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Abstract

Background: Computational drug repurposing is a cost- and time-efficient approach that aims to identify new therapeutic targets or
diseases (indications) of existing drugs/compounds. It is especially critical for emerging and/or orphan diseases due to its cheaper
investment and shorter research cycle compared with traditional wet-lab drug discovery approaches. However, the underlying mech-
anisms of action (MOAs) between repurposed drugs and their target diseases remain largely unknown, which is still a main obstacle
for computational drug repurposing methods to be widely adopted in clinical settings.

Results: In this work, we propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting
Drugs Treating Diseases. It is a 2-module framework that not only predicts the treatment probabilities between drugs/compounds
and diseases but also biologically explains them via knowledge graph (KG) path-based, testable MOAs. We leverage knowledge-and-
publication-based information to extract biologically meaningful “demonstration paths” as the intermediate guidance in the Graph-
based Reinforcement Learning (GRL) path-finding process. Comprehensive experiments and case study analyses show that the pro-
posed framework can achieve state-of-the-art performance in both predictions of drug repurposing and recapitulation of human-
curated drug MOA paths.

Conclusions: KGML-xDTD is the first model framework that can offer KG path explanations for drug repurposing predictions by lever-
aging the combination of prediction outcomes and existing biological knowledge and publications. We believe it can effectively reduce
“black-box” concerns and increase prediction confidence for drug repurposing based on predicted path-based explanations and fur-
ther accelerate the process of drug discovery for emerging diseases.
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Introduction approaches (e.g., chemical structure-based [8] and GWAS-based

Traditional drug development is a time-consuming process (from
initial chemical identification to clinical trials and finally to Food
and Drug Administration [FDA] approval) that takes around 10
to 15 years and also comes along with billions-of-dollars invest-
ments and high failure rates [1]. Considering the rapid pace of
novel disease evolution, it is urgent to find a more efficient and
economical drug discovery method. Fortunately, it has been ob-
served that a single drug can often be effective in treating multi-
ple diseases. For example, thalidomide was originally used as an
antianxiety medication [2] and was later found to have the anti-
cancer potential for the treatment of cancers [3, 4]. Hence, drug
repurposing, also known as the identification of new uses for ex-
isting drugs/compounds, might bring us hope to address this ur-
gent need with the advantage of a shorter research cycle, lower
development cost, and more preexisting safety tests.

Existing drug repurposing approaches can roughly be catego-
rized into experimental-based approaches (e.g., binding affinity
assays [5], phenotypic screening [6]), clinical-based approaches
(e.g., off-label drug use analysis [7]), and computational-based

approaches [9]). Compared with the former 2 approaches, the
computational approaches are more cost- and time-efficient, par-
ticularly when the goal is to prioritize a large number of tar-
get drugs/compounds for follow-up experimental investigation.
Among all computational drug repurposing methods, the integra-
tion of multiple biomedical data sources into a so-called biomed-
ical knowledge graph (BKG) for drug discovery has become pop-
ular in recent years [10] due to the increasing availability of cu-
rated biomedical databases such as DrugBank [11], ChEMBL [12],
and HMDB [13] and the advancement of semantic web techniques
[14]. There are 3 types of existing BKGs: database-based BKGs,
literature-based BKGs, and mixed BKGs. The database-based BKGs
(e.g., Hetionet [15], BioKG [16], iBKH [17]) are constructed by inte-
grating biomedical data and their relations stored in existing bio-
logical databases. The literature-based BKGs (e.g., GNBR [18]) are
built by leveraging Natural Language Processing (NLP) techniques
to extract semantic information from a large amount of avail-
able biomedical literature and electronic health record (EHR) data,
which are mostly disease specific [19-21]. The mixed BKGs (e.g.,
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CKG [22], RTX-KG2 [23]) are generated by combining the knowl-
edge sources from the above 2 methods.

Based on these BKGs, several machine learning methods have
been proposed or implemented for drug repurposing prediction
by treating it as a link prediction task in the BKGs. For example,
Himmelstein et al. [15] used the so-called degree-weighted path
count (DWPC) to assess the prevalence of 1,206 metapaths and
then classified drug-disease treatment relations by fitting these
DWPC features to a logistic regression model. Ioannidis et al. [24]
proposed a novel graph neural network model I-RGCN to learn
the node and relation embeddings for the Covid-19 drug repur-
posing task. Zhang et al. [19] recently predicted the possible drugs
for Covid-19 with 5 existing popular knowledge graph completion
methods (e.g., TransE [25], RotatE [26], DistMult [27], ComplEx [28],
and STELP [29]). Although some of these models have shown good
performance in drug repurposing prediction on the small-scale
BKGs, none have been scaled to massive BKGs with more than
millions of nodes and edges and make a comprehensive compar-
ison. More importantly, most of them lack the biological explana-
tory ability for their predictions, which limits their applicability in
clinical research.

Currently, there are few computational models designed for
drug repurposing explanations. A common and intuitive explana-
tion based on a biomedical knowledge graph for drug repurpos-
ing leverages the semantic BKG-based paths between given drug—
disease pairs. Sosa et al. [30] applied a graph embedding model
UKGE [31], which utilizes the weighted (the frequency of rela-
tion appeared in literature) relation edges in a literature-based KG
GNBR to identify new indications of drugs for rare diseases and
then explain the results via the highest-ranking paths based on
confidence scores. However, this method is only applicable in the
literature-based BKGs with the weighted edge information. Most
BKGs using database-based knowledge do not contain such infor-
mation. Sang et al. [32] proposed GrEDeL that combines the TransE
embedding method with a long short-term memory (LSTM) re-
current neural network (RNN) model to predict drug—disease re-
lation. By using the embeddings of BKG paths as model input for
predictions, they can provide path-based explanations. However,
they claimed that the effectiveness of the approach relies heav-
ily on the NLP tool SemRep, which is reported to have high false
positives in named entity recognition [33]. Also, they did not fully
evaluate how biologically reasonable their predicted path-based
mechanisms of action (MOAs) are.

Besides the existing methods above, we view reinforcement
learning (RL) as a promising solution for drug repurposing expla-
nation. RL models solve the decision-making problem, in which
an agent learns how to take appropriate actions to maximize
cumulative rewards through interactions with the environment.
RL has achieved widespread success in various domains, includ-
ing games, recommendation systems, health care, transportation,
and so on [34]. Graph reinforcement learning (GRL), first proposed
around in 2017, aims to solve graph mining tasks such as link
prediction [35], adversarial attacks [36], and relational reasoning
[37]. Unlike its applications in other domains, one of the biggest
challenges in GRL is finding an appropriate reward to guide the
path searching in specific domains. To address the issue of finding
biologically reasonable BKG-based paths for drug repurposing, it
is crucial to incorporate biomedical domain knowledge to guide
the path-finding process. Liu et al. [38] developed an RL-based
model “PoLo” that utilizes the biological meta-paths identified in
Himmelstein et al. [15] via the “DWPC” method to supervise path
searching for drug repurposing. However, the “PoLo” model does
not scale to a massive and complex BKG (e.g., CKG and RTX-KG2)

due to its dependence on the “DWPC” method that is reported to
be computationally inefficient [39].

In this article, we describe KGML-xDTD: a Knowledge Graph-
based Machine Learning framework for explainably predicting
Drugs Treating Diseases, which contains 2 modules for both drug
repurposing prediction and MOA explanation. We propose to am-
plify the ability of the RL model in biologically meaningful path
searching by utilizing the biologically meaningful “demonstration
paths” and pretrained drug repurposing model probability as re-
wards. We incorporate this idea into the appropriate models (e.g.,
GraphSAGE [40], random forest, and ADAC RL [41] models) and
then make them applicable to the explainable drug repurpos-
ing problem at massive data scale and complexity. By comparing
with the existing popular drug repurposing models and evaluating
the predicted paths with an expert-curated path-based drug MOA
database DrugMechDB [42, 43], we show that the proposed model
framework can achieve state-of-the-art performance in both pre-
dictions of drug repurposing and recapitulation of human-curated
drug MOA paths provided by DrugMechDB. In further case stud-
ies, by comparing the model predictions with the real regulatory
networks, we show that the proposed framework effectively iden-
tifies biologically reasonable BKG-based MOA paths for real-world
applications.

Materials and Methods

Datasets
Customized biomedical knowledge graph

To accommodate biomedical-reasonable predictions of drugs’ in-
dications and their mechanisms of action, the ideal biomedical
knowledge graph should integrate biomedical knowledge from
comprehensive and diverse databases and publications, as well
as accurately identify and merge different identifiers represent-
ing the same biological entity into one (e.g., “CHEBIL:2367” and
“CHEMBL455626” are 2 distinct identifiers separately presented in
the ChEBI database [44] and ChEMBL database [12] but represent
the same compound “abyssinone I"). Thus, we utilize the canoni-
calized version of the Reasoning Tool X Knowledge Graph 2 (RTX-
KG2c) [23], one of the largest open-source BKGs that integrates
knowledge from extensive human-curated and publication-based
databases and has been widely used in the Biomedical Data
Translator Project [45, 46]. Compared to other commonly used
open-source BKGs mentioned above, RTX-KG2c is a biolink model-
based standardized [47] and regularly updated BKG that effi-
ciently merges biologically and semantically equivalent nodes
and edges via multiple curation steps. The version 2.7.3 of RTX-
KG2c that we use contains around 6.4 million nodes and 39.3 mil-
lion edges with knowledge from 70 public biomedical sources,
where all biological concepts (e.g., “ibuprofen”) are represented
as vertices and all concepts-predicates—concept (e.g., “ibuprofen-—
increases activity of~-GP1BA gene”) are presented as edges. For
drug repurposing purposes, we customized RTX-KG2¢ with 4 prin-
ciples (see more details in Supplementary Section S1): (i) exclud-
ing the nodes whose categories are irrelevant to drug repurpos-
ing explanation (e.g., “GeographicLocation” and “Device”), (ii) fil-
tering out the low-quality edges based on our criteria, (iii) re-
moving the hierarchically redundant edges, and (iv) excluding
all drug-disease edges. After these processing steps, 3,659,165
nodes with 33 distinct categories (Fig. 1A) and 18,291,237 edges
with 74 distinct types (Fig. 1B) are left in our customized biomed-
ical knowledge graph, which is used for downstream model
training.
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Figure 1: Number of nodes by category (A) and number of edges by predicate (B) in the customized BKG.

Data sources for model training

To train the KGML-xDTD framework for drug repurposing predic-
tion and its MOA explanation, we utilize 4 high-quality and NLP-
derived training datasets:

® MyChem Data [48] is provided by the BioThings API collection
[49], which contains up-to-date annotations regarding indi-
cation and contraindication for chemicals collected from 11
reliable data resources (summarized in Supplementary Sec-
tion S2). We use drug-disease pairs with the relation “indica-
tion” as true positives while those with “contraindication” as
true negatives.

® SemMedDB Data [50] is provided by the Semantic MEDLINE
Database (SemMedDB), which leverages NLP techniques to
extract semantic triples with “treats” and “negatively treats”
relations from PubMed abstracts. We use drug-disease pairs
with the relation “treats” as true positives and those with
“negatively treats” as true negatives.

® NDF-RT Data [51] is provided by National Drug File-Reference
Terminology from the Veterans Health Administration (VHA),
which contains FDA-approved information on drug interac-
tion, indications, and contraindications. We use drug-disease
with therapeutics label “indications” as true positives and
those with “contraindications” as true negatives.

® RepoDB Data [52] is a standard set of successful and failed
drug-disease pairs in clinical trials collected by the Blavat-
nik Institute at Harvard Medical School. We use drug-disease
with the status “approved” as true positives and those with
“terminated” as true negatives.

We further filter drug-disease pairs from SemMedDB Data due
to publication bias and possible NLP mistakes by using both the
co-occurrence frequency and the PubMed publication-based nor-
malized Google distance (NGD) [53] defined below:

max{logN(c1), logN'(c2)} — logN/(c1, c2) ()
logN — min{logN (c1), logN (c2)}

where c1 and c2 are 2 biological concepts used in the customized

BKG, NM(c1) and N (c2) respectively represent the total number of

NGD(c1,c2) =

Table 1: Pair count of true-positive (indications) and true-negative
(contraindications or no effect) data from 4 data sources after data
preprocessing

Source True positive (treats) True negative (not treat)
MyChem 3,663 26,795
SemMedDB 8,255 11

NDE-RT 3,421 5,119

RepoDB 2,127 738

Shared 3,971 526

Total 21,437 33,189

Note that “shared” means those pairs are from 2 or more data sources.

unique PubMed IDs associated with c1 and c2, N(c1, c2) is the total
number of unique PubMed IDs shared between c1 and c2, and N
is the total number of pairs of Medical Subject Heading (MeSH)
terms annotations in PubMed database. Only the SemMedDB
drug-disease pairs with at least 10 supporting publications and
an NGD score of 0.6 or lower are left for the downstream model
training.

These datasets are pooled together and then processed by (i)
mapping the raw identifiers of drugs and diseases to the identi-
fiers used in the customized BKG and (ii) removing duplicate drug-
disease pairs in both the true-positive set and the true-negative
set. Table 1 shows the drug—disease pair count from each data
source after data preprocessing.

DrugMechDB

DrugMechDB [42, 43], to our best knowledge, is the first human-
curated path-based database for explaining the MOA from a drug
to a disease in an indication, with 3,593 MOA paths for 3,327
unique drug-disease pairs. These paths are extracted from free-
text descriptions from DrugBank, Wikipedia, and other literature
sources and then have been curated by subject matter experts and
also follow the schema of the Biolink model. Hence, we can match
them to nodes used in the RTX-KG2 BKG via the Node Synonymizer
function [23]. Since the maximum length of predicted MOA paths



4 | GigaScience, 2023, Vol. 12, No. 1

generated by the KGML-xDTD framework is fixed to 3 in this study
due to memory and training time constraints, we consider those
3-hop BKG-based paths as “correct”if all 4 of their nodes show up
in the complete DrugMechDB-based MOA paths. Thus, we find 472
unique drug-disease pairs of which each has at least 1 such “cor-
rect” matched path in all possible 3-hop paths between drug and
disease in the customized BKG. The large reduction in evaluation
paths is likely due to incompleteness of the underlying knowledge
graphs, imperfect bioentity matching, and possibility of discon-
nected drug and disease pairs in the customized BKG. However,
these paths are used for additional, external validation data only.
We use the matched paths as true-positive biologically meaning-
ful paths for the evaluation of the model-predicted paths in the
task of MOA prediction (introduced below).

Model framework

The model framework of KGML-xDTD consists of 2 modules: a
drug repurposing prediction (DRP) module that combines the ad-
vantages of GraphSAGE [40] and a random forest model, and an
MOA prediction module that utilizes an adversarial actor—critic RL
model. We show the overview of the entire model framework in
Fig. 2. The implementation details of each module in KGML-xDTD
framework are presented in Supplementary Section S3.

Notations

Let G = {V, &)} be a directed biomedical knowledge graph, where
each node v eV represents a biological entity (e.g., a specific
drug, disease, gene, or pathway), and each edge e € £ represents a
biomedical relationship (e.g., interacts-with; see more in Fig. 1B). We
use VU8 to represent all the drug nodes (the nodes with the cate-
gories of “Drug” and “Small Molecule” in the customized BKG) and
ydisease o represent all the disease nodes (the nodes with the cate-
gories of “Disease,” “PhenotypicFeature,” “BehavioralFeature,” and
“DiseaseOrPhenotypicFeature” in the customized BKG). For each
notation, we use bold formatting to represent its embedding (e.g.,
v represents the embedding of v ).

» o«

DRP module

Drug repurposing aims to identify new indications of existing
drugs/compounds. We solve it as a link prediction problem on
the graph G. Specifically, given any drug-disease pair (v;, v;) where
Ui € V&8 and v; e v¥sease we predict the probability that drug i
can be used to treat disease j. We first use GraphSAGE to calcu-
late the embedding for each node. Ideally, the node embeddings
should contain 2 kinds of information: node attributes and node
neighborhoods.

To capture the neighborhood information, we optimize Graph-
SAGE to encourage neighbor nodes to have similar embeddings
and nonneighbor nodes to have distinct embeddings. Specifically,
we perform random walks for each node to collect its neighbor-
hood information and train the model to maximize a node’s sim-
ilarity with its neighbor nodes. For a node u, the loss is calculated
as

Lg(zy) = —log(o (ZIZU)) —k-Ey,~p,) loglo (ZIZUH)) 2)

where z,, z, are respectively the embeddings of nodes u, v, o is the
sigmoid function; v is a node that co-occurs with u in fixed-length
random walks; P, represents negative sampling distribution; and
kindicates the number of negative samples (nodes notin u’s fixed-
length neighborhood).

To capture the node attributes information, we utilize the Pub-
MedBERT model [54], a pretrained language model designed for

biomedical texts, to generate a node attribute embedding for each
node based on the concatenation of the node’s name and cat-
egory. We further compress the embeddings to 100 dimensions
with principal components analysis (PCA) to reduce memory us-
age and use them as the initial node feature for GraphSAGE. In
this way, the final GraphSAGE embedding of each node should
contain the information regarding both graph topology and node
attributes. We concatenate the GraphSAGE embeddings of drug-
disease pairs and use them as input of a random forest model to
classify each drug-disease pair into one of the “not treat,” “treat,”
and “unknown” classes. We obtain “treat” and “not treat” drug-
disease pairs from 4 data sources (described in “Data sources for
model training” section). We generate “unknown” drug-disease
pairs through negative sampling [55], that is, replacing the drug
or disease identifier in each “treat” drug-disease pair with a ran-
dom drug or disease identifier to generate a new pair that does
not appear in both the “treat” and “not treat” classes. Specifically,
for each unique “treat” drug-disease pair, we respectively replace
its drug identifier with 1 random drugidentifier as well as replace
its disease identifier with 1 random disease identifier to make the
“unknown” drug-disease pairs.

MOA prediction module

When potential indications of a given drug are identified by the
drug repurposing prediction module, a natural yet essential ques-
tion is: can we biologically explain the predictions? We solve this
by employing an RL model to predict the BKG-based MOA paths,
which are the paths on the knowledge graph from drug nodes to
disease nodes. These BKG-based MOA paths can semantically de-
scribe an abstract biological process of how a drug treats a disease.

Demonstration paths

To encourage the RL agent to terminate the path searching at
the expected diseases through a biologically reasonable path,
we leverage so-called "demonstration paths”, a set of biologically
likely paths (e.g., drugl-genel-protein3-diseasel) that explains
the underlying reasons for why a drug can treat a disease. We
extract 396,705 demonstration paths from the customized BKG
using the known drug-target interactions collected from 2 cu-
rated biomedical data sources: DrugBank (v5.1) and Molecular
Data Provider (v1.2) (see “Data Availability” section), as well as the
PubMed publication-based NGD (see Equation 1). We show more
details regarding demonstration path extraction in Supplemen-
tary Section S4.

Adversarial actor-critic reinforcement learning

We formulate the MOA prediction as a path-finding problem and
adapt the adversarial actor—critic reinforcement learning model
[41] to solve it. Reinforcement learning is defined as a Markov de-
cision process (MDP) that contains:

States: Each state s; at time t is defined as st = (Vgnyg, Ut, (Ut -1,
er), .., (Vt—x, e - x— 1)), where g4 € Vdrg is g given starting drug
node; v € V represents the node where the agent locates at time
t; and the tuple (vt _, e — 1)) Tepresents the previous Kth node
and (K — 1)th predicate. For the initial state so, the previous nodes
and predicates are substituted by a special dummy node and
predicate. We concatenate the embedding of all nodes and predi-
cates of s; to get the state embedding s;, where the node embed-
dings are node attribute embeddings generated with the PubMed-
BERT model (see “DRP module” section) and the predicate embed-
dings employ one-hot vectors.

Actions: The action space A; of each node v; includes a self-
loop action agyr and the actions to reach its outgoing neigh-
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bors in the graph G. Due to memory limitation and extremely
large out-degree of certain nodes in the knowledge graph, we
prune the neighbor actions based on the PageRank scores if a
node has more than 3,000 neighbors. Specifically, we let A; =
(Aseifs A1, -, Ag, - -, n, ), Where ny, is out-degree of node vy € V. For
each action a: = (er, U+ 1) € A; taken at time t, we concatenate its
node and predicate embeddings to obtain action embedding a;.
We learn 2 embedding matrices EN»*4 and ENo*d, respectively, for
nodes and predicates (note that each subnetwork uses separate
embedding matrices), where d represents the embedding dimen-
sion, Ny, represents the number of nodes in the graph, and Ny, rep-
resents the number of predicate categories in the graph.

Rewards: During the path-searching process, the agent only re-
ceives a terminal reward R, r from the environment (i.e., there is
no intermediate reward from environment: R, ; = 0, Vt < T). Let ur
be the last node of the path, and Ay, be the known diseases that
drug vgng can treat. The terminal reward R, r from environment
is calculated with the drug repurposing model via

1L ifur € Nong:
R, = { Preat: if ur ¢ Ning: Ur € V352 and f(vgpg. vr) is predicted as “treat”.
eT =1 o, if r ¢ Ning: Ut € V955€3%¢ and f (g, vr) is not predicted as “treat”.

1 if ur ¢ Vdisease

where pueqr 1s the “treat” class probability predicted by the drug
repurposing model f.

The adversarial actor—critic RL model consists of 4 subnetworks
that share the same model architecture MLP! (note that i repre-
sents the id of each subnetwork described later, such as a for actor
network, ¢ for critic network, etc.) but with different parameters:

MLP!{(X) = BA(BA(XW. + b} )W} + by)W] + b} 3)

where (Wi, Wi, Wi, bl, b}, b.} are the parameters and biases of lin-
ear transformations, and BA represents a batch normalization
layer followed by an ELU activation function.

Actor network: The actor network learns a path-finding policy
7o (note that 6 represents all parameters of the actor network) to
guide the agent to choose an action a; from the action space A;
based on the current state s;:

7o (At |St, At) = softmax(A; © MLP%(s;)) (4)

where A; is the embedding matrix of the action space A¢; © repre-
sents the dot product. Here, g (a:|s:, A:) represents the probability

of choosing action a: at time t from the action space A; given the
state s.

Critic network: The critic network [56] estimates the expected
reward Qg (s, ar) (note that ¢ represents all parameters of the critic
network) if the agent takes the action a; at the state s; by

Qy(st, ar) = MLP(s;) © a; ()

Path discriminator network: Since the RL agent only receives a
terminal reward R, r from the environment indicating whether it
reaches an expected target, to encourage the agent to find biolog-
ically reasonable paths and provide intermediate rewards, we fur-
ther guide it with demonstration paths. This network is essentially
a binary classifier that distinguishes whether a path segment (s,
at) is from demonstration paths or generated by the actor network.
We treat all the known demonstration path segments (sP, aP) as
positive samples and all actor-generated non-demonstration path
segments (s, aP) as negative samples. The path discriminator
network Dy (s, a) = sigmoid (MLP? (s & a)), where s and a are respec-
tively the embeddings of the state s and the action a; @ represents
the concatenation operator and is optimized with

Lp = —E(s.a)~p, [10g(Dyp (5. a))] = Es,0)~p, [log(1 — Dyp(s. a))]  (6)

where Pp and P, respectively represent the demonstration path
segment distribution and the actor-generated non-demonstration
path segment distribution. Based on the probability Dy(s;, a), the
path discriminator-based intermediate reward Ry, ; is calculated
as

Ryt =1log(Dy(st, ar)) —log(1l — Dp(st. ar)). 7)

Meta-path discriminator network: Similar to the path dis-
criminator, this network aims to judge whether the meta-path
of the actor-generated paths is similar to that of demonstra-
tion paths. The meta-path is the path of node categories (e.g.,
[“Drug’— “Gene"— “BiologicalProcess”— “Disease”]). Similarly, the
meta-path discriminator Dy, (M) = sigmoid(MLP™(M)), where M is
the embedding of the meta-path M defined as the concatenation
of learned category embeddings of all nodes that appear in the
path, is also a binary classifier where the meta-paths of demon-
stration paths are treated as positive samples while others are
negative samples. We optimize it with the following loss:

Lin = —Eypy[log(Dm (M))] — Eyrpy [10g(1 — Din (M))] ®)
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where PM and P respectively represent the demonstration meta-
path distribution and the actor-generated non-demonstration
meta-path distribution. The intermediate reward R,, : generated
by the meta-path discriminator is calculated by

Rt = log(Dm(M)) — log(1 — D (M)). ©)

The integrated intermediate reward R; at time t is then calcu-
lated as

Ri = apRyt + omRine + (1 —ap — am)yT_thvT (10)

where o, € [0, 1] and ay, € [0, 1 — «p] are hyperparameters, y is
the decay coefficient, and Re, r is defined in the “Rewards” sec-
tion above.

To optimize the critic network, we minimize the temporal dif-
ference (TD) error [57] with loss:

Le = TD? = [(Re + Qs (St41, Q1)) — Qp (5t ar)]. (11)

Since the goal of the actor network is to achieve the largest ex-
pected reward by learning an optimal actor policy, we optimize the
actor network by maximizingJ(6) = Egx, [Qg(St, a)]. We use the RE-
INFORCE algorithm [58] to optimize the parameters. To encourage
more diverse exploration in finding paths, we use the entropy of
e as a regularization term and optimize the actor network with
the following stochastic gradient of the loss function Lg:

Vola = —VoJ(0) = —E, [VoTD log 7y (a:st)] — a Veentropy(my) (12)

where m, is the action probability distribution based on the actor
policy, and « is the entropy weight.

We follow Zhao et al. [41] to train the adversarial actor—critic
RL model in a multistage way. First, we initialized the actor net-
work using the behavior cloning method [59] in which the train-
ing set of demonstration paths is used to guide the sampling of
the agent with mean square error (MSE) loss. Then, in the first z
epochs, we freeze the parameters of the actor network and the
critic network and respectively train the path discriminator net-
work and meta-path discriminator network by minimizing L, and
L. After z epochs, we unfreeze the actor network and the critic
network and optimize them together by minimizing a joint loss
Ljaim =Lg + L.

Results

Evaluation settings

Data split

The post-processed drug-disease pairs (described in “Data sources
for model training” section) are split into training, validation,
and test sets where the drug-disease pairs of each unique drug
are randomly split according to a ratio of 8/1/1. For exam-
ple, let's say drugA has 10 known diseases that it treats (e.g.,
drugA-diseasel, ..., drugA-diseasel0), 8 pairs are randomly split
into the training set, 1 pair is to the validation set, and 1 pair
to the test set. With this data split method, the model can
be exposed to every drug in the training set, which complies
with our goal of predicting new indications of known drugs
and their potential MOAs based on the MOA of known target
diseases.

Evaluation metrics

The proposed framework KGML-xDTD is evaluated on 2 types
of tasks: predicting drug-disease “treat” probability (i.e., drug re-

purposing prediction) as well as identifying biologically reason-
able MOA paths from all BKG-based path candidates (i.e., MOA
prediction). These 2 tasks are evaluated based on classifica-
tion accuracy-based metrics (e.g., accuracy, macro F1 score) and
ranking-based metrics (e.g., mean percentile rank, mean recipro-
cal rank, and proportion of ranks smaller than K) defined as fol-
lows:

Accuracy (ACC) is the fraction of the model classification is cor-
rect, computed as

Number of correct classifications
ACC = : : - (13)
Total number of drug-disease pair classifications

Macro F1 score (Macro-F1) is the unweighted mean of all the
per-class F1 scores:

ision® 1e 1
P10 =2y R X P hacro-F1 = = SOF1C (14)
precision® + recall IC|

ceC

» o«

where C presents classification classes (e.g., “treat,” “not treat,”
and “unknown”).

Mean percentile rank (MPR) is the average percentile rank of
the 3-hop DrugMechDB-matched BKG-based path (described in

“DrugMechDB” section) of true-positive drug-disease pairs:

1
MPR = — 15
PR p%;R pr (15)
where PR is a list of percentile ranks of DrugMechDB-matched
BKG-based paths of true-positive drug-disease pairs (“treat” cate-
gory).
Mean reciprocal rank (MRR) is the average inverse rank of
true-positive drug-disease pairs (“treat” category) or their 3-hop
DrugMechDB-matched BKG-based paths:

1 1
MRR = 72 %} . (16)
where R is a list of ranks of true-positive drug-disease pairs (for
DRP task) or DrugMechDB-matched BKG-based paths (for MOA
prediction task).
Hit@K is the proportion of ranks not larger than K for
true-positive drug-disease pairs (“treat” category) or their 3-hop
DrugMechDB-matched BKG-based paths:

. 1
Hit@K = — [r <K| 17
=P 17)
where R is a list of ranks of true-positive drug-disease pairs (for
DRP task) or DrugMechDB-matched BKG-based paths (for MOA
prediction task).

Drug repurposing prediction evaluation method

We utilize the metrics ACC and Macro-F1 to measure the accu-
racy of drug repurposing prediction of our KGML-xDTD framework
while using ranking-based metrics MRR and Hit@K to show its
capability in reducing false positives (i.e., the false drug-disease
pairs ranking higher among possible drug-disease candidates).
We use the following 3 methods to generate non-true-positive
drug-disease candidates for each true-positive drug-disease pair
to calculate the ranks that are employed in the MRR and Hit@K
calculation:

® Drug rank-based replacement: For each true positive drug-
disease pair, the drug rank-based replacement pairs are gen-
erated by replacing the drug entity with each of all 274,676



other drugs in the customized BKG while excluding all known
true-positive drug-disease pairs.

* Disease rank-based replacement: For each true-positive
drug-disease pair, the disease rank-based replacement pairs
are generated by replacing the disease entity with each of all
124,638 other diseases in the BKG while excluding all known
true-positive drug—disease pairs.

® Combined replacement: For each true-positive drug-disease
pair, the combined replacement pairs are the combination of
all replacement pairs of the above 2 methods. All known true-
positive drug-disease pairs are excluded from these replace-
ment pairs.

Due to the massive size of possible drug-disease candidates,
some baseline models (e.g., GAT and GraphSAGE+SVM) are not
applicable in this setting within a reasonable time (e.g., a week).
Thus, we also employ a small subset of drug-disease replace-
ments to calculate the MRR and Hit@K, allowing for compari-
son between KGML-xDTD with all baselines. Specifically, we uti-
lize 1,000 random drug-disease pairs from the combined replace-
ment set above: 500 with drug ID replacement and 500 with dis-
ease ID replacement. To enhance the robustness of results ob-
tained through this random replacement method, we use this
method to generate 10 sets of random drug-disease pairs (each
with 1,000 pairs) independently and calculate the mean and stan-
dard deviation of the ranking-based metrics outcomes. In ad-
dition, since the drug repurposing prediction module of KGML-
xDTD framework does 3-class classification while other baselines
do 2-class classification, for a fair comparison, we recalculate
ACC and Macro-F1 for KGML-xDTD by excluding the “unknown”
class.

MOA prediction evaluation method

For the evaluation of MOA prediction, we use the DrugMechDB [42]
to obtain the expert-verified MOA paths as ground-truth data, and
match each biological concept in these verified MOA paths to the
biological entities used in the customized BKG, and then gener-
ate the BKG-based matched paths of DrugMechDB drug-disease
pairs (described in “DrugMechDB” section), which are considered
biologically meaningful MOA paths. We first calculate the path
scores for all 3-hop KG paths between drug and disease with the
path-finding policy learned from adversarial actor—critic RL model
using the following equation:

k
path score = ) "6"" x log(P, x N) (18)

i=1

where k is the number of hops in this path, § is a decay coeffi-
cient (we set it to 0.9 in this study), P; represents the probability of
choosing action g; in the i hop following this path based on the
trained RL model, and N; is the number of possible actions in the
it" hop.

With the path scores, we obtain the ranks of the DrugMechDB-
matched BKG-based paths and calculate their ranking-based met-
rics (e.g., MPR, MRR, and Hit@K). For those drug-disease pairs with
multiple matched paths, we use the highest ranks of the matched
paths as their ranks in the metrics calculation. We compare KGML -
xDTD with the baseline models based on these metrics to show the
capability of the MOA prediction module of KGML-xDTD in identi-
fying biologically reasonable MOA paths from a massive and com-
plex BKG with a comparably low false positive. In addition, we fur-
ther perform 2 case studies to evaluate the effectiveness of KGML-
xDTD in identifying the biologically reasonable MOA paths.
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Drug repurposing prediction evaluation

For drug repurposing prediction evaluation, we compare the
KGML-xDTD model framework against several state-of-the-
art (SOTA) KG-based models and variants of KGML-xDTD
for drug repurposing prediction based on the method de-
scribed in “Drug repurposing prediction evaluation method”
section.

We use 8 different SOTA KG-based models as baseline mod-
els that are commonly used for BKG-based drug repurposing
[19,60]. TransE [25], TransR [61], and RotatE [26] are the transla-
tion distance-based models that regard a relation (e.g., “treats”)
as a “translation”/’rotation” (e.g., a kind of spatial transforma-
tion) from a head entity (e.g.,, a drug node) to a tail entity (e.g.,
a disease node). DistMult [27] is a bilinear model that mea-
sures the latent semantic similarity of a knowledge graph triple
(head entity, relation/predicate, tail entity) with a trilinear dot
product. ComplEx [28] and ANALOGY [62] are the extensions of
DistMult that consider more complex relations (e.g., asymmet-
ric relations). SimpLE [63] is a tensor factorization-based model
to learn the semantic relation of a knowledge graph triple. GAT
[64] is a popular graph neural model that leverages the impor-
tant graph topology structure based on self-attention mecha-
nism for graph-associated tasks (e.g., link prediction). Implemen-
tation details of these baselines are presented in Supplementary
Section S5.

Besides these SOTA baseline models, we also compare the drug
repurposing prediction module in KGML-xDTD with its several vari-
ants to show the effectiveness of model components. For exam-
ple, to show efficacy of the combination of GraphSage and ran-
dom forest (RF), we use a pure GraphSAGE model for link predic-
tion (GraphSAGE-1ink), the combination of GraphSage and logis-
tic model (GraphSAGE-logistic), and the combination of Graph-
Sage and support vector machine (SVM) model (GraphSAGE-
svM). To demonstrate the effectiveness of node attribute embed-
dings (described in “DRP module” section) in improving repur-
posing prediction, we conduct an ablation experiment that re-
places node attribute embeddings (NAEs) with random embed-
dings (initialized with the Xavier method [65]) as GraphSage ini-
tialized embeddings (KGML-xDTD w/o NAE); to support rationality
of setting “unknown” class through negative sampling (described
in “DRP module” section), we modify the drug repurposing pre-
diction module for 2-class classification (i.e., true positive and
true negative) (2-class KGML-xDTD) as a baseline comparison
model.

Table 2 shows the performance of the KGML-xDTD model and
all other baseline models in the task of drug repurposing predic-
tion based on test set (described in “Data split” section). For the
calculation of the MRR and Hit@K used in this table, we utilize
the random subset replacement method described in the “Drug
repurposing prediction evaluation method” section. As shown in
the table, on the one hand, the KGML-xDTD outperforms most
of the baseline models and achieves comparable performance
as GAT in classification-based metrics (e.g., accuracy, macro F1
score), indicating its effectiveness in classifying known “treat” and
“‘not treat” drug-disease pairs with both attribute and neighbor-
hood information on the knowledge graph. On the other hand,
KGML-xDTD'’s exceptional performance in ranking-based metrics
shows its superiority over baselines in identifying new indications
of existing drugs out of a large number of possible drug-disease
pairs with relatively low false positives, which is of great impor-
tance for guiding clinical research. Fig. 3 displays the compari-
son results where we calculate the MRR and Hit@K with 3 dif-
ferent “complete” replacement methods (described in “Drug re-
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Table 2: The performance comparison of drug repurposing prediction (DRP) between KGML-xDTD and different baseline models based on
test set (described in “Data split” section). The top panel shows the performance of state-of-the-art (SOTA) baseline models; the middle
panel shows the performance of variants of the KGML-xDTD model framework; the bottom panel shows the performance of KGML-xDTD

model framework

Model Accuracy Macro F1 score MRR Hit@1 Hit@3 Hit@5

TransE 0.708 0.708 0.301 (+0.005) 0.134 (+£0.007) 0.327 (£0.009) 0.482 (+0.007)
TransR 0.858 0.855 0.329 (40.006) 0.150 (0.009) 0.378 (+0.008) 0.542 (40.005)
RotatE 0.704 0.704 0.281 (+0.007) 0.098 (+£0.008) 0.314 (+£0.007) 0.497 (£0.009)
DistMult 0.555 0.495 0.182 (40.004) 0.042 (+0.002) 0.157 (+0.010) 0.292 (40.010)
ComplEx 0.624 0.460 0.138 (+£0.004) 0.026 (£0.004) 0.106 (+£0.007) 0.205 (+0.008)
ANALOGY 0.594 0.465 0.188 (:0.004) 0.044 (+£0.004) 0.165 (0.009) 0.301 (40.008)
SimplE 0.599 0.472 0.167 (+0.006) 0.036 (+0.006) 0.140 (+0.008) 0.259 (+£0.011)
GAT 0.936 0.934 0.002 (40.000) 0.000 (0.000) 0.000 (0.000) 0.000 (£0.000)
GraphSAGE-link 0.919 0.915 0.002 (+0.000) 0.000 (+0.000) 0.000 (+0.000) 0.000 (£0.000)
GraphSAGE+logistic 0.791 0.784 0.002 (4:0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (40.000)
GraphSAGE+SVM 0.807 0.793 0.002 (£0.000) 0.000 (+0.000) 0.000 (+0.000) 0.000 (£0.000)
KGML-xDTD w/o NAEs  0.909 (0.898%) 0.891 (0.892%) 0.159 (40.003) 0.035 (+0.002) 0.143 (0.006) 0.262 (40.008)
2-class KGML-xDTD 0.929 0.925 0.278 (+0.003) 0.183 (+0.006) 0.321 (+0.003) 0.389 (0.006)

KGML-xDTD (ours)

0.935 (0.930%)

0.923 (0.926")

0.382 (+0.004)

0.238 (+0.007)

0.425 (+0.006)

0.543 (+0.006)

The values with * inside the parentheses are the adjusted results by excluding the “unknown” category for a fair comparison.
The ranking metrics (e.g., “MRR” and “Hit@K") are calculated as the mean along with standard deviation based on 10 independent sets of non-true-positive drug-
disease candidates generated by the random drug-disease replacement method (i.e., for each true-positive drug-disease pair in test set, we use 1,000 random
drug-disease pairs as non-true-positive drug-disease candidates to calculate the rank). See more details in “Drug repurposing prediction evaluation method”

section.

The abbreviation “w/o NAEs” in the name of model “KGML-xDTD w/o NAEs” represents without using node attribute embeddings.

0.10

o 0.08

4

= .06
0.04
0.02

0.00

«‘avsiﬂaﬁs @‘@x ‘\w

< < o @ 5O 5©
< »«b“" \\o‘-“ \\““ \(\Q\ OG{ “\Q‘,,G"‘\\ o \°$“ ey 19 o
(0 O

B drug rank

<
«\" (,e““\t g‘*“

'o\‘
o (_e ‘,\\ +° Tc\a

>3 J J
\\\ﬁv@ o)
RS

mmm disease rank

Hit@1

s combined rank

0.08

0.00

o<

£
<« o ?\o‘”“ 9‘3’\\) & ‘\;,.»06( \<<‘° i

G‘aQ“Q‘\r,P
[SSavo

oQ‘
©
s

7*1'(‘

@ 5O 5O
‘\F O 9O
@ W "\\j

s“c

\39

0.02

0.00

SJRC N RN > o
«A“" <@ ‘,_ox’ﬁ O ‘\\Q\ ‘\P‘OG( «® Pg,(,,\\
c,(@“‘\ “‘)"‘6 0"

<
o \o‘»
o

g 0« 5©
\1\\— \,\»“‘

Figure 3: The performance comparison of DRP between KGML-xDTD and different baseline models (GAT and GraphSAGE+SVM are excluded due to
computation time constraints) based on test set using 3 “complete” replacement methods (i.e., “drug rank-based replacement,” “disease rank-based
replacement,” and “combined replacement” described in “Drug repurposing prediction evaluation method” section) to generate non-true-positive
drug-disease candidates for each true-positive drug-disease pair for MRR and Hit@K calculation. “Drug rank”, “disease rank,” and “combined rank”
respectively correspond to the methods of “drug rank-based replacement,” “disease rank-based replacement,” and “combined replacement.”

purposing prediction evaluation method” section). Although GAT
and GraphSAGE+SVM are excluded in this comparison due to com-
putation time constraints, we can see that the results presented
in both Table 2 and Fig. 3 are consistent to demonstrate KGML-
xDTD’s ability in reducing false positives. Therefore, excluding

the GAT and GraphSAGE+SVM from the comparison with “com-
plete” replacement methods does not affect the conclusion. Be-
sides, by comparing 2-class KGML-xDTD with the vanilla Graph-
SAGE model (e.g., GraphSAGE-1ink), we demonstrate the effec-
tiveness of the random forest model over a neural network clas-
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Table 3: The performance comparison of MOA prediction between KGML-xDTD and different baseline models (e.g., MultiHop and KGML-
xDTD w/o DP) based on the test set (described in “Data split” section). The metrics in this table are calculated using path scores and
all non-DrugMechDB-matched 3-hop paths between drug and disease as “negative” paths for each true-positive drug-disease pair (see

more details in “MOA prediction evaluation method” section)

Model MPR MRR Hit@1 Hit@10 Hit@50 Hit@100 Hit@500
MultiHop 61.400% 0.027 0.017 0.042 0.067 0.118 0.345
KGML-xDTD w/o DP 72.965% 0.015 0.008 0.017 0.067 0.160 0.403
KGML-xDTD (ours) 94.696% 0.109 0.059 0.193 0.496 0.613 0.849

The abbreviation “w/o DP” in the name of model “KKGML-xDTD w/o DP” represents “without using demonstration paths.”

sifier in this task. The comparison between KGML-xDTD w/o NAE
and KGML-xDTD shows that the KGML-xDTD benefits from the use
of node attribute embeddings for drug repurposing prediction
while the comparison with 2-class KGML-xDTD indicates the ef-
fectiveness of using negative sampling to generate “unknown”
drug-disease pairs for model training. With the “unknown” drug-
disease pairs, the KGML-xDTD model achieves significant improve-
ment in ranking-based metrics, which is essential when apply-
ing to real-world drug repurposing because it can reduce the false
positives.

MOA prediction evaluation

For MOA prediction, we evaluate how well the KGML-xDTD can
identify the DrugMechDB-matched BKG-based MOA paths (de-
scribed in “MOA prediction evaluation method” section) from a
large number of possible paths in the customized BKG by utilizing
ranking-based metrics (e.g., MPR, MRR, and Hit@K) and 2 specific
case studies.

There are few machine learning models designed for the task of
identifying biologically meaningful paths from biomedical knowl-
edge graphs for explaining drug repurposing. Although the UKGE
[30], GrEDeL [32], and Polo [38] models (all mentioned in “Introduc-
tion”) were proposed and can be used for this goal, they all have
certain constraints and cannot be used as baseline models for
comparison. The UKGE model cannot be applied to BKGs without
weighted edge information (e.g., frequency of relation appeared
in literature). The authors of the GrEDeL model do not provide the
code to implement this model. The Polo model cannot be trained
within a reasonable time (e.g., within 2 weeks) on a massive and
complex BKG (e.g., RTX-KG2) due to its dependence on a compu-
tationally inefficient method “DWPC” [39]. Therefore, we choose
the MultiHop reinforcement learning model [66] as a baseline
model since it uses a similar LSTM model framework as the GrE-
Del model and allows using a self-defined reward-shaping strat-
egy in its reward function as what we do in the KGML-xDTD model
(i.e., we can use the same reward strategy described in “Adversar-
ial actor—critic reinforcement learning” section). Furthermore, we
also compare with an ablated version of KGML-xDTD (i.e., KGML-
xDTD w/o DP, which does not take advantage of the demonstra-
tion paths by setting ¢, and ay, in Function 9 as 0) as another base-
line model to show the importance of proposed demonstration
paths.

We compare the MOA prediction performance between the
KGML-xDTD model framework and different baseline models in
Table 3. Although all the models use the same terminal reward
function from the environment (i.e., the drug repurposing pre-
diction module of KGML-xDTD), the MOA prediction module of
KGML-xDTD achieves significantly better performance in identify-
ing DrugMechDB-matched BKG-based MOA paths than the other 2
baselines across all ranking-based metrics. Comparison between

Table 4: Top 10 predicted drugs/treatments for hemophilia B (note
that the red bolded drugs are used in the training set)

Drug/Treatment Prob. Publications
Eptacog Alfa (rFVIIa) 0.833 [67, 68]
Nonacog Alfa (rFIX) 0.803 [69]
Viral vector 0.780 [70]
Factor VIla 0.748 [67,71]
Recombinant FVIIa (rFVIIa) 0.724 [67,71]
Thrombin 0.709 [72]
Factor IX 0.708 [73]
Epicriptine 0.702

Hyperbaric oxygen 0.660

Triamcinolone 0.649

the KGML-xDTD with and without demonstration paths (i.e., KGML-
xDTD w/o DP) further illustrates the great effectiveness of us-
ing proposed demonstration paths to guide the path-finding pro-
cess. Due to the massive searching space and sparse rewards,
the RL agent often fails to find biologically reasonable BKG-based
MOA paths out of many possible choices, while our model KGML-
xDTD, with the intermediate guidance provided by the demonstra-
tion path, is able to identify those biologically reasonable choices
with a much higher probability. Moreover, comparing KGML-xDTD
w/o DP and MultiHop reveals that the actor-critic model struc-
ture performs similarly to LSTM. However, incorporating the pro-
posed demonstration paths can significantly enhance the effec-
tiveness of the actor—critic model structure over LSTM for this
task.

To further evaluate the performance of KGML-xDTD model
framework in identifying biologically relevant MOA paths for drug
repurposing, we present 2 different case studies to explore the po-
tential repurposed drugs and their potential mechanism for 2 rare
genetic diseases: hemophilia B and Huntington'’s disease.

Case 1: Hemophilia B

Hemophilia B, also known as factor IX deficiency or Christmas dis-
ease, is a rare genetic disorder that results in prolonged bleed-
ing in patients. It is caused by mutations in the factor IX (F9)
gene, which is located on the X chromosome. Table 4 displays
the top 10 drugs/treatments predicted by the KGML-xDTD model
framework, including both those that are used in the training
set (red bolded) and those that are not. Besides those known
drugs/treatments used in the training set, the majority of the
remaining 7 drugs/treatments on the list are supported by pub-
lished research and have the potential to treat hemophilia B. For
example, the activated human-derived coagulation factor VII (i.e.,
factor VIIa) or the recombinant activated factor VII (i.e,, rFVIIa) is
one of the proteins that can cause blood clots as an important
part of the blood coagulation regulatory network (as shown in the
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Fig. 4). This protein is used as an effective inhibitor in the treat-
ment of patients with hemophilia B [67, 71]. Thrombin is a key en-
zyme in the maintenance of normal hemostatic function. It has
been reported that using thrombin as a therapeutic strategy can
help prevent bleeding in patients with hemophilia [72]. The use
of recombinant factor IX therapy is a recommended treatment
option for individuals with hemophilia B [73]. Some examples of
recombinant factor IX products include BeneFIX, Rixubis, Ixinity,
Alprolix Idelvion, and Rebinyn. These examples demonstrate the
potential capability of KGML-xDTD for drug repurposing in real-
world applications.

To further assess the biological explanations of the predicted 3-
hop BKG-based MOA paths for the treatment of hemophilia B, we
have used the curated DrugMechDB-based MOA paths, which are
not used in the model training process. DrugMechDB contains rel-
evant MOA paths of hemophilia B treatment only for Eptacog Alfa
and Nonacog Alfa. We use the KGML-xDTD model to predict the top
10 potential 3-hop BKG-based MOA paths for these 2 drugs and
compare them with the curated DugMechDB-based MOA paths
in Fig. 5 (for visualization purpose, we only display the top 5
predicted paths along with any available DrugMechDB-matched
BKG-based paths in the top 10 predicted paths). The correspond-
ing biological entities between the predicted paths and the cu-
rated DrugMechDB-based paths are highlighted in red. Although
the predicted paths cannot exactly match the DrugMechDB-based
MOA paths due to the limited path length and some missing
semantic relationships in the customized biomedical knowledge
graph, key biological entities (such as coagulation factor VII, co-
agulation factor X, and coagulation factor IX) that are important
for the treatment of hemophilia B are present in the predicted
paths. As shown in Fig. 4, the treatment of hemophilia B involves
a complex molecular network of blood coagulation, and many of
the coagulation factors (such as factor VII, factor III, factor II, fac-
tor VIII, factor IX, and factor X) present in the predicted paths
are also part of this molecular network. In Supplementary Sec-
tion S6, we also utilize the KGML-xDTD model framework to predict
the top 10 three-hop BKG-based paths, which can serve as biolog-
ical explanations of the predicted “treats” relationship between
factor VIIa and hemophilia B (shown in Table 4). This particular
drug/treatment-disease pair is not included in the training set
and thus can be used to indicate how KGML-xDTD's MOA path pre-

dictions can contribute to the explanation of the predicted drug
repurposing results. The predicted paths show molecular details
akin to those in Fig. 4 for treating hemophilia B. As a result, the
predicted paths by KGML-xDTD model framework can help identify
key molecules in the real drug action regulatory network, thereby
aiding in explaining drug repurposing to some extent.

Case 2: Huntington’s disease

Huntington's disease (HD) is a rare neurogenetic disorder that
typically occurs in midlife with symptoms of depression, un-
controlled movements, and cognitive decline. While there is cur-
rently no drug/treatment that can alter the course of HD, some
drugs/treatments can be useful for the treatment of its symp-
toms in abnormal movements (e.g., chorea) and psychiatric phe-
notypes. We show 10 drugs/treatments with the highest pre-
dicted probability by the KGML-xDTD model framework after man-
ual processing in Table 5. This processing involves excluding the
chemotherapeutic drugs from the predicted drug candidate list
due to their potential risk of cytotoxicity to normal cells (which
could lead to false positives for drug repurposing of noncancer
diseases [74, 75]), and only presenting the top 5 results in the train-
ing set and top 5 from the test or validation set. From this table,
it can be observed that many of the top-ranked predicted drugs
have been supported by publications as potential treatments for
the symptoms of HD. Since there is currently no effective treat-
ment for HD, DrugMechDB does not have a corresponding MOA
path for comparison. To analyze the predicted paths by the KGML-
xDTD model framework for the predicted nonchemotherapeutic
drugs/treatments that are not included in the training set (shown
in regular text in Table 5), we present their top 5 predicted paths
in Fig. 6. From these predicted paths, we can see that most of
them are biologically relevant. For example, Fig. 6A shows that
risperidone is predicted to be useful for the treatment of HD
by decreasing the activity of the genes associated with the 5-
hydroxytryptamine receptor (e.g., HTR1A, HTR2A, HTR2C, HTR7)
and dopamine receptor (e.g., DRD2), which have been proven to
be involved in the pathogenesis of depressive disorders [76, 77].
The presence of depressive symptoms is a significant characteris-
tic of HD [78]. Entinostat is predicted to have the potential to alle-
viate the symptoms of HD by inhibiting the functions of histone
deacetylase genes such as HDAC1 and HDAC6 (see Fig. 6B), and
one of the predicted 3-hop BKG-based MOA paths (“Entinostat” —
“decreases activity of” — “HDAC1 gene” — “interacts with” — “His-
tone H4” — “gene associated with condition” — “Huntington’s dis-
ease”) is supported by the previous research [79, 80]. Primaquine is
predicted to act on the IKBKG gene to potentially play a therapeu-
tic role in neurodegenerative disease (see Fig. 6C), reported in [81].
According to the predicted BKG-based MOA paths (see Fig. 6D), is-
radipine may have a potential therapeutic effect for HD by mainly
regulating the genes of the calcium voltage-gated channel, includ-
ing CACNA1C and CACNB2. These genes may be associated with
the symptoms of HD, such as depression and dementia [82]. Lastly,
amifampridine is predicted to regulate the genes of the potassium
voltage-gated channel (see Fig. 6E), which are potentially associ-
ated with HD [83]. All these examples indicate that the predicted
BKG-based MOA paths can explain the mechanism of repurposed
drugs to some extent.

The drug repurposing prediction of the KGML-xDTD model does
not leverage any information regarding drug similarity such as
drug classes, SMILES, drug side effects, and drug-related gene pro-
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Figure 5: Comparison between the top 5 predicted 3-hop paths (including any available DrugMechDB-matched BKG-based paths in the top 10 predicted
paths, highlighted in red) and the curated DrugMechDB-based MOA paths for Eptacog Alfa and Nonacog Alfa. Note that the RTX-KG2 paths and
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of predicted paths generated by KGML-xDTD respectively for Eptacog Alfa and Nonacog Alfa. (B, D) Human-curated DrugMechDB MOA paths.

Table 5: Top 5 predicted drugs/treatments used in the training set
(highlighted in red bold) and the top 5 nonchemotherapeutic pre-
dicted drugs/treatments that are not in the training set for Hunt-
ington’s disease

Drug/Treatment Prob. Publications
Pimozide 0.939 (84, 85]
Therapeutic agent 0.939

Olanzapine 0.938 (86, 87]
Riluzole 0.935 (38]
Antipsychotic agent 0.932 [89]
Risperidone 0.893 [78,90]
Entinostat 0.888 [79]
Primaquine 0.887

Isradipine 0.884 [91]
Amifampridine 0.882

files/sequences, and we find that the distribution of drug classes
in true-positive drug-disease pairs is similar between the training
and test sets (see Fig. 7). In this section, we examine whether our
model can only predict the drugs with the drug classes that it has
seen in the training set.

To do this, we use the MyChem.info APIs [48] to retrieve the
FDA’s “Established Pharmacologic Class” (EPC) information for
chemicals/drugs using their synonym identifiers. For the FDA-
unapproved chemical/drug without such EPC information, we

consider it as as a single class. We first utilize the KGML-xDTD
model to predict the top 100 chemicals/drugs for each of the 1,140
diseases in the test set (described in “Data split” section) after ex-
cluding the drug-disease pairs presented in the training set. Then
we count the number of drug classes among these 100 predicted
drugs that are not seen in the training set for each disease. Fig. 8
shows the distribution of unseen drug classes in the top 100 pre-
dicted nontrain drugs across the 1,140 diseases in the test set. We
can see that each disease has at least 70 different drug classes
among the top 100 predicted drugs, indicating that the predictive
power of the KGML-xDTD model is derived from the node attribute
information and knowledge graph topology structure rather than
any drug class information.

Discussion

In this work, we propose KGML-xDTD, a 2-module, knowledge
graph-based machine learning framework that not only predicts
the treatment probabilities between drugs/compounds and dis-
eases but also provides biological explanations for these predic-
tions through the predicted paths in a massive biomedical knowl-
edge graph with comprehensive biomedical data sources as po-
tential mechanisms of action. This framework can assist medical
researchers in quickly identifying the potential drug/compound-
disease pairs that might have a treatment relationship, which can
accelerate the process of drug discovery for emerging diseases.
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drugs/treatments that are not included in the training set for Huntington'’s disease.

Additionally, by leveraging the KG-based MOA paths predicted by
the framework, medical professionals (e.g., doctors and licensed
medical practitioners) can straightforwardly assess the accuracy
of the predictions, which can help to reduce false positives that
may be produced by the “black-box” operation of traditional ma-
chine learning models.

Although previous research [15, 19, 24| has applied a variety
of models to the task of drug repurposing using BKGs, these ap-
proaches are implemented in the small-scale BKGs, and many
do not scale to larger and more complex graphs as biotechnol-
ogy advances and the volume of data in biomedical databases in-
creases. In our comparison with state-of-the-art KG-based mod-
els for drug repurposing, we find that the KGML-xDTD model
had higher accuracy with lower false positives when applied
to a massive and complex biomedical knowledge graph RTX-
KG2c. By evaluating the predicted paths with DrugMechDB and
2 case studies, we show that the model can capture some

key biological entities involved in real drug action regulatory
networks.

It is widely acknowledged that drug repurposing is one of the
most challenging problems in biomedicine, and current artificial
intelligence (Al) techniques are still in the early stages of ad-
dressing it. Many other Al models, such as those based on chemi-
cal structure, drug-target interactions, and drug perturbations of
gene expression, are developed for solving this goal. They may of-
fer more accurate predictions but also have limitations in terms
of cost and the availability of samples for specific diseases. BKG-
based machine learning models, such as the XGML-xDTD model,
offer a cost- and time-efficient alternative due to the large volume
of biomedical knowledge stored in public databases and publica-
tions. The KGML-xDTD model framework is not intended to replace
or beat these models but rather provides a complementary ap-
proach that leverages emerging knowledge graphs for drug repur-
posing.
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Figure 8: Distribution of unseen drug classes in the top 100 predicted
nontrain drugs across the 1,140 diseases in the test set.

Future work to further enhance the KGML-xDTD model frame-
work might include extending the predicted paths for more spe-
cificexplanations and considering the negative drug-disease pairs
so that the model can explain why certain drugs are harmful to
diseases.

Availability of Source Code and
Requirements

Project name: KGML-xDTD

® Project homepage: https://github.com/chunyuma/KGML-x
DTD

® Operating system(s): Linux (Ubuntu)

® Resource usage in training step: A Linux (Ubuntu) system
with at least 8 CPU cores, 800 GB of VRAM, and a 48 GB GPU
card (48 GB Quadro RTX 8000 GPU card used in our training)

® Resource usage in inference step: A Linux (Ubuntu) system
with at least 8 CPU cores and 50 GB of VRAM. The GPU card
is not necessary, but if used, the GPU card needs at least 24

GB VRAM (48 GB Quadro RTX 8000 GPU card used in our in-
ference)

® Time requirement: Based on our hardware performance and
parameter settings (please see the scripts on GitHub), the
training step takes approximately 2 weeks while the inference
step takes approximately 25.42 seconds for 1 drug-disease
pair with 3,320 potential paths. These time estimates may
vary depending on the hardware performance, parameter set-
tings, and the number of potential paths of a given drug-
disease pair.

® Programminglanguage: Shell Script (Bash) with Python 3.8.12

® Other requirements: Python 3.8.12 with GPU/CPU support
(GraphSAGE training needs Python 2.7), neo4j-community
3.5.26, miniconda 4.8.2 (please see more requirements in the
yaml files under “envs” folder on Github repository)

® Licenses: MIT license, DrugBank academic license, Apache 2.0
license, UMLS Metathesaurus license, CC-BY 4.0 license

® Research Resource Identifier (#RRID): SCR_023678

Data Availability

The data sets supporting the results of this article are publicly
available in the Zenodo repository [92]. All supporting data and
materials are available in the GigaScience GigaDB database [93].
Molecular data provider: A knowledge-centric data provider for
systems chemical biology, as part of the NCATS Biomedical Data
Translator (“Translator”). See more in https://github.com/NCATS
Translator/Translator- All/wiki/Molecular-Data-Provider [94].

Additional Files

Supplementary Section S1. Biomedical Knowledge Graph RTX-
KG2c Preprocessing.

Supplementary Section S2. Summary of Data Resources Used by
MyChem Data.

Supplementary Section S3. Implementation Details of KGML-
xDTD Model Framework.

Supplementary Section S4. Implementation Details of Demon-
stration Path Extraction.

Supplementary Section S5. Implementation Details of Baseline
Models.
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Supplementary Section S6. Top 10 KGML-xDTD’s Predicted Paths
Serving as Biological Explanations for the Predicted “Treats” Rela-
tionship between Factor VIla and Hemophilia B.

Supplementary Table S1. Eleven data resources used by MyChem
data.

Supplementary Table S2. Hyperparameters used for baseline
models.

Supplementary Fig. S1. Top 10 predicted 3-hop paths (inte-
grated into a graph for better visualization) generated by the
KGML-xDTD model framework serve as biological explanations
of the predicted “treats” relationship between factor VIla and
hemophilia B. The path highlighted with red is the one in
which all nodes can align with the key molecules in the real
drug action regulatory network shown in Fig. 4 in the main
text.
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