.25 0.49 4.47 12,596 5.99 1.03 0.40 21.09 10,469

AQY1-WilburSpare-07 0.86 0.20 0.56 3.13 9558 1.23 0.73 0.54 12.45 4655

AQY1-WilburSpare-08 2.23 0.23 0.50 4.18 12,573 1.95 1.08 0.53 18.78 7062

AQY1-WilburSpare-09 2.17 0.20 0.44 4.13 12,614 4.87 0.93 0.36 20.80 10,465

AQY1-WilburSpare-10 1.49 0.26 0.59 3.97 12,141 5.87 0.96 0.52 15.42 9994

AQY-BA-353 1.77 0.21 0.51 3.62 12,594 7.20 1.24 0.49 23.79 7420

AQY-BA-431 4.21 0.19 0.49 3.41 12,063 −2.21 0.87 0.38 18.62 10,274

AQY-BA-432 1.72 0.24 0.55 3.78 12,593 0.08 0.86 0.50 14.49 10,804

AQY-BA-464 0.71 0.25 0.63 3.57 6957 −2.23 0.92 0.54 14.18 6421

AQY-BA-480 NA NA NA NA NA NA NA NA NA NA

AQY-BA-481 0.85 0.35 0.02 47.05 9964 7.93 0.76 0.46 10.53 5702

Notes: N (total number of hours in the study period) = 13,632; n denotes the number of non-missing measurements;
measurements from the reference (Hinton) monitor were used as an independent variable (x) and measurements
from low-cost monitors were used as a dependent variable (y); b0 and b1 denote the intercept and slope of the
estimated regression line; RMSE represents the root mean square error for the regression line.

3.3. Analysis of Covariance

We analyzed the potential impact of meteorological conditions on the performance of
the AQY1 monitors using the ANCOVA model with measurement errors, defined by the
difference between the low-cost monitor measurements and the reference monitor (referred
to as Hinton) measurements as a dependent variable, Device ID as a categorical factor,
and meteorological variables as covariates. Detailed ANCOVA results are shown in the
Supplementary Material in the ‘Underlying ANCOVA Results’ section.

3.3.1. Ozone

In the raw dataset, the ANCOVA model with measurement error (computed by
O3 Raw—O3 Hinton) as a dependent variable, Device ID, Temp, RH, WD, and WS as
main effects, and two-way interaction effects among them indicated that the effects of the
meteorological variables on the measurement errors in the raw data of the AQY1 monitors
varied by sensor. Table S4 contains the results of the ANCOVA for the dependent variable
O3 Raw—O3 Hinton, which shows that there were statistically significant interaction effects
between the Device ID and each of Temp, RH, WD, and WS. While all four meteorological
variables were statistically significant, due to the large sample sizes, not all those effects
seemed to be practically significant. Only the effects of Temp, RH, and WS were deemed to
be practically significant (effects sizes of Temp, RH, and WS are larger compared to those
of WD). Figure 2 presents the regression plots based on the ANCOVA analysis results,
including each of Temp, RH, WD, and WS in the model along with Device ID and the
interaction effect between them (see Supplementary Material for the underlying ANCOVA
results for Figure 2). From Figure 2, it can be observed that the effect of Temp on the
differences between the raw and the Hinton’s O3 data varied by Device ID, although
the effect was negative in general (except for AQY-BA-353). That is, the AQY1 monitors
tended to overestimate at lower temperatures and underestimate at higher temperatures
(except for AQY-BA-353). The effect of RH on the differences also seemed to be negative
in general (except for three devices). The effect of WD on the differences seemed to be
negligible. The effect of WS on the differences seemed to be different for each sensor (see
regression plot in Figure 2), so it may not be meaningful to assess the effects of those
variables without referring to the Device ID. For the AQY1 monitors such as AQY-BA-432,
AQY-BA-479A, and AQY-BA-480A, the low-cost monitor readings overestimated more
as the WS increased, but for some other monitors (e.g., AQY-BA-464, AQY-BA-480, AQY-
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BA-481, and AQY1-WilburSpare-07), the low-cost monitors underestimated more as the
WS increased.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 18 of 31 
 

 

  
(a) (b) 

  
(c) (d) 

O3
 R

aw
-O

3 H
int

on
 (p

pb
)

O3
 R

aw
-O

3 H
int

on
 (p

pb
)

O3
 R

aw
-O

3 H
int

on
 (p

pb
)

O3
 R

aw
-O

3 H
int

on
 (p

pb
)

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 19 of 31 
 

 

 
Figure 2. Regression plot between O3 Raw-O3 Hinton Data versus (a) Temperature, (b) RH, (c) Wind 
Direction, and (d) Wind Speed, as measured at the Hinton Reference Site. 

We also conducted the same analysis using the calibrated dataset but note that we 
consider the raw data analysis the main analysis, as it is representative of the AQY1 mon-
itors’ performance before being altered by the calibration, and as the raw data set was 
larger and more complete. The results from the calibrated data set are in the Supplemen-
tary Material and showed that, overall, the effects of meteorological variables on meas-
urement errors were found to be smaller compared to those for the raw O3 data, but less 
consistent. In the case of Temp, there was evidence that the differences (O3 Calibrated-O3 
Hinton) did not significantly vary with Device ID, except for AQ1-WilburSpare-07. For 
AQ1-WilburSpare-07, the monitor tended to overestimate at lower temperatures and un-
derestimate at higher temperatures. For RH, WD, and WS it appeared that the calibration 
deteriorated the performance of AQY-BA-480 and AQY-BA-481, while it generally im-
proved the performance of the other monitors. 

3.3.2. Nitrogen Dioxide 
In the raw dataset, the ANCOVA model indicates that the effects of the meteorolog-

ical variables on the measurement errors in the raw data of the AQY1 monitors varied by 
sensor. Table S5 contains the results of the ANCOVA for the dependent variable NO2 
Raw—NO2 Hinton, which show that there are statistically significant interaction effects, 
resulting from the large sample sizes, between Device ID and each of Temp, RH, WD, and 
WS, although not all of them were deemed to be practically significant. 

Figure 3 presents regression plots based on the ANCOVA analysis results (provided 
in Supplementary Material), including each of Temp, RH, WD, and WD in the model, 
along with Device ID and the interaction between them. From Figure 3, it can be observed 
that the effect of Temp on the differences between the raw and the true NO2 data varies 
with Device ID. No consistent trend for over- or underestimating can be observed across 
the monitors (see Regression Plot in Figure 3a). The effect of RH on the differences ap-
peared to be either negative (i.e., low-cost sensors underestimated NO2 concentrations as 

Figure 2. Regression plot between O3 Raw-O3 Hinton Data versus (a) Temperature, (b) RH, (c) Wind
Direction, and (d) Wind Speed, as measured at the Hinton Reference Site.



Int. J. Environ. Res. Public Health 2022, 19, 1647 17 of 28

We also conducted the same analysis using the calibrated dataset but note that we con-
sider the raw data analysis the main analysis, as it is representative of the AQY1 monitors’
performance before being altered by the calibration, and as the raw data set was larger and
more complete. The results from the calibrated data set are in the Supplementary Material
and showed that, overall, the effects of meteorological variables on measurement errors
were found to be smaller compared to those for the raw O3 data, but less consistent. In the
case of Temp, there was evidence that the differences (O3 Calibrated-O3 Hinton) did not
significantly vary with Device ID, except for AQ1-WilburSpare-07. For AQ1-WilburSpare-
07, the monitor tended to overestimate at lower temperatures and underestimate at higher
temperatures. For RH, WD, and WS it appeared that the calibration deteriorated the perfor-
mance of AQY-BA-480 and AQY-BA-481, while it generally improved the performance of
the other monitors.

3.3.2. Nitrogen Dioxide

In the raw dataset, the ANCOVA model indicates that the effects of the meteorological
variables on the measurement errors in the raw data of the AQY1 monitors varied by sensor.
Table S5 contains the results of the ANCOVA for the dependent variable NO2 Raw—NO2
Hinton, which show that there are statistically significant interaction effects, resulting from
the large sample sizes, between Device ID and each of Temp, RH, WD, and WS, although
not all of them were deemed to be practically significant.

Figure 3 presents regression plots based on the ANCOVA analysis results (provided in
Supplementary Material), including each of Temp, RH, WD, and WD in the model, along
with Device ID and the interaction between them. From Figure 3, it can be observed that the
effect of Temp on the differences between the raw and the true NO2 data varies with Device
ID. No consistent trend for over- or underestimating can be observed across the monitors
(see Regression Plot in Figure 3a). The effect of RH on the differences appeared to be either
negative (i.e., low-cost sensors underestimated NO2 concentrations as RH increases) or
negligible (i.e., the slopes are close to zero) in general. The effect of WD on the differences
seemed to be negligible (in terms of both the main effect of WD and the interaction effect
between WD and Device ID, i.e., the slopes are close to zero). The effects of WS on the
differences seemed to be different for each sensor (see Regression Plot in Figure 3d). As in
the case of O3, the effects of meteorological variables (especially, the effects of Temp and
WS) on the measurement errors of the AQY1 monitors were deemed to be different for the
different sensors, so it may not be meaningful to assess effects of these variables without
referring to Device ID.

We also conducted the same analysis using the calibrated dataset. The results from
the calibrated data set are in the Supplementary Material and showed that, overall, the
effects of the meteorological variables on the measurement errors in the calibrated NO2
data varied with Device ID. There was a suggestion that the measurement errors increased
for some monitors as the WS increased. The results from the calibrated data set showed
that overall, the effects of Temp, RH, WD, and WS on measurement errors were found to be
smaller, in general, compared to those for the raw NO2 data. In the case of RH, there was
evidence that the differences (NO2 Calibrated- NO2 Hinton) did not significantly vary with
Device ID, except for AQY-BA-464. For AQY-BA-464, the monitor tended to overestimate
at lower RH values and underestimate at higher RH values.
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3.3.3. Particulate Matter with a Diameter Less Than 2.5 µm

In the raw dataset, the ANCOVA model, with measurement error (computed by PM2.5
Raw—PM2.5 Hinton) as a dependent variable, Device ID, Temp, RH, WD, and WS as the
main effects and two-way interaction effects among them indicated that the effects of
meteorological variables on the measurement errors in the raw data of the AQY1 monitors
varied by sensor. Table S6 contains the results of the ANCOVA for the dependent variable
PM2.5 Raw—PM2.5 Hinton, which show that there were statistically significant interaction
effects (due to the large sample sizes) between Device ID and each of Temp, RH, WD, and
WS, although none of those effects were deemed to be practically significant. Figure 4
contains regression plots based on the ANCOVA analysis results, including each of Temp,
RH, WD, and WD in the model, along with the Device ID and the interaction between
them, after removing 31 extreme outliers from the data (see Supplementary Material
for underlying ANCOVA results for Figure 4). The results including the 31 outliers are
not materially different, but are harder to see in an illustration. In general, the low-cost
monitors seemed to underestimate PM2.5 concentrations on average (i.e., there seemed to be
a negative bias). The bias did not seem to vary significantly over the range of meteorological
variables. The variability (spread) of differences appeared to increase as the values of Temp
or RH increased (i.e., the precision of the low-cost monitors seemed to decrease as Temp or
RH increased).
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Figure 4. Regression Plot between PM2.5 Raw-PM2.5 Hinton Data versus the (a) Temperature (b) RH,
(c) Wind Direction, (d) Wind Speed, (e) between PM2.5 Calibrated-PM2.5 Hinton Data versus the RH,
as measured at the Hinton Reference Site.

The results from the calibrated data set (see Supplementary Material) showed that
the bias of the low-cost monitors decreased (the regression lines are closer to the zero
line) compared to the raw data, but that the precision decreased as well (the spread of
PM2.5 Cal—PM2.5 Hinton increased). Figure 4e shows the regression plot based on the
result of fitting the ANCOVA model with RH, Device ID, and an interaction effect between
them based on the calibrated data. It can be observed that the spread in differences (PM2.5
Cal—PM2.5 Hinton) increased as the RH increased (i.e., precision of low-cost monitors
seemed to decrease as the RH increased).

3.3.4. Particulate Matter with a Diameter Less Than 10 µm

In the raw dataset, the ANCOVA model with measurement error (computed by PM10
Raw—PM10 Hinton) as a dependent variable, Device ID, Temp, RH, WS, and WD as
main effects, and two-way interaction effects among them indicated that the effects of the
meteorological variables (Temp, RH, and WS) on the measurement errors in the raw data
of the AQY1 monitors varied by sensor. Table S6 contains the results of the ANCOVA for
the dependent variable PM10 Raw—PM10 Hinton, which show that there were statistically
significant (although not practically significant) interaction effects between Device ID and
each of Temp, RH, and WS.

Figure 5 contains regression plots based on the ANCOVA analysis results, including
each of Temp, RH, and WS in the model along with Device ID, and an interaction between
them after removing 69 extreme outliers. There were 31 extremely large outliers (with
values greater than 210) and 38 extremely small outliers (with values less than −237). In
general, the low-cost monitors seemed to underestimate PM10 concentrations on average
(i.e., there seemed to be a negative bias), as in the case of PM2.5. The bias did not seem
to vary significantly over the range of meteorological variables. It can be observed from
Figure 5a,b that the spread of differences somewhat increased as the Temp or RH increased
(i.e., precision of the low-cost monitors seemed to decrease as the Temp or RH increased).
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The results from the calibrated data set (see Supplementary Material) showed that
the bias of the low-cost monitors decreased (the regression lines are closer to the zero line)
compared to the raw data, but that the precision decreased as well (the spread of PM10
Cal—PM10 Hinton increased), as in the case of PM2.5. A regression plot based on the result
of fitting the ANCOVA model with RH, Device ID, and an interaction effect between them
is shown in Figure 5e, and this demonstrates the increasing spread in PM10 Cal—PM10
Hinton (i.e., lower precision of lower-cost monitors) as RH increases more clearly than in
the raw dataset.

3.4. Comparison Based on the Air Quality Index Categories

Table S8 shows a comparison of the AQI levels calculated using the calibrated AQY1
monitor data and the reference monitor data, separately for each pollutant. As shown
in Table S8, all pollutant AQI categories, except for PM2.5, were correct over 95% of the
time, when the reference monitor’s AQI level was ‘Good’. The PM2.5 data categorization
matched 75.6% of the time when the reference monitor’s AQI level was ‘Good’ and 62.3% of
the time when the reference monitor’s AQI level was ‘Moderate’. The O3 data also showed
lower correlations in the ‘Moderate’ and ‘Unhealthy for Sensitive Groups’ AQI categories,
but the number of observations in these categories was much lower than in the ‘Good’ AQI
level, and as such more data are needed to confirm this observation.

4. Discussions

The need for low-cost air quality monitors arose in response to the fixed nature, high
calibration requirements, and purchase and maintenance costs of traditional air pollution
monitors, as well as the high spatial variability of urban air pollution, which is not captured
by reference monitors. Despite the proliferation of low-cost sensors and their data, there is
still a lack of clarity and inconsistency about how these perform in comparison to regulatory
monitors, and how their performance might be affected by meteorological factors. The
literature calls for further research in this area, in real-world conditions, as opposed to in
laboratories, and over long periods of time that include realistic ranges of air pollutant
concentrations and meteorological conditions. This study responded to this call and adds
to a growing body of evidence assessing the performance of low-cost air quality sensors.

In this study, our collected data spanned a realistic range of pollution concentrations
and meteorological variables; over a period of 18 months, captured by 12 sensors from the
same manufacturer and of the same type (model), and operated at the same location. The
assessment of the performance of the AQY1 low-cost sensors used here is an important fac-
tor, as researchers and practitioners determine their overall usefulness in specific research
projects and for specific applications. Overall, our findings showed that the performance
of the AQY1 monitors varied greatly by device and pollutant, and to a minor extent, was
affected by temperature, relative humidity, and wind speed, as will be discussed next.
The AQY1 sensors seemed to perform best when measuring O3 (e.g., R2 from 0.36 to 0.97,
and this generally improved with calibration), followed by PM10 (e.g., R2 from 0.36 to
0.54, with mixed results after the calibration), while they performed poorly when mea-
suring NO2 (e.g., R2 from 0.00 to 0.58, with mixed results after the calibration) and PM2.5
(e.g., R2 from 0.20 to 0.39, with mixed results after the calibration, and generally deterio-
rating performance). Studies that specifically investigated the sensors manufactured by
Aeroqual (AQY) in the past also suggested that the best performance was for O3, followed
by PM2.5 and PM10, and lastly NO2 [33–35], in line with our findings. We can only comment
on this specific low-cost sensor type and expect different performances for different sensors,
as shown in Table S1.

The wide range of R2 and varying performance in our study is also shown in the liter-
ature. As shown in Table S1, the degree of accuracy against reference-grade or regulatory
monitor readings was highly variable (large ranges for e.g., R2) and is not directly com-
parable from study to study, due to the different pollutants, concentration ranges, sensor
types, field location, and context-specific factors, such as meteorological conditions and
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calibration methods. The performance even varied from unit to unit of the same make, and
this high heterogeneity is problematic when interpreting and comparing findings across
the body of evidence. This finding was replicated in our study and in more recent studies,
which suggested that the calibration models improve when individual sensor performance
is accounted for.

In this study, we used a simple linear regression calibration method, which improved
the performance of the low-costs sensors across certain parameters but not others. We
explored the performance difference before and after calibration by inspecting the slope
of the estimated regression line, the intercept, the coefficient of variation, and the RMSE.
Overall, the reviewed studies found that data calibration improved the performance of low-
cost sensors [19], but sometimes only certain performance parameters were inspected and
reported and not others. Our inspection of different parameters suggests that the picture
is mixed, and for PM, general deteriorations in performance were seen, which may be
partly because of the set-up of the site (discussed next). Our calibration method, however,
was also basic. Some novel calibration methods, such as the artificial neural network
(AAN) calibration used in Spinelle, Gerboles, Villani, Aleixandre, and Bonavitacola [36]
and Spinelle, Gerboles, Villani, Aleixandre, and Bonavitacola [37] further lowered the bias
and seemed to help solve cross-sensitivity issues from which a major part of sensors suffer,
such as when measuring O3 and NO2. While beyond the scope of our study, future research
could investigate the difference in performance when calibration is conducted using linear
regression versus more complex methods, such as multi-variate linear regression (MLR),
machine learning and artificial neural network techniques, and other novel methods such
as segmented model and residual treatment calibration (SMART) (see Table S1).

A particular issue was with the many negative raw NO2 values which the sensors
reported (76,046 records or 46%), which were corrected in the calibrated datasets but
poorly impacted on the calibrated values and the agreement between the calibrated and
the reference monitors’ data. It is, however, important to note that the AQY1 monitors do
not directly measure NO2. Instead, NO2 data is calculated based on the difference between
the O3 and Ox sensors in the monitors, using the equation NO2 = Ox − 1.1 × O3, as per the
manufacturer [31]. These results highlight the importance of recording and assessing both
the raw and calibrated low-cost sensor measurements, as the added value of the calibration
is complex and varies by pollutant and device. Owing to the logistical limitations at the
Hinton site, the reference monitor’s instruments for PM2.5 and PM10 were mounted on
a ground level cement pad, approximately 29 feet from the AQY1 monitors, and with a
height difference of 7 feet 5 inches. We also think this difference in sampling location may
have contributed to the worse performance in the PM assessment and perhaps the worse
calibration results. We recommend that co-location is as exact as possible in future studies,
but were not able to achieve this in the current study.

In ancillary analyses, some results showed that a good performance of a low-cost
sensor in the laboratory is not indicative of a good performance in the real-world, and
some authors suggested that it is necessary to perform a field calibration of each individual
sensor and to do so periodically (at least once ~3 months) [6,13,38]. Some studies showed
a gradual drift in the sensor readings as time passed. An example would be a drift to a
lower PM concentration, which may be attributed to dust accumulating on a fan, reducing
flow rate [15], and a drift towards higher O3 concentrations, which varied in magnitude
depending on calibration [37]. We did not investigate these issues in the present study, as
our focus was to assess and better understand the performance of the AQY1 sensors for a
later application, but these are important issues, and resulted in weaknesses in our work.

The effects of meteorological data on performance were not uniform and the results
again varied across different monitors. Measuring O3 seemed to be affected by temperature
and RH, with a negative trend, except for a handful of sensors, while the effect of WS was
more mixed. There was also an indication of an effect of Temp on the NO2 errors, which
was more prominent in the calibrated data analysis (note, as above, that the calibration
removed the many negative NO2 values). While the effect was mixed, for some monitors
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the error was higher (after calibration) at lower temperatures. The observation that the
errors follow these trends of meteorological parameters is problematic, as NO2 is expected
to be higher at lower temperatures, which could be associated with restricted atmospheric
dispersion and/or to changes in traffic exhaust emission characteristics and emission source
strength at low temperatures [39]. On the other hand, we expected O3 to be higher at higher
temperatures, as it requires sunlight intensity and solar radiation to form, and higher
temperatures may be indicative of more sunlight. As for PM, we observed a negative
bias in general (i.e., the low-cost monitors seemed to underestimate PM2.5 concentrations
on average).

Although the bias did not seem to vary significantly over the range of meteorolog-
ical variables, the precision of the low-cost monitors seemed to decrease as the Temp or
RH increased. There are no climate-controls on the low-cost sensors, while the reference
monitor is climate-controlled (e.g., humidity control), and as such direct comparisons
are challenging. As the AQY1 monitors measure PM using an optical particle counter
and a light scattering method, humid conditions might have impacted the measurements.
According to the AQY1 user guide, ‘light scattering is susceptible to humidity artefacts
which over-report particulate levels due to ‘fogging’ where the particles are encapsulated
by moisture and appear larger to the sensor than they actually are’. The AQY1 user guide
mentioned that this effect is corrected for by way of a humidity correction algorithm; how-
ever, we still observed that the precision of the low-cost sensors decreased as RH increased;
an effect which was more prominent in the calibrated datasets, and which may have been
larger had there been no control for it by the manufacturer. Other studies [40] suggested
an overestimation of particle concentrations when RH is high, potentially explained by
the operational nature of optical particle counters and the detection and interpretation of
water droplets as PM [17,20,41,42]. There are, however, studies showing negligible effects
of meteorological variables on PM readings [10,16], and that the biases to RH and Temp
varied across each sensor model and node; demonstrating that each sensor response is
unique [10], as we found.

Overall, the time series patterns of pollutant concentrations measured by the AQY1
monitors followed the time series trends from the traditional reference monitor, although
no formal analysis was conducted, and this deduction was based on a simple visual
inspection of time series plots, such as those shown in Figures S3–S6, and others not
shown here. Similarly to our deduction, other studies in air quality sensor performance
evaluation [34], air quality sensor performance evaluation [35], and air quality sensor
performance evaluation [33] showed that low-cost sensors seem to track diurnal variations
well. As in the general performance of the AQY1 monitors, the time series from the
low-cost sensors seemed to best follow the reference monitor’s data in the case of O3,
NO2, and PMs. As such, although the absolute air pollution readings from the AQY1
monitors deviated from the reference monitors’ readings, the AQY1 monitor readings
better tracked the reference monitors’ air-quality trends over time. Future research should
formally assess this by conducting Granger causality and cointegration tests, and dynamic
regression analyses. Other potential comparison analyses could be conducted using relative
differences (instead of absolute differences) or machine learning tools, but this was outside
the scope and the resources available for this study.

The strengths of our study are the long assessment duration, as compared to the
literature (see Table S1); the assessment of 12 identical sensors, which elucidated the
uniqueness of each of their responses; the assessment of four pollutant criteria, across both
raw and calibrated data using an established and commonly employed co-location and
calibration methodology; and the systematic investigation of the effects of meteorological
variables on performance, inspecting both bias and precision to determine accuracy, and
reporting these parameters.

The weaknesses of our study are the amount of missing NO2 data from the reference
monitor and the negative value recordings, which are not practically sensible. Another
limitation was the missing data from the AQY1 monitors, which was mainly due to sensor
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failure and the need to replace those sensors and reinstall the units in the field, and then
manually upload the reference monitor’s data, recalculating the calibration factors and
applying them. After a sensor had been replaced, the calibration factors were reset, and
the co-location calibration had to be conducted again for the new sensor. There were two
logistical and planning issues which increased the amount of missing data from the AQY 1
monitors: first, new sensors were shipped from overseas, which introduced some delay in
the old sensors being replaced. The project researchers also needed to travel 180 miles to
the measurement site for the replacement, which was complicated by COVID-19 protocols.
These issues occurred frequently, and we learned the importance of having back-up sensors
and a local, on the ground, contact for maintenance, where possible. We are applying
these lessons in our next study phase. Our data also show that it is important for users
to properly calibrate the low-cost sensors and continuously monitor the data once they
are installed. Monitoring can lead to early detection of low-performing or faulty monitors,
which can be replaced for better performance. While we did not investigate sensor drift
in this particular study, research suggests that calibration must be conducted periodically,
because the sensitivity of sensors changes over time [15,19,36,37]. This is a limitation of
our study, which calibrated at the outset when sensors had collected a full month of data,
at another intermediate point (when we expected to move the sensors in the field for
another study), and when calibration was needed again, for example due to sensor failure
and replacement.

Future studies should evaluate drift over time, and the frequency of re-calibration that
is needed for optimal results, depending on that drift. We also recommend that calibration
is done in real-world conditions, as laboratory calibrations may not be transferable to
real-world applications [6,38], and on a set schedule, to be determined based on the drift.
A good guide to thinking through issues of drift and regular re-calibration can be found
in Williams, Kilaru, Snyder, Kaufman, Dye, Rutter, Russell, and Hafner [43]. Our study
is limited in this regard, partly due to time and financial constraints, but we welcome
collaboration and data exchange with other researchers to investigate these issues.

In terms of application, the deviations between the low-cost sensors’ readings and
the reference monitor’s reading may be deemed as important, suggesting that there is still
much work and developments needed to improve this emerging technology. However,
the general tracking of diurnal patterns is promising. In addition, the low-costs sensors
seemed to perform better if air pollution levels were binned in the AQI categories, rather
than presented as absolute continuous numbers. Again, even when using categories, the
performance was best for O3, and worst for PM2.5. More data are needed, especially at
the higher AQI bins, which can be obtained by sampling for longer periods of times or in
different locations, in order to better understand the agreement and disagreement in the
different bin categories. Since the AQI is a calculated index value, which uses averaged
concentrations over a specific period, the AQI comparison may provide an alternative
framework for interpreting data from the low-cost sensors and improving their utility.
The absolute low-cost sensor readings were not expected to match the reference monitor
readings with the current state of technology. Therefore, using values such as the AQI levels
for comparison allowed us to assess how the AQY1 monitors performed in categorizing
air pollution levels in well-established categories, which have been used for public and
stakeholder communication. This can be done after installing and calibrating the low-cost
sensors and depending on the amount of data deemed appropriate before conducting a
calibration, in addition to maintenance calibrations.

Overall, there seemed to be important deviations between the air pollution concen-
trations from the AQY1 low-cost sensors versus the reference monitor, which should be
considered carefully in low-cost sensor applications. We also noted that the performance
seemed to vary by device, indicating that no overall conclusion can be made. Based on our
results, we do not recommend using the AQY1 monitors to report on absolute air pollution
concentrations, or for comparing these measurements directly with measurements from a
reference monitor, air quality guidelines (such as the World Health Organization’s), or to
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ascertain if air quality standards are being met (such as the U.S. Environmental Protection
Agency’s), as the state of the technology has not developed sufficiently to accurately sup-
port this application. Low-cost sensors, however, allow broad deployment and the tracking
of air quality trends, to compare air pollution levels, ideally binned into categories.
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