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Abstract 

Bac kgr ound: Computational drug r e purposing is a cost- and time-efficient appr oac h that aims to identify new ther apeutic targets or 
diseases (indications) of existing drugs/compounds. It is especially critical for emerging and/or orphan diseases due to its cheaper 
investment and shorter resear c h cycle compared with traditional wet-lab drug disco very approaches. Ho wev er, the underl ying mech- 
anisms of action (MOAs) between r e purposed drugs and their target diseases r emain largel y unknown, which is still a main obstacle 
for computational drug r e purposing methods to be widely adopted in clinical settings. 

Results: In this w ork, w e propose KGML-xDTD : a K nowledge G r aph–based M ac hine L earning fr amew ork for e x plaina b l y pr edicting 
D rugs T reating D iseases. It is a 2-module fr amew ork that not onl y pr edicts the tr eatment pr oba bilities between drugs/compounds 
and diseases but also biologically explains them via knowledge graph (KG) path-based, testa b le MOAs. We lev era g e knowledg e-and- 
publication–based information to extract biologically meaningful “demonstration paths” as the intermediate guidance in the Graph- 
based Reinforcement Learning (GRL) path-finding pr ocess. Compr ehensi v e experiments and case study analyses show that the pro- 
posed fr amew ork can ac hieve state-of-the-art performance in both predictions of drug r e purposing and r ecapitulation of human- 
curated drug MOA paths. 

Conclusions: KGML-xDTD is the first model fr amew ork that can offer KG path explanations for drug r e purposing pr edictions b y le ver- 
aging the combination of prediction outcomes and existing biological knowledge and publications. We believe it can effectively reduce 
“b lack-box” concerns and incr ease pr ediction confidence for drug r e purposing based on pr edicted path-based explanations and fur- 
ther accelerate the process of drug discovery for emerging diseases. 

Ke yw ords: drug r e purposing, r einforcement learning, biomedical knowledge graph 

a  

a  

c  

t  

g  

A  

t  

i  

u  

r  

a  

[  

l  

(  

g  

l  

b  

t  

a  

w  
Introduction 

Traditional drug development is a time-consuming process (from 

initial chemical identification to clinical trials and finally to Food 

and Drug Administration [FDA] approval) that takes around 10 
to 15 years and also comes along with billions-of-dollars invest- 
ments and high failur e r ates [ 1 ]. Considering the r a pid pace of 
nov el disease e volution, it is ur gent to find a more efficient and 

economical drug discovery method. Fortunately, it has been ob- 
served that a single drug can often be effective in treating multi- 
ple diseases . For example , thalidomide was originally used as an 

antianxiety medication [ 2 ] and was later found to have the anti- 
cancer potential for the treatment of cancers [ 3 , 4 ]. Hence, drug 
r epur posing, also known as the identification of new uses for ex- 
isting drugs/compounds, might bring us hope to address this ur- 
gent need with the adv anta ge of a shorter r esearc h cycle, lower 
de v elopment cost, and more preexisting safety tests. 

Existing drug r epur posing a ppr oac hes can r oughl y be catego- 
rized into experimental-based a ppr oac hes (e.g., binding affinity 
assays [ 5 ], phenotypic screening [ 6 ]), clinical-based a ppr oac hes 
(e.g., off-label drug use analysis [ 7 ]), and computational-based 
Recei v ed: J an uar y 31, 2023. Revised: May 5, 2023. Accepted: July 4, 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
 ppr oac hes (e.g., c hemical structur e–based [ 8 ] and GWAS-based
 ppr oac hes [ 9 ]). Compar ed with the former 2 a ppr oac hes, the
omputational a ppr oac hes ar e mor e cost- and time-efficient, par-
icularly when the goal is to prioritize a large number of tar-
et drugs/compounds for follow-up experimental investigation.
mong all computational drug r epur posing methods, the integra-

ion of multiple biomedical data sources into a so-called biomed-
cal knowledge gr a ph (BKG) for drug discov ery has become pop-
lar in recent years [ 10 ] due to the increasing availability of cu-
ated biomedical databases such as DrugBank [ 11 ], ChEMBL [ 12 ],
nd HMDB [ 13 ] and the advancement of semantic web techniques
 14 ]. Ther e ar e 3 types of existing BKGs: database-based BKGs,
iter atur e-based BKGs, and mixed BKGs. The database-based BKGs
e.g., Hetionet [ 15 ], BioKG [ 16 ], iBKH [ 17 ]) are constructed by inte-
rating biomedical data and their relations stored in existing bio-
ogical databases . T he liter atur e-based BKGs (e.g., GNBR [ 18 ]) ar e
uilt by le v er a ging Natur al Langua ge Pr ocessing (NLP) tec hniques
o extract semantic information from a large amount of avail-
ble biomedical liter atur e and electr onic health r ecord (EHR) data,
hic h ar e mostl y disease specific [ 19–21 ]. T he mixed BKGs (e .g.,
 Open Access article distributed under the terms of the Cr eati v e Commons 
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KG [ 22 ], RTX-KG2 [ 23 ]) are generated by combining the knowl-
dge sources from the above 2 methods. 

Based on these BKGs, se v er al mac hine learning methods hav e
een proposed or implemented for drug repurposing prediction
y treating it as a link prediction task in the BKGs. For example,
immelstein et al. [ 15 ] used the so-called degree-weighted path
ount (DWPC) to assess the pr e v alence of 1,206 metapaths and
hen classified drug–disease tr eatment r elations by fitting these
WPC features to a logistic r egr ession model. Ioannidis et al. [ 24 ]
r oposed a nov el gr a ph neur al network model I-RGCN to learn
he node and relation embeddings for the Covid-19 drug repur-
osing task. Zhang et al. [ 19 ] r ecentl y pr edicted the possible drugs
or Covid-19 with 5 existing popular knowledge gr a ph completion

ethods (e.g., TransE [ 25 ], RotatE [ 26 ], DistMult [ 27 ], ComplEx [ 28 ],
nd STELP [ 29 ]). Although some of these models have shown good
erformance in drug r epur posing pr ediction on the small-scale
KGs , none ha ve been scaled to massive BKGs with more than
illions of nodes and edges and make a compr ehensiv e compar-

son. Mor e importantl y, most of them lac k the biological explana-
ory ability for their pr edictions, whic h limits their applicability in
linical r esearc h. 

Curr entl y, ther e ar e fe w computational models designed for
rug r epur posing explanations . A common and intuitive explana-
ion based on a biomedical knowledge gr a ph for drug r epur pos-
ng le v er a ges the semantic BKG-based paths between given drug–
isease pairs. Sosa et al. [ 30 ] applied a graph embedding model
KGE [ 31 ], which utilizes the weighted (the frequency of rela-

ion a ppear ed in liter atur e) r elation edges in a liter atur e-based KG
NBR to identify new indications of drugs for r ar e diseases and

hen explain the results via the highest-ranking paths based on
onfidence scores. Ho w ever, this method is only applicable in the
iter atur e-based BKGs with the weighted edge information. Most
KGs using database-based knowledge do not contain such infor-
ation. Sang et al. [ 32 ] pr oposed GrEDeL that combines the Tr ansE

mbedding method with a long short-term memory (LSTM) re-
urr ent neur al network (RNN) model to pr edict drug–disease r e-
ation. By using the embeddings of BKG paths as model input for
redictions, they can provide path-based explanations. Ho w e v er,
hey claimed that the effectiveness of the approach relies heav-
ly on the NLP tool SemRep, which is reported to have high false
ositives in named entity recognition [ 33 ]. Also, they did not fully
 v aluate how biologicall y r easonable their predicted path-based
echanisms of action (MOAs) are. 
Besides the existing methods abo ve , we view reinforcement

earning (RL) as a promising solution for drug r epur posing expla-
ation. RL models solve the decision-making problem, in which
n agent learns how to take appropriate actions to maximize
um ulativ e r e w ar ds thr ough inter actions with the envir onment.
L has ac hie v ed widespr ead success in v arious domains, includ-

ng games, recommendation systems, health care, transportation,
nd so on [ 34 ]. Gr a ph r einforcement learning (GRL), first pr oposed
round in 2017, aims to solve graph mining tasks such as link
r ediction [ 35 ], adv ersarial attac ks [ 36 ], and r elational r easoning
 37 ]. Unlike its applications in other domains, one of the biggest
hallenges in GRL is finding an appropriate rew ar d to guide the
ath searching in specific domains. To address the issue of finding
iologicall y r easonable BKG-based paths for drug r epur posing, it

s crucial to incor por ate biomedical domain knowledge to guide
he path-finding process. Liu et al. [ 38 ] developed an RL-based

odel “PoLo” that utilizes the biological meta-paths identified in
immelstein et al. [ 15 ] via the “DWPC” method to supervise path

earching for drug repurposing. Ho w ever, the “PoLo” model does
ot scale to a massive and complex BKG (e.g., CKG and RTX-KG2)
ue to its dependence on the “DWPC” method that is reported to
e computationally inefficient [ 39 ]. 

In this article, we describe KGML-xDTD : a K nowledge G r a ph–
ased M achine L earning framework for e x plainably predicting
 rugs T reating D iseases, which contains 2 modules for both drug
 epur posing pr ediction and MOA explanation. We pr opose to am-
lify the ability of the RL model in biologically meaningful path
ear ching b y utilizing the biologicall y meaningful “demonstr ation
aths” and pr etr ained drug r epur posing model pr obability as r e-
 ar ds. We incor por ate this idea into the a ppr opriate models (e.g.,
r a phSAGE [ 40 ], r andom for est, and ADAC RL [ 41 ] models) and

hen make them applicable to the explainable drug r epur pos-
ng problem at massive data scale and complexity. By comparing
ith the existing popular drug r epur posing models and e v aluating

he predicted paths with an expert-curated path-based drug MOA
atabase DrugMechDB [ 42 , 43 ], we show that the proposed model
r ame work can ac hie v e state-of-the-art performance in both pre-
ictions of drug r epur posing and r eca pitulation of human-cur ated
rug MOA paths provided by DrugMechDB. In further case stud-

es, by comparing the model predictions with the real regulatory
etw orks, w e sho w that the pr oposed fr ame work effectiv el y iden-
ifies biologically reasonable BKG-based MOA paths for real-world
pplications. 

aterials and Methods 

atasets 

ustomized biomedical knowledge graph 

o accommodate biomedical-reasonable predictions of drugs’ in-
ications and their mechanisms of action, the ideal biomedical
nowledge gr a ph should integr ate biomedical knowledge fr om
ompr ehensiv e and div erse databases and publications, as well
s accur atel y identify and mer ge differ ent identifiers r epr esent-
ng the same biological entity into one (e.g., “CHEBI:2367” and
CHEMBL455626” are 2 distinct identifiers separately presented in
he ChEBI database [ 44 ] and ChEMBL database [ 12 ] but r epr esent
he same compound “abyssinone I”). T hus , we utilize the canoni-
alized version of the Reasoning Tool X Knowledge Graph 2 ( RTX-
G2c ) [ 23 ], one of the largest open-source BKGs that integrates
nowledge fr om extensiv e human-cur ated and publication-based
atabases and has been widely used in the Biomedical Data
r anslator Pr oject [ 45 , 46 ]. Compar ed to other commonl y used
pen-source BKGs mentioned abo ve , RTX-KG2c is a biolink model–
ased standardized [ 47 ] and r egularl y updated BKG that effi-
ientl y mer ges biologicall y and semanticall y equiv alent nodes
nd edges via multiple curation steps . T he version 2.7.3 of RTX-
G2c that we use contains around 6.4 million nodes and 39.3 mil-

ion edges with knowledge from 70 public biomedical sources,
here all biological concepts (e.g., “ibuprofen”) are represented
s vertices and all conce pts–predicates–conce pt (e.g., “ibuprofen–
ncreases activity of–GP1BA gene”) are presented as edges. For
rug r epur posing pur poses, w e customized R TX-KG2c with 4 prin-
iples (see more details in Supplementary Section S1): (i) exclud-
ng the nodes whose categories ar e irr ele v ant to drug r epur pos-
ng explanation (e.g., “Geogr a phicLocation” and “De vice”), (ii) fil-
ering out the low-quality edges based on our criteria, (iii) re-

oving the hier arc hicall y r edundant edges, and (iv) excluding
ll drug–disease edges. After these processing steps, 3,659,165
odes with 33 distinct categories (Fig. 1 A) and 18,291,237 edges
ith 74 distinct types (Fig. 1 B) are left in our customized biomed-

cal knowledge gr a ph, whic h is used for downstream model
raining. 
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Figure 1: Number of nodes by category (A) and number of edges by predicate (B) in the customized BKG. 

Table 1: Pair count of true-positive (indications) and true-negative 
(contraindications or no effect) data from 4 data sources after data 
pr epr ocessing 

Source True positi v e (treats) True negati v e (not treat) 

MyChem 3,663 26,795 
SemMedDB 8,255 11 
NDF-RT 3,421 5,119 
RepoDB 2,127 738 
Shared 3,971 526 

Total 21,437 33,189 

Note that “shared” means those pairs are from 2 or more data sources. 
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Data sources for model training 

To train the KGML-xDTD framework for drug repurposing predic- 
tion and its MOA explanation, we utilize 4 high-quality and NLP- 
deriv ed tr aining datasets: 

� MyChem Data [ 48 ] is provided by the BioThings API collection 

[ 49 ], which contains up-to-date annotations regarding indi- 
cation and contraindication for chemicals collected from 11 
reliable data resources (summarized in Supplementary Sec- 
tion S2). We use drug–disease pairs with the relation “indica- 
tion” as true positives while those with “contraindication” as 
true negatives. 

� SemMedDB Data [ 50 ] is provided by the Semantic MEDLINE 
Database (SemMedDB), which leverages NLP techniques to 
extract semantic triples with “tr eats” and “negativ el y tr eats”
r elations fr om PubMed abstr acts. We use drug–disease pairs 
with the relation “treats” as true positives and those with 

“negativ el y tr eats” as true negativ es. 
� NDF-RT Data [ 51 ] is provided by National Drug File–Reference 

Terminology from the Veterans Health Administration (VHA), 
which contains FDA-approved information on drug interac- 
tion, indications, and contraindications. We use drug–disease 
with ther a peutics label “indications” as true positives and 

those with “contraindications” as true negatives. 
� RepoDB Data [ 52 ] is a standard set of successful and failed 

drug–disease pairs in clinical trials collected by the Blavat- 
nik Institute at Harvard Medical School. We use drug–disease 
with the status “a ppr ov ed” as true positiv es and those with 

“terminated” as true negatives. 

We further filter drug–disease pairs from SemMedDB Data due 
to publication bias and possible NLP mistakes by using both the 
co-occurr ence fr equency and the PubMed publication-based nor- 
malized Google distance (NGD) [ 53 ] defined below: 

NGD ( c 1 , c 2) = 

max { logN ( c 1) , logN ( c 2) } − logN (c 1 , c 2) 
l ogN − min { l ogN (c 1) , l ogN (c 2) } (1) 

where c 1 and c 2 are 2 biological concepts used in the customized 

BKG, N (c 1) and N (c 2) r espectiv el y r epr esent the total number of 
nique PubMed IDs associated with c 1 and c 2, N (c 1 , c 2) is the total
umber of unique PubMed IDs shared between c 1 and c 2, and N

s the total number of pairs of Medical Subject Heading (MeSH)
erms annotations in PubMed database. Only the SemMedDB 

rug–disease pairs with at least 10 supporting publications and 

n NGD score of 0.6 or lo w er are left for the downstream model
raining. 

These datasets are pooled together and then processed by (i)
apping the raw identifiers of drugs and diseases to the identi-

ers used in the customized BKG and (ii) removing duplicate drug–
isease pairs in both the true-positive set and the true-negative
et. Table 1 shows the drug–disease pair count from each data
ource after data pr epr ocessing. 

rugMechDB 

rugMechDB [ 42 , 43 ], to our best knowledge, is the first human-
urated path-based database for explaining the MOA from a drug
o a disease in an indication, with 3,593 MOA paths for 3,327
nique drug–disease pairs . T hese paths ar e extr acted fr om fr ee-
ext descriptions from DrugBank, Wikipedia, and other liter atur e
ources and then have been curated by subject matter experts and
lso follow the schema of the Biolink model. Hence, we can match
hem to nodes used in the RTX-KG2 BKG via the Node Synonymizer
unction [ 23 ]. Since the maximum length of predicted MOA paths



4 | GigaScience , 2023, Vol. 12, No. 1 

g  

d  

3  

i  

u  

r  

d  

p  

g  

n  

t  

W  

f  

t

M
T  

d  

v  

M  

m  

F  

f

N
L  

e  

d  

b  

u  

g  

V  

g  

“  

n  

v

D
D  

d  

t  

v  

c  

l  

s  

n
 

S  

a  

w  

h  

i  

a

w  

s  

r  

k  

l
 

M  

b  

n  

e  

w  

a  

t  

c  

a
d  

c
a
d  

m  

p  

o  

d  

n  

f  

i  

i  

“

M
W  

d  

t  

b  

w  

d  

s  

D

T  

t  

w  

l  

t  

e  

u  

r  

D  

P  

d  

t

A

W  

a  

[  

c
 

e  

n  

t  

a  

a  

p  

c  

d  

B  

d
 

l  
enerated by the KGML-xDTD framework is fixed to 3 in this study
ue to memory and training time constraints, we consider those
-hop BKG-based paths as “correct” if all 4 of their nodes show up
n the complete DrugMechDB-based MOA paths . T hus , we find 472
nique drug–disease pairs of which each has at least 1 such “cor-
 ect” matc hed path in all possible 3-hop paths between drug and
isease in the customized BKG. The large reduction in evaluation
aths is likely due to incompleteness of the underlying knowledge
r a phs, imperfect bioentity matc hing, and possibility of discon-
ected drug and disease pairs in the customized BKG. Ho w e v er,
hese paths are used for additional, external validation data only.

e use the matched paths as true-positive biologically meaning-
ul paths for the e v aluation of the model-predicted paths in the
ask of MOA prediction (introduced below). 

odel fr ame w ork 

he model fr ame work of KGML-xDTD consists of 2 modules: a
rug r epur posing pr ediction (DRP) module that combines the ad-
 anta ges of Gr a phSAGE [ 40 ] and a r andom for est model, and an
OA prediction module that utilizes an adversarial actor–critic RL
odel. We show the ov ervie w of the entire model fr ame work in

ig. 2 . The implementation details of each module in KGML-xDTD

r ame work ar e pr esented in Supplementary Section S3. 

otations 
et G = {V, E} be a directed biomedical knowledge gr a ph, wher e
ach node v ∈ V represents a biological entity (e.g., a specific
rug, disease , gene , or pathwa y), and each edge e ∈ E represents a
iomedical relationship (e.g., interacts-with ; see more in Fig. 1 B). We
se V drug to r epr esent all the drug nodes (the nodes with the cate-
ories of “Drug” and “Small Molecule” in the customized BKG) and
 

disease to r epr esent all the disease nodes (the nodes with the cate-
ories of “Disease ,” “PhenotypicF eature ,” “Beha vioralF eature ,” and
DiseaseOrPhenotypicFeature” in the customized BKG). For each
otation, we use bold formatting to r epr esent its embedding (e.g.,
 r epr esents the embedding of v ). 

RP module 
rug r epur posing aims to identify ne w indications of existing
rugs/compounds. We solve it as a link pr ediction pr oblem on
he gr a ph G. Specificall y, giv en an y drug–disease pair ( v i , v j ) where
 i ∈ V drug and v j ∈ V disease , we predict the probability that drug i
an be used to treat disease j . We first use Gr a phSAGE to calcu-
ate the embedding for each node. Ideally, the node embeddings
hould contain 2 kinds of information: node attributes and node
eighborhoods. 

To ca ptur e the neighborhood information, we optimize Gr a ph-
AGE to encour a ge neighbor nodes to hav e similar embeddings
nd nonneighbor nodes to have distinct embeddings. Specifically,
e perform random walks for each node to collect its neighbor-
ood information and train the model to maximize a node’s sim-

larity with its neighbor nodes. For a node u , the loss is calculated
s 

L G ( z u ) = − log ( σ ( z � u z v )) − k · E v n ∼P n (v ) log ( σ ( z � u z v n )) (2) 

her e z u , z v ar e r espectiv el y the embeddings of nodes u , v , σ is the
igmoid function; v is a node that co-occurs with u in fixed-length
 andom walks; P n r epr esents negativ e sampling distribution; and
 indicates the number of negative samples (nodes not in u ’s fixed-
ength neighborhood). 

To ca ptur e the node attributes information, we utilize the Pub-
edBERT model [ 54 ], a pr etr ained langua ge model designed for
iomedical texts, to generate a node attribute embedding for each
ode based on the concatenation of the node’s name and cat-
gory. We further compress the embeddings to 100 dimensions
ith principal components analysis (PCA) to reduce memory us-
ge and use them as the initial node feature for GraphSAGE. In
his way, the final Gr a phSAGE embedding of eac h node should
ontain the information regarding both graph topology and node
ttributes. We concatenate the Gr a phSAGE embeddings of drug–
isease pairs and use them as input of a random forest model to
lassify each drug–disease pair into one of the “not treat, ” “treat, ”
nd “unknown” classes. We obtain “treat” and “not treat” drug–
isease pairs from 4 data sources (described in “Data sources for
odel training” section). We generate “unknown” drug–disease

airs through negative sampling [ 55 ], that is, replacing the drug
r disease identifier in eac h “tr eat” drug–disease pair with a ran-
om drug or disease identifier to generate a new pair that does
ot appear in both the “treat” and “not treat” classes. Specifically,
or each unique “treat” drug–disease pair, we respecti vely re place
ts drug identifier with 1 random drug identifier as well as replace
ts disease identifier with 1 random disease identifier to make the
unknown” drug–disease pairs. 

OA prediction module 
hen potential indications of a given drug are identified by the

rug r epur posing pr ediction module, a natur al yet essential ques-
ion is: can we biologically explain the pr edictions? We solv e this
 y emplo ying an RL model to predict the BKG-based MOA paths,
hic h ar e the paths on the knowledge gr a ph fr om drug nodes to
isease nodes . T hese BKG-based MOA paths can semantically de-
cribe an abstract biological process of how a drug treats a disease.

emonstration paths 

o encour a ge the RL a gent to terminate the path searching at
he expected diseases through a biologicall y r easonable path,
e le v er a ge so-called "demonstr ation paths", a set of biologically

ikely paths (e.g., drug1–gene1–protein3–disease1) that explains
he underl ying r easons for why a drug can treat a disease. We
xtract 396,705 demonstration paths from the customized BKG
sing the known drug–target interactions collected from 2 cu-
ated biomedical data sources: DrugBank (v5.1) and Molecular
ata Provider (v1.2) (see “Data Availability” section), as well as the
ubMed publication-based NGD (see Equation 1 ). We show more
etails r egarding demonstr ation path extr action in Supplemen-
ary Section S4. 

dversarial actor–critic reinforcement learning 

e formulate the MOA prediction as a path-finding problem and
dapt the adversarial actor–critic reinforcement learning model
 41 ] to solve it. Reinforcement learning is defined as a Markov de-
ision process (MDP) that contains: 

States: Each state s t at time t is defined as s t = ( v drug , v t , ( v t − 1 ,
 t ), …, ( v t − K , e t − ( K − 1) )), where v drug ∈ V drug is a given starting drug
ode; v t ∈ V r epr esents the node wher e the a gent locates at time
 ; and the tuple ( v t − K , e t − ( K − 1) ) r epr esents the pr e vious K th node
nd ( K − 1)th predicate. For the initial state s 0 , the previous nodes
nd pr edicates ar e substituted by a special dummy node and
redicate. We concatenate the embedding of all nodes and predi-
ates of s t to get the state embedding s t , where the node embed-
ings are node attribute embeddings generated with the PubMed-
ERT model (see “DRP module” section) and the predicate embed-
ings employ one-hot vectors. 

Actions: The action space A t of each node v t includes a self-
oop action a self and the actions to r eac h its outgoing neigh-
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Figure 2: Illustration of the entire KGML-xDTD model framework: DRP module (left) and MOA prediction module (right). 
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bors in the gr a ph G. Due to memory limitation and extr emel y 
lar ge out-degr ee of certain nodes in the knowledge gr a ph, we 
prune the neighbor actions based on the P a geRank scor es if a 
node has more than 3,000 neighbors. Specifically, we let A t = 

(a sel f , a 1 , . . . , a k , . . . , a n v t ) , where n v t is out-degree of node v t ∈ V. For
each action a t = ( e t , v t + 1 ) ∈ A t taken at time t , we concatenate its 
node and predicate embeddings to obtain action embedding a t .
We learn 2 embedding matrices E N n ×d and E N p ×d , r espectiv el y, for 
nodes and predicates (note that each subnetwork uses separate 
embedding matrices), where d represents the embedding dimen- 
sion, N n r epr esents the number of nodes in the gr a ph, and N p r ep- 
resents the number of predicate categories in the graph. 

Rewards: During the path-searc hing pr ocess, the a gent onl y r e- 
ceives a terminal rew ar d R e , T from the environment (i.e., there is 
no intermediate r e w ar d fr om envir onment: R e , t = 0, ∀ t < T ). Let v T 
be the last node of the path, and N drug be the known diseases that 
drug v drug can treat. The terminal rew ar d R e , T from environment 
is calculated with the drug r epur posing model via 

R e,T = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , if v T ∈ N drug . 

p treat , if v T / ∈ N drug ; v T ∈ V disease and f (v drug , v T ) is predicted as “treat”. 
0 , if v T / ∈ N drug ; v T ∈ V disease and f (v drug , v T ) is not predicted as “treat”. 
−1 , if v T / ∈ V disease , 

where p treat is the “treat” class probability predicted by the drug 
r epur posing model f . 

The adversarial actor–critic RL model consists of 4 subnetworks 
that share the same model arc hitectur e MLP i (note that i r epr e- 
sents the id of each subnetwork described later, such as a for actor 
network , c for critic network , etc.) but with different parameters: 

MLP i (X) = BA (BA (XW 

i 
1 + b i 1 ) W 

i 
2 + b i 2 ) W 

i 
3 + b i 3 (3) 

where { W 

i 
1 , W 

i 
2 , W 

i 
3 , b 

i 
1 , b 

i 
2 , b 

i 
3 } ar e the par ameters and biases of lin- 

ear transformations, and BA represents a batch normalization 

lay er follo w ed b y an ELU activation function. 
Actor netw ork: T he actor network learns a path-finding policy 

πθ (note that θ r epr esents all par ameters of the actor network) to 
guide the agent to choose an action a t from the action space A t 

based on the current state s t : 

πθ (a t | s t , A t ) = softmax ( A t � MLP a ( s t )) (4) 

where A t is the embedding matrix of the action space A t ; � repre- 
sents the dot pr oduct. Her e, πθ ( a t | s t , A t ) r epr esents the pr obability
f choosing action a t at time t from the action space A t given the
tate s t . 

Critic netw ork: T he critic network [ 56 ] estimates the expected
 e w ar d Q φ ( s t , a t ) (note that φ r epr esents all par ameters of the critic
etwork) if the agent takes the action a t at the state s t by 

Q φ (s t , a t ) = MLP c ( s t ) � a t (5) 

Pa th discrimina tor netw ork: Since the RL agent only receives a
erminal r e w ar d R e , T from the environment indicating whether it
 eac hes an expected target, to encourage the agent to find biolog-
call y r easonable paths and pr ovide intermediate r e w ar ds, w e fur-
her guide it with demonstration paths . T his network is essentially
 binary classifier that distinguishes whether a path segment ( s t ,
 t ) is fr om demonstr ation paths or generated by the actor network.
e treat all the known demonstration path segments (s D t , a 

D 
t ) as

ositive samples and all actor-generated non-demonstration path 

egments (s ND 
t , a ND 

t ) as negative samples . T he path discriminator
etw ork D p (s , a ) = sigmoid ( MLP p ( s ⊕ a )) , where s and a are respec-
iv el y the embeddings of the state s and the action a ; ⊕ r epr esents
he concatenation operator and is optimized with 

L p = −E (s,a ) ∼P D [ log ( D p ( s, a ))] − E (s,a ) ∼P A [ log (1 − D p (s, a ))] (6) 

here P D and P A respectively represent the demonstration path 

egment distribution and the actor-generated non-demonstration 

ath segment distribution. Based on the probability D p ( s t , a t ), the
ath discriminator–based intermediate r e w ar d R p , t is calculated
s 

R p,t = log ( D p ( s t , a t )) − log (1 − D p (s t , a t )) . (7) 

Meta-pa th discrimina tor netw ork: Similar to the path dis-
riminator, this network aims to judge whether the meta-path 

f the actor-generated paths is similar to that of demonstra-
ion paths . T he meta-path is the path of node categories (e.g.,
“Drug”→ “Gene”→ “BiologicalProcess”→ “Disease”]). Similarly, the 

eta-path discriminator D m 

(M ) = sigmoid ( MLP m ( M )) , where M is
he embedding of the meta-path M defined as the concatenation
f learned category embeddings of all nodes that appear in the
ath, is also a binary classifier where the meta-paths of demon-
tr ation paths ar e tr eated as positiv e samples while others are
egative samples. We optimize it with the following loss: 

L m 

= −E M ∼P M [ log ( D m 

( M ))] − E M ∼P M [ log (1 − D m 

(M ))] (8) 

D A 
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here P M 

D and P M 

A r espectiv el y r epr esent the demonstr ation meta-
ath distribution and the actor-generated non-demonstration
eta-path distribution. The intermediate r e w ar d R m , t generated

y the meta-path discriminator is calculated by 

R m,t = log ( D m 

( M )) − log (1 − D m 

(M )) . (9) 

The integrated intermediate rew ar d R t at time t is then calcu-
ated as 

R t = αp R p,t + αm 

R m,t + (1 − αp − αm 

) γ T−t R e,T (10) 

here αp ∈ [0, 1] and αm 

∈ [0, 1 − αp ] are hyperparameters, γ is
he decay coefficient, and R e , T is defined in the “Rew ar ds” sec-
ion abo ve . 

To optimize the critic netw ork, w e minimize the temporal dif-
erence (TD) error [ 57 ] with loss: 

L c = TD 

2 = [( R t + Q φ ( s t+1 , a t+1 )) − Q φ (s t , a t )] 2 . (11) 

Since the goal of the actor network is to ac hie v e the largest ex-
ected r e w ar d b y learning an optimal actor polic y, w e optimize the
ctor netw ork b y maximizing J(θ ) = E a ∼πθ

[ Q φ (s t , a )] . We use the RE-
NFORCE algorithm [ 58 ] to optimize the parameters. To encourage

or e div erse explor ation in finding paths, we use the entr opy of

θ as a regularization term and optimize the actor network with
he following stochastic gradient of the loss function L a : 

∇ θ L a = −∇ θ J(θ ) = −E πθ
[ ∇ θ TD log πθ (a t | s t )] − α∇ θ entropy (πθ ) (12) 

here πθ is the action probability distribution based on the actor
olicy, and α is the entropy weight. 

We follow Zhao et al. [ 41 ] to train the adversarial actor–critic
L model in a m ultista ge w ay. First, w e initialized the actor net-
ork using the behavior cloning method [ 59 ] in which the train-

ng set of demonstration paths is used to guide the sampling of
he agent with mean square error (MSE) loss . T hen, in the first z
poc hs, we fr eeze the par ameters of the actor network and the
ritic network and r espectiv el y tr ain the path discriminator net-
ork and meta-path discriminator network by minimizing L p and
 m 

. After z epochs, we unfreeze the actor network and the critic
etwork and optimize them together by minimizing a joint loss
 joint = L a + L c . 

esults 

v alua tion settings 

ata split 
he post-processed drug–disease pairs (described in “Data sources
or model training” section) are split into training, validation,
nd test sets where the drug–disease pairs of each unique drug
r e r andoml y split according to a ratio of 8/1/1. For exam-
le , let’s sa y drugA has 10 known diseases that it treats (e.g.,
rugA–disease1, …, drugA–disease10), 8 pairs ar e r andoml y split

nto the training set, 1 pair is to the validation set, and 1 pair
o the test set. With this data split method, the model can
e exposed to e v ery drug in the training set, which complies
ith our goal of predicting new indications of known drugs
nd their potential MOAs based on the MOA of known target
iseases. 

valuation metrics 
he proposed framework KGML-xDTD is evaluated on 2 types
f tasks: predicting drug–disease “treat” probability (i.e., drug re-
ur posing pr ediction) as well as identifying biologicall y r eason-
ble MOA paths from all BKG-based path candidates (i.e., MOA
rediction). These 2 tasks are evaluated based on classifica-
ion accuracy-based metrics (e.g., accuracy, macro F1 score) and
anking-based metrics (e.g., mean percentile rank, mean recipro-
al rank, and proportion of ranks smaller than K) defined as fol-
ows: 

Accuracy (ACC) is the fraction of the model classification is cor-
ect, computed as 

ACC = 

Number of correct classifications 
Total number of drug-disease pair classifications 

. (13)

Macro F1 score (Macro-F1) is the unweighted mean of all the
er-class F1 scores: 

F 1 c = 2 ∗ precision c × recal l c 

precision c + recal l c 
, Macro-F1 = 

1 
| C| 

∑ 

c ∈ C 
F1 c (14)

her e C pr esents classification classes (e.g., “tr eat,” “not tr eat,”
nd “unknown”). 

Mean percentile rank (MPR) is the av er a ge percentile r ank of
he 3-hop DrugMec hDB-matc hed BKG-based path (described in
DrugMechDB” section) of true-positive drug–disease pairs: 

MPR = 

1 
| PR | 

∑ 

pr∈ PR 

pr (15)

here PR is a list of percentile ranks of DrugMechDB-matched
KG-based paths of true-positive drug–disease pairs (“treat” cate-
ory). 

Mean reciprocal rank (MRR) is the av er a ge inv erse r ank of
rue-positive drug–disease pairs (“treat” category) or their 3-hop
rugMec hDB-matc hed BKG-based paths: 

MRR = 

1 
| R | 

∑ 

r∈ R 

1 
r 

(16)

here R is a list of ranks of true-positive drug–disease pairs (for
RP task) or DrugMec hDB-matc hed BKG-based paths (for MOA
rediction task). 

Hit@K is the proportion of ranks not larger than K for
rue-positive drug–disease pairs (“treat” category) or their 3-hop
rugMec hDB-matc hed BKG-based paths: 

Hit@K = 

1 
| R | 

∑ 

r∈ R 
| r ≤ K| (17)

here R is a list of ranks of true-positive drug–disease pairs (for
RP task) or DrugMec hDB-matc hed BKG-based paths (for MOA
rediction task). 

rug repurposing prediction evaluation method 

e utilize the metrics ACC and Macro-F1 to measure the accu-
acy of drug repurposing prediction of our KGML-xDTD framework
hile using ranking-based metrics MRR and Hit@K to show its

apability in reducing false positives (i.e., the false drug–disease
airs ranking higher among possible drug–disease candidates).
e use the following 3 methods to generate non-true-positive

rug–disease candidates for each true-positive drug–disease pair
o calculate the ranks that are emplo y ed in the MRR and Hit@K
alculation: 

� Drug rank–based replacement: For each true positive drug–
disease pair, the drug rank–based replacement pairs are gen-
er ated by r eplacing the drug entity with eac h of all 274,676
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other drugs in the customized BKG while excluding all known 

true-positive drug–disease pairs. 
� Disease rank–based replacement: For eac h true-positiv e 

drug–disease pair, the disease rank–based replacement pairs 
ar e gener ated by r eplacing the disease entity with eac h of all 
124,638 other diseases in the BKG while excluding all known 

true-positive drug–disease pairs. 
� Combined replacement: For each true-positive drug–disease 

pair, the combined replacement pairs are the combination of 
all replacement pairs of the above 2 methods. All known true- 
positive drug–disease pairs are excluded from these replace- 
ment pairs. 

Due to the massive size of possible drug–disease candidates,
some baseline models (e.g., GAT and Gr a phSAGE + SVM) ar e not 
applicable in this setting within a reasonable time (e.g., a week).
T hus , w e also emplo y a small subset of drug–disease replace- 
ments to calculate the MRR and Hit@K , allowing for compari- 
son between KGML-xDTD with all baselines. Specifically, we uti- 
lize 1,000 random drug–disease pairs from the combined replace- 
ment set above: 500 with drug ID replacement and 500 with dis- 
ease ID replacement. To enhance the robustness of results ob- 
tained through this random replacement method, we use this 
method to generate 10 sets of random drug–disease pairs (each 

with 1,000 pairs) independently and calculate the mean and stan- 
dard deviation of the ranking-based metrics outcomes. In ad- 
dition, since the drug r epur posing pr ediction module of KGML- 
xDTD fr ame work does 3-class classification while other baselines 
do 2-class classification, for a fair comparison, we recalculate 
ACC and Macro-F1 for KGML-xDTD by excluding the “unknown”
class. 

MOA prediction evaluation method 

For the e v aluation of MOA pr ediction, we use the DrugMec hDB [ 42 ] 
to obtain the expert-verified MOA paths as ground-truth data, and 

matc h eac h biological concept in these v erified MOA paths to the 
biological entities used in the customized BKG, and then gener- 
ate the BKG-based matched paths of DrugMechDB drug–disease 
pairs (described in “DrugMec hDB” section), whic h ar e consider ed 

biologically meaningful MOA paths. We first calculate the path 

scores for all 3-hop KG paths between drug and disease with the 
path-finding policy learned fr om adv ersarial actor–critic RL model 
using the following equation: 

path score = 

k ∑ 

i =1 

δi −1 × log (P i × N i ) (18) 

where k is the number of hops in this path, δ is a decay coeffi- 
cient (we set it to 0.9 in this stud y), P i re presents the probability of 
choosing action a i in the i th hop following this path based on the 
trained RL model, and N i is the number of possible actions in the 
i th hop. 

With the path scores, we obtain the ranks of the DrugMechDB- 
matched BKG-based paths and calculate their ranking-based met- 
rics (e.g., MPR , MRR , and Hit@K ). For those drug–disease pairs with 

m ultiple matc hed paths, we use the highest ranks of the matched 

paths as their ranks in the metrics calculation. We compare KGML- 
xDTD with the baseline models based on these metrics to show the 
capability of the MOA prediction module of KGML-xDTD in identi- 
fying biologicall y r easonable MOA paths fr om a massiv e and com- 
plex BKG with a compar abl y low false positive. In addition, we fur- 
ther perform 2 case studies to e v aluate the effectiv eness of KGML- 
xDTD in identifying the biologically reasonable MOA paths. 
f  
rug repurposing prediction e v alua tion 

or drug r epur posing pr ediction e v aluation, we compar e the
GML-xDTD model fr ame work a gainst se v er al state-of-the-
rt (SOTA) KG-based models and variants of KGML-xDTD 

or drug r epur posing pr ediction based on the method de-
cribed in “Drug r epur posing pr ediction e v aluation method”
ection. 

We use 8 different SOTA KG-based models as baseline mod-
ls that are commonly used for BKG-based drug repurposing 
 19 , 60 ]. TransE [ 25 ], TransR [ 61 ], and RotatE [ 26 ] are the transla-
ion distance–based models that regard a relation (e.g., “treats”) 
s a “tr anslation”/”r otation” (e.g., a kind of spatial transforma- 
ion) from a head entity (e.g., a drug node) to a tail entity (e.g.,
 disease node). DistMult [ 27 ] is a bilinear model that mea-
ures the latent semantic similarity of a knowledge graph triple
head entity, r elation/pr edicate, tail entity) with a trilinear dot
roduct. ComplEx [ 28 ] and ANALOGY [ 62 ] are the extensions of
istMult that consider more complex relations (e.g., asymmet- 
ic relations). SimpLE [ 63 ] is a tensor factorization–based model
o learn the semantic relation of a knowledge gr a ph triple. GAT
 64 ] is a popular gr a ph neur al model that le v er a ges the impor-
ant gr a ph topology structur e based on self-attention mecha-
ism for gr a ph-associated tasks (e.g., link pr ediction). Implemen-
ation details of these baselines are presented in Supplementary 
ection S5. 

Besides these SOTA baseline models, we also compare the drug
 epur posing pr ediction module in KGML-xDTD with its se v er al v ari-
nts to show the effectiveness of model components. For exam- 
le, to sho w efficac y of the combination of Gr a phSa ge and r an-
om forest (RF), we use a pure GraphSAGE model for link predic-
ion ( GraphSAGE-link ), the combination of Gr a phSa ge and logis-
ic model ( GraphSAGE-logistic ), and the combination of Gr a ph-
age and support vector machine (SVM) model ( GraphSAGE- 
VM ). To demonstrate the effectiveness of node attribute embed-
ings (described in “DRP module” section) in improving repur- 
osing prediction, we conduct an ablation experiment that re- 
laces node attribute embeddings (NAEs) with random embed- 
ings (initialized with the Xavier method [ 65 ]) as Gr a phSa ge ini-
ialized embeddings ( KGML-xDTD w/o NAE ); to support rationality
f setting “unknown” class thr ough negativ e sampling (described 

n “DRP module” section), we modify the drug r epur posing pr e-
iction module for 2-class classification (i.e., true positive and 

rue negative) ( 2-class KGML-xDTD ) as a baseline comparison
odel. 
Table 2 shows the performance of the KGML-xDTD model and

ll other baseline models in the task of drug r epur posing pr edic-
ion based on test set (described in “Data split” section). For the
alculation of the MRR and Hit@K used in this table, we utilize
he random subset replacement method described in the “Drug 
 epur posing pr ediction e v aluation method” section. As shown in
he table, on the one hand, the KGML-xDTD outperforms most
f the baseline models and ac hie v es compar able performance
s GAT in classification-based metrics (e.g., accur acy, macr o F1
core), indicating its effectiveness in classifying known “treat” and 

not treat” drug–disease pairs with both attribute and neighbor- 
ood information on the knowledge gr a ph. On the other hand,
GML-xDTD ’s exceptional performance in ranking-based metrics 
hows its superiority over baselines in identifying new indications 
f existing drugs out of a large number of possible drug–disease
airs with r elativ el y low false positiv es, whic h is of great impor-
ance for guiding clinical r esearc h. Fig. 3 displays the compari-
on results where we calculate the MRR and Hit@K with 3 dif-
er ent “complete” r eplacement methods (described in “Drug r e-
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Table 2: The performance comparison of drug r epur posing pr ediction (DRP) between KGML-xDTD and different baseline models based on 

test set (described in “Data split” section). The top panel shows the performance of state-of-the-art (SOTA) baseline models; the middle 
panel shows the performance of variants of the KGML-xDTD model framework; the bottom panel shows the performance of KGML-xDTD 
model fr ame work 

Model Accuracy Macro F1 score MRR Hit@1 Hit@3 Hit@5 

TransE 0.708 0.708 0.301 ( ±0.005) 0.134 ( ±0.007) 0.327 ( ±0.009) 0.482 ( ±0.007) 
TransR 0.858 0.855 0.329 ( ±0.006) 0.150 ( ±0.009) 0.378 ( ±0.008) 0.542 ( ±0.005) 
RotatE 0.704 0.704 0.281 ( ±0.007) 0.098 ( ±0.008) 0.314 ( ±0.007) 0.497 ( ±0.009) 
DistMult 0.555 0.495 0.182 ( ±0.004) 0.042 ( ±0.002) 0.157 ( ±0.010) 0.292 ( ±0.010) 
ComplEx 0.624 0.460 0.138 ( ±0.004) 0.026 ( ±0.004) 0.106 ( ±0.007) 0.205 ( ±0.008) 
ANALOGY 0.594 0.465 0.188 ( ±0.004) 0.044 ( ±0.004) 0.165 ( ±0.009) 0.301 ( ±0.008) 
SimplE 0.599 0.472 0.167 ( ±0.006) 0.036 ( ±0.006) 0.140 ( ±0.008) 0.259 ( ±0.011) 
GAT 0.936 0.934 0.002 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 

Gr a phSAGE-link 0.919 0.915 0.002 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 
Gr a phSAGE + logistic 0.791 0.784 0.002 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 
Gr a phSAGE + SVM 0.807 0.793 0.002 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 0.000 ( ±0.000) 
KGML-xDTD w/o NAEs 0.909 (0.898 ∗) 0.891 (0.892 ∗) 0.159 ( ±0.003) 0.035 ( ±0.002) 0.143 ( ±0.006) 0.262 ( ±0.008) 
2-class KGML-xDTD 0.929 0.925 0.278 ( ±0.003) 0.183 ( ±0.006) 0.321 ( ±0.003) 0.389 ( ±0.006) 

KGML-xDTD (ours) 0.935 (0.930 ∗) 0.923 (0.926 ∗) 0.382 ( ±0.004) 0.238 ( ±0.007) 0.425 ( ±0.006) 0.543 ( ±0.006) 

The values with ∗ inside the parentheses are the adjusted results by excluding the “unknown” category for a fair comparison. 
The ranking metrics (e.g., “MRR” and “Hit@K”) are calculated as the mean along with standard deviation based on 10 independent sets of non-true-positive drug–
disease candidates generated by the random drug–disease replacement method (i.e., for each true-positive drug–disease pair in test set, we use 1,000 random 

drug–disease pairs as non-true-positive drug–disease candidates to calculate the rank). See more details in “Drug r epur posing pr ediction e v aluation method”
section. 
The abbr e viation “w/o N AEs” in the name of model “KGML-xDTD w/o N AEs” r epr esents without using node attribute embeddings. 

Figur e 3: T he performance comparison of DRP between KGML-xDTD and differ ent baseline models ( GAT and GraphSAGE + SVM ar e excluded due to 
computation time constraints) based on test set using 3 “complete” replacement methods (i.e., “drug rank–based replacement,” “disease rank–based 
replacement,” and “combined replacement” described in “Drug repurposing prediction evaluation method” section) to generate non-true-positive 
drug–disease candidates for each true-positive drug–disease pair for MRR and Hit@K calculation. “Drug rank”, “disease rank,” and “combined rank”
r espectiv el y corr espond to the methods of “drug r ank–based r eplacement,” “disease r ank–based r eplacement,” and “combined r eplacement.”
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tiveness of the random forest model over a neural network clas- 
ur posing pr ediction e v aluation method” section). Although GAT

nd GraphSAGE + SVM are excluded in this comparison due to com-
utation time constraints, we can see that the results presented

n both Table 2 and Fig. 3 are consistent to demonstrate KGML-
DTD ’s ability in reducing false positives . T herefore , excluding
he GAT and GraphSAGE + SVM from the comparison with “com-
lete” replacement methods does not affect the conclusion. Be-
ides, by comparing 2-class KGML-xDTD with the vanilla Graph-
AGE model (e.g., GraphSAGE-link ), we demonstrate the effec-
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Table 3: The performance comparison of MOA prediction between KGML-xDTD and different baseline models (e.g., MultiHop and KGML- 
xDTD w/o DP ) based on the test set (described in “Data split” section). The metrics in this table are calculated using path scores and 

all non-DrugMec hDB-matc hed 3-hop paths between drug and disease as “negativ e” paths for eac h true-positiv e drug–disease pair (see 
more details in “MOA prediction evaluation method” section) 

Model MPR MRR Hit@1 Hit@10 Hit@50 Hit@100 Hit@500 

MultiHop 61.400% 0.027 0.017 0.042 0.067 0.118 0.345 
KGML-xDTD w/o DP 72.965% 0.015 0.008 0.017 0.067 0.160 0.403 

KGML-xDTD (ours) 94.696% 0.109 0.059 0.193 0.496 0.613 0.849 

The abbr e viation “w/o DP” in the name of model “KKGML-xDTD w/o DP” r epr esents “without using demonstr ation paths.”

Table 4: Top 10 predicted drugs/treatments for hemophilia B (note 
that the red bolded drugs are used in the training set) 

Drug/Treatment Prob. Publications 

Eptacog Alfa (rFVIIa) 0.833 [ 67 , 68 ] 
Nonacog Alfa (rFIX) 0.803 [ 69 ] 
Viral vector 0.780 [ 70 ] 
Factor VIIa 0.748 [ 67 , 71 ] 
Recombinant FVIIa (rFVIIa) 0.724 [ 67 , 71 ] 
Thrombin 0.709 [ 72 ] 
Factor IX 0.708 [ 73 ] 
Epicriptine 0.702 
Hyperbaric oxygen 0.660 
Triamcinolone 0.649 
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sifier in this task. The comparison between KGML-xDTD w/o NAE 

and KGML-xDTD shows that the KGML-xDTD benefits from the use 
of node attribute embeddings for drug r epur posing pr ediction 

while the comparison with 2-class KGML-xDTD indicates the ef- 
fectiveness of using negative sampling to generate “unknown”
drug–disease pairs for model training. With the “unknown” drug–
disease pairs, the KGML-xDTD model ac hie v es significant impr ov e- 
ment in r anking-based metrics, whic h is essential when a ppl y- 
ing to real-world drug r epur posing because it can reduce the false 
positives. 

MOA prediction e v alua tion 

For MOA pr ediction, we e v aluate ho w w ell the KGML-xDTD can 

identify the DrugMec hDB-matc hed BKG-based MOA paths (de- 
scribed in “MOA prediction evaluation method” section) from a 
large number of possible paths in the customized BKG by utilizing 
ranking-based metrics (e.g., MPR, MRR, and Hit@K) and 2 specific 
case studies. 

Ther e ar e fe w mac hine learning models designed for the task of 
identifying biologically meaningful paths from biomedical knowl- 
edge gr a phs for explaining drug r epur posing. Although the UKGE 
[ 30 ], GrEDeL [ 32 ], and Polo [ 38 ] models (all mentioned in “Introduc- 
tion”) wer e pr oposed and can be used for this goal, they all have 
certain constraints and cannot be used as baseline models for 
comparison. The UKGE model cannot be applied to BKGs without 
weighted edge information (e.g., frequency of relation appeared 

in liter atur e). The authors of the GrEDeL model do not provide the 
code to implement this model. The Polo model cannot be trained 

within a reasonable time (e.g., within 2 weeks) on a massive and 

complex BKG (e.g., RTX-KG2) due to its dependence on a compu- 
tationally inefficient method “DWPC” [ 39 ]. T herefore , we choose 
the MultiHop reinforcement learning model [ 66 ] as a baseline 
model since it uses a similar LSTM model fr ame work as the GrE- 
Del model and allows using a self-defined r e w ar d-sha ping str at- 
egy in its r e w ar d function as what we do in the KGML-xDTD model 
(i.e., we can use the same r e ward str ategy described in “Adv ersar- 
ial actor–critic reinforcement learning” section). Furthermore, we 
also compare with an ablated version of KGML-xDTD (i.e., KGML- 
xDTD w/o DP , which does not tak e ad v anta ge of the demonstra- 
tion paths by setting αp and αm 

in Function 9 as 0) as another base- 
line model to show the importance of proposed demonstration 

paths. 
We compare the MOA prediction performance between the 

KGML-xDTD model fr ame work and differ ent baseline models in 

Table 3 . Although all the models use the same terminal r e w ar d 

function from the environment (i.e., the drug repurposing pre- 
diction module of KGML-xDTD ), the MOA prediction module of 
KGML-xDTD ac hie v es significantl y better performance in identify- 
ing DrugMec hDB-matc hed BKG-based MOA paths than the other 2 
baselines across all ranking-based metrics. Comparison between 
he KGML-xDTD with and without demonstration paths (i.e., KGML- 
DTD w/o DP ) further illustrates the great effectiveness of us-

ng pr oposed demonstr ation paths to guide the path-finding pro-
ess. Due to the massive searching space and sparse rew ar ds,
he RL agent often fails to find biologicall y r easonable BKG-based
OA paths out of many possible choices, while our model KGML-
DTD , with the intermediate guidance provided by the demonstra-
ion path, is able to identify those biologicall y r easonable c hoices
ith a m uc h higher pr obability. Mor eov er, comparing KGML-xDTD
/o DP and MultiHop r e v eals that the actor–critic model struc-
ure performs similarly to LSTM. Ho w ever, incorporating the pro-
osed demonstration paths can significantly enhance the effec- 
iveness of the actor–critic model structure over LSTM for this
ask. 

To further e v aluate the performance of KGML-xDTD model
r ame work in identifying biologically relevant MOA paths for drug
 epur posing, we pr esent 2 differ ent case studies to explor e the po-
ential r epur posed drugs and their potential mechanism for 2 r ar e
enetic diseases: hemophilia B and Huntington’s disease. 

ase 1: Hemophilia B 

emophilia B, also known as factor IX deficiency or Christmas dis-
ase, is a r ar e genetic disorder that results in prolonged bleed-
ng in patients. It is caused by mutations in the factor IX (F9)
ene, which is located on the X chromosome. Table 4 displays
he top 10 drugs/treatments predicted by the KGML-xDTD model 
r ame work, including both those that are used in the training
et (red bolded) and those that are not. Besides those known
rugs/treatments used in the training set, the majority of the
emaining 7 drugs/treatments on the list are supported by pub-
ished r esearc h and hav e the potential to treat hemophilia B. For
xample, the activated human-derived coagulation factor VII (i.e.,
actor VIIa) or the r ecombinant activ ated factor VII (i.e., rFVIIa) is
ne of the proteins that can cause blood clots as an important
art of the blood coagulation regulatory network (as shown in the
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Figure 4: Blood coagulation regulatory network with arrows for 
molecular reactions (black), positive feedback (green), and negative 
feedbac k (r ed). 
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ig. 4 ). This protein is used as an effective inhibitor in the treat-
ent of patients with hemophilia B [ 67 , 71 ]. Thrombin is a k e y en-

yme in the maintenance of normal hemostatic function. It has
een reported that using thrombin as a ther a peutic str ategy can
elp pr e v ent bleeding in patients with hemophilia [ 72 ]. The use
f recombinant factor IX therapy is a recommended treatment
ption for individuals with hemophilia B [ 73 ]. Some examples of
ecombinant factor IX products include BeneFIX, Rixubis, Ixinity,
lprolix Idelvion, and Rebinyn. These examples demonstrate the
otential capability of KGML-xDTD for drug repurposing in real-
orld applications. 
To further assess the biological explanations of the predicted 3-

op BKG-based MOA paths for the treatment of hemophilia B, we
ave used the curated DrugMechDB-based MOA paths, which are
ot used in the model training process. DrugMechDB contains rel-
 v ant MOA paths of hemophilia B tr eatment onl y for Eptacog Alfa
nd Nonacog Alfa. We use the KGML-xDTD model to predict the top
0 potential 3-hop BKG-based MOA paths for these 2 drugs and
ompare them with the curated DugMechDB-based MOA paths
n Fig. 5 (for visualization purpose, we only display the top 5
redicted paths along with any available DrugMechDB-matched
KG-based paths in the top 10 predicted paths). The correspond-

ng biological entities between the predicted paths and the cu-
 ated DrugMec hDB-based paths ar e highlighted in r ed. Although
he predicted paths cannot exactly match the DrugMechDB-based
OA paths due to the limited path length and some missing

emantic relationships in the customized biomedical knowledge
r a ph, k e y biological entities (such as coagulation factor VII, co-
gulation factor X, and coagulation factor IX) that are important
or the treatment of hemophilia B are present in the predicted
aths. As shown in Fig. 4 , the treatment of hemophilia B involves
 complex molecular network of blood coagulation, and many of
he coagulation factors (such as factor VII, factor III, factor II, fac-
or VIII, factor IX, and factor X) present in the predicted paths
re also part of this molecular network. In Supplementary Sec-
ion S6, we also utilize the KGML-xDTD model fr ame work to pr edict
he top 10 three-hop BKG-based paths, which can serve as biolog-
cal explanations of the predicted “treats” relationship between
actor VIIa and hemophilia B (shown in Table 4 ). This particular
rug/treatment–disease pair is not included in the training set
nd thus can be used to indicate how KGML-xDTD ’s MOA path pre-
ictions can contribute to the explanation of the predicted drug
 epur posing r esults . T he predicted paths show molecular details
kin to those in Fig. 4 for treating hemophilia B. As a result, the
redicted paths by KGML-xDTD model framework can help identify
 e y molecules in the real drug action regulatory netw ork, thereb y
iding in explaining drug r epur posing to some extent. 

ase 2: Huntington’s disease 
untington’s disease (HD) is a r ar e neur ogenetic disorder that

ypically occurs in midlife with symptoms of depression, un-
ontr olled mov ements, and cognitiv e decline. While there is cur-
 entl y no drug/tr eatment that can alter the course of HD, some
rugs/treatments can be useful for the treatment of its symp-
oms in abnormal movements (e.g., c hor ea) and psyc hiatric phe-
otypes. We show 10 drugs/treatments with the highest pre-
icted probability by the KGML-xDTD model fr ame work after man-
al processing in Table 5 . This processing involves excluding the
 hemother a peutic drugs fr om the pr edicted drug candidate list
ue to their potential risk of cytotoxicity to normal cells (which
ould lead to false positives for drug r epur posing of noncancer
iseases [ 74 , 75 ]), and onl y pr esenting the top 5 r esults in the tr ain-

ng set and top 5 from the test or validation set. From this table,
t can be observed that many of the top-r anked pr edicted drugs
ave been supported by publications as potential treatments for
he symptoms of HD. Since there is currently no effective treat-

ent for HD, DrugMechDB does not have a corresponding MOA
ath for comparison. To anal yze the pr edicted paths by the KGML-
DTD model fr ame work for the predicted nonchemotherapeutic
rugs/treatments that are not included in the training set (shown

n regular text in Table 5 ), we present their top 5 predicted paths
n Fig. 6 . From these predicted paths, we can see that most of
hem ar e biologicall y r ele v ant. For example, Fig. 6 A shows that
isperidone is predicted to be useful for the treatment of HD
y decreasing the activity of the genes associated with the 5-
ydr oxytryptamine r eceptor (e.g., HTR1A, HTR2A, HTR2C, HTR7)
nd dopamine receptor (e.g., DRD2), which have been proven to
e involved in the pathogenesis of de pressi ve disorders [ 76 , 77 ].
he presence of de pressi ve symptoms is a significant c har acteris-
ic of HD [ 78 ]. Entinostat is predicted to have the potential to alle-
iate the symptoms of HD by inhibiting the functions of histone
eacetylase genes such as HDAC1 and HDAC6 (see Fig. 6 B), and
ne of the predicted 3-hop BKG-based MOA paths (“Entinostat” →
decreases activity of” → “HDAC1 gene” → “interacts with” → “His-
one H4” → “gene associated with condition” → “Huntington’s dis-
ase”) is supported by the pr e vious r esearc h [ 79 , 80 ]. Primaquine is
redicted to act on the IKBKG gene to potentially play a ther a peu-
ic role in neurodegenerative disease (see Fig. 6 C), reported in [ 81 ].
ccording to the predicted BKG-based MOA paths (see Fig. 6 D), is-

adipine may have a potential therapeutic effect for HD by mainly
egulating the genes of the calcium voltage-gated channel, includ-
ng CACNA1C and CACNB2. These genes may be associated with
he symptoms of HD, such as depression and dementia [ 82 ]. Lastly,
mifampridine is predicted to regulate the genes of the potassium
olta ge-gated c hannel (see Fig. 6 E), whic h ar e potentiall y associ-
ted with HD [ 83 ]. All these examples indicate that the predicted
KG-based MOA paths can explain the mechanism of repurposed
rugs to some extent. 

rug Class Analysis 

he drug r epur posing pr ediction of the KGML-xDTD model does
ot le v er a ge an y information r egarding drug similarity such as
rug classes, SMILES, drug side effects, and drug-related gene pro-
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F igure 5: Comparison betw een the top 5 predicted 3-hop paths (including an y av ailable DrugMec hDB-matc hed BKG-based paths in the top 10 predicted 
paths, highlighted in red) and the curated DrugMechDB-based MOA paths for Eptacog Alfa and Nonacog Alfa. Note that the RTX-KG2 paths and 
DrugMechDB paths might use different synonyms for the same biological concept. For better visualization and illustration, we utilize consistent entity 
synonyms between the predicted paths and the curated paths as well as present the predicted paths in a graph structure. (A, C) Graph representation 
of predicted paths generated by KGML-xDTD respectively for Eptacog Alfa and Nonacog Alfa. (B, D) Human-curated DrugMechDB MOA paths. 

Table 5: Top 5 predicted drugs/treatments used in the training set 
(highlighted in red bold) and the top 5 nonchemotherapeutic pre- 
dicted drugs/treatments that are not in the training set for Hunt- 
ington’s disease 

Drug/Treatment Prob. Publications 

Pimozide 0.939 [ 84 , 85 ] 
T her apeutic agent 0.939 
Olanzapine 0.938 [ 86 , 87 ] 
Riluzole 0.935 [ 88 ] 
Antipsychotic agent 0.932 [ 89 ] 
Risperidone 0.893 [ 78 , 90 ] 
Entinostat 0.888 [ 79 ] 
Primaquine 0.887 
Isradipine 0.884 [ 91 ] 
Amifampridine 0.882 
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files/sequences, and we find that the distribution of drug classes 
in true-positive drug–disease pairs is similar between the training 
and test sets (see Fig. 7 ). In this section, we examine whether our 
model can only predict the drugs with the drug classes that it has 
seen in the training set. 

To do this, we use the MyChem.info APIs [ 48 ] to r etrie v e the 
FDA’s “Established Pharmacologic Class” (EPC) information for 
chemicals/drugs using their synonym identifiers. For the FDA- 
una ppr ov ed c hemical/drug without suc h EPC information, we 
onsider it as as a single class. We first utilize the KGML-xDTD
odel to predict the top 100 chemicals/drugs for each of the 1,140

iseases in the test set (described in “Data split” section) after ex-
luding the drug–disease pairs presented in the training set. Then
e count the number of drug classes among these 100 predicted
rugs that are not seen in the training set for each disease. Fig. 8
hows the distribution of unseen drug classes in the top 100 pre-
icted nontrain drugs across the 1,140 diseases in the test set. We
an see that each disease has at least 70 different drug classes
mong the top 100 predicted drugs, indicating that the pr edictiv e
o w er of the KGML-xDTD model is derived from the node attribute

nformation and knowledge gr a ph topology structur e r ather than
ny drug class information. 

iscussion 

n this w ork, w e propose KGML-xDTD , a 2-module, knowledge
r a ph–based mac hine learning fr ame work that not onl y pr edicts
he treatment probabilities between drugs/compounds and dis- 
ases but also provides biological explanations for these predic- 
ions through the predicted paths in a massive biomedical knowl-
dge gr a ph with compr ehensiv e biomedical data sources as po-
ential mechanisms of action. This framework can assist medical 
 esearc hers in quic kl y identifying the potential drug/compound–
isease pairs that might have a treatment relationship, which can
ccelerate the process of drug discovery for emerging diseases.
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Figure 6: Top 5 predicted 3-hop BKG-based MOA paths (integrated into a graph for better visualization) for top 5 nonchemotherapeutic predicted 
drugs/treatments that are not included in the training set for Huntington’s disease. 
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dditionall y, by le v er a ging the KG-based MOA paths pr edicted by
he fr ame work, medical pr ofessionals (e.g., doctors and licensed

edical practitioners) can straightforw ar dly assess the accuracy
f the pr edictions, whic h can help to reduce false positives that
ay be produced by the “black-box” operation of traditional ma-

hine learning models. 
Although pr e vious r esearc h [ 15 , 19 , 24 ] has a pplied a v ariety

f models to the task of drug r epur posing using BKGs, these ap-
r oac hes ar e implemented in the small-scale BKGs, and man y
o not scale to larger and more complex graphs as biotechnol-
gy advances and the volume of data in biomedical databases in-
reases. In our comparison with state-of-the-art KG-based mod-
ls for drug r epur posing, we find that the KGML-xDTD model
ad higher accuracy with lo w er false positives when applied
o a massive and complex biomedical knowledge gr a ph RTX-
G2c . By e v aluating the pr edicted paths with DrugMec hDB and
 case studies, we show that the model can ca ptur e some
 e y biological entities involved in real drug action regulatory
etworks. 

It is widely acknowledged that drug repurposing is one of the
ost challenging problems in biomedicine, and current artificial

ntelligence (AI) techniques are still in the early stages of ad-
r essing it. Man y other AI models, suc h as those based on chemi-
al structur e, drug–tar get inter actions, and drug perturbations of
ene expr ession, ar e de v eloped for solving this goal. T hey ma y of-
er mor e accur ate pr edictions but also hav e limitations in terms
f cost and the availability of samples for specific diseases. BKG-
ased machine learning models, such as the KGML-xDTD model,
ffer a cost- and time-efficient alternative due to the large volume
f biomedical knowledge stored in public databases and publica-
ions . T he KGML-xDTD model fr ame work is not intended to r eplace
r beat these models but rather provides a complementary ap-
r oac h that le v er a ges emer ging knowledge gr a phs for drug r epur-
osing. 
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Figure 7: Comparison of the drug class distribution in true-positive drug–disease pairs between the training set and test set. The drug class of each 
drug/chemical in these pairs is determined based on the FDA “Established Pharmacologic Class” (EPC) accessed via MyChem.info APIs . T her e ar e 2,238 
drug classes r epr esented in the true-positive drug–disease pairs in the training set and 718 drug classes in the test set. For visualization purposes, we 
only show the top 10 drug classes in each set and the rest is classified into the “Others” class. 

Figure 8: Distribution of unseen drug classes in the top 100 predicted 
nontrain drugs across the 1,140 diseases in the test set. 
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Future work to further enhance the KGML-xDTD model frame- 
work might include extending the predicted paths for more spe- 
cific explanations and considering the negative drug–disease pairs 
so that the model can explain why certain drugs are harmful to 
diseases. 

Availability of Source Code and 

Requirements 

Project name: KGML-xDTD 

� Pr oject homepa ge: https://github.com/chun yuma/KGML-x 
DTD 

� Operating system(s): Linux (Ubuntu) 
� Resource usage in training ste p: A Lin ux (Ubuntu) system 

with at least 8 CPU cores, 800 GB of VRAM, and a 48 GB GPU 

card (48 GB Quadro RTX 8000 GPU card used in our training) 
� Resource usage in inference ste p: A Lin ux (Ubuntu) system 

with at least 8 CPU cores and 50 GB of VRAM. The GPU card 

is not necessary, but if used, the GPU card needs at least 24 
GB VRAM (48 GB Quadro RTX 8000 GPU card used in our in-
ference) 

� Time r equir ement: Based on our har dw are performance and
parameter settings (please see the scripts on GitHub), the 
training step takes a ppr oximatel y 2 weeks while the inference
ste p tak es a ppr oximatel y 25.42 seconds for 1 drug–disease
pair with 3,320 potential paths . T hese time estimates may
vary depending on the har dw ar e performance, par ameter set-
tings, and the number of potential paths of a given drug–
disease pair. 

� Pr ogr amming langua ge: Shell Script (Bash) with Python 3.8.12
� Other r equir ements: Python 3.8.12 with GPU/CPU support 

(Gr a phSAGE tr aining needs Python 2.7), neo4j-community 
3.5.26, miniconda 4.8.2 (please see more requirements in the 
yaml files under “envs” folder on Github repository) 

� Licenses: MIT license, DrugBank academic license, Apache 2.0 
license, UMLS Metathesaurus license, CC-BY 4.0 license 

� Resear ch Resour ce Identifier (#RRID): SCR_023678 

a ta Av ailability 

he data sets supporting the results of this article are publicly
vailable in the Zenodo repository [ 92 ]. All supporting data and
aterials are available in the GigaScience GigaDB database [ 93 ]. 
Molecular data provider : A knowledge-centric data provider for 

ystems chemical biology, as part of the NCATS Biomedical Data
 ranslator (“T ranslator”). See more in https://github.com/NCATS 
r anslator /Translator-All/wiki/Molecular -Data-Pr ovider [ 94 ]. 

dditional Files 

upplementary Section S1. Biomedical Knowledge Gr a ph RTX- 
G2c Pr epr ocessing. 
upplementary Section S2. Summary of Data Resources Used by 
yChem Data. 
upplementary Section S3. Implementation Details of KGML- 
DTD Model Fr ame work. 
upplementary Section S4. Implementation Details of Demon- 
tr ation P ath Extr action. 
upplementary Section S5. Implementation Details of Baseline 
odels. 

https://github.com/chunyuma/KGML-xDTD
https://github.com/NCATSTranslator/Translator-All/wiki/Molecular-Data-Provider
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upplementary Section S6. Top 10 KGML-xDTD’s Pr edicted P aths
erving as Biological Explanations for the Predicted “Treats” Rela-
ionship between Factor VIIa and Hemophilia B. 
upplementary Table S1. Ele v en data r esources used by MyChem
ata. 
upplementary Table S2. Hyper par ameters used for baseline
odels. 

upplementary Fig. S1. Top 10 predicted 3-hop paths (inte-
rated into a graph for better visualization) generated by the
GML-xDTD model fr ame work serv e as biological explanations
f the predicted “treats” relationship between factor VIIa and
emophilia B. The path highlighted with red is the one in
hich all nodes can align with the k e y molecules in the real
rug action regulatory network shown in Fig. 4 in the main
ext. 

bbreviations 

 CC: accuracy; ADA C: adversarial actor–critic; BKG: biomedi-
al knowledge gr a ph; DWPC: degr ee-weighted path count; EHR:
lectr onic health r ecord; FDA: Food and Drug Administr ation;
RL: gr a ph r einforcement learning; GWAS: Genome-wide asso-
iation studies; KG: knowledge gr a ph; LSTM: long short-term
emory; Macr o-F1: macr o F1 scor e; MDP: Mark ov decision pr o-

ess; MeSH: Medical Subject Heading; MOA: mechanism of ac-
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