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Abstract: Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a
severe zoonosis occurring in the Palearctic region mainly transmitted through Ixodes ticks. In Italy,
TBEV is restricted to the north-eastern part of the country. This report describes for the first time a
case of clinical TBE in a roe deer (Capreolus capreolus L.). The case occurred in the Belluno province,
Veneto region, an area endemic for TBEV. The affected roe deer showed ataxia, staggering movements,
muscle tremors, wide-base stance of the front limbs, repetitive movements of the head, persistent
teeth grinding, hypersalivation and prolonged recumbency. An autopsy revealed no significant
lesions to explain the neurological signs. TBEV RNA was detected in the brain by real-time RT-PCR,
and the nearly complete viral genome (10,897 nucleotides) was sequenced. Phylogenetic analysis
of the gene encoding the envelope protein revealed a close relationship to TBEV of the European
subtype, and 100% similarity with a partial sequence (520 nucleotides) of a TBEV found in ticks in the
bordering Trento province. The histological examination of the midbrain revealed lymphohistiocytic
encephalitis, satellitosis and microgliosis, consistent with a viral etiology. Other viral etiologies
were ruled out by metagenomic analysis of the brain. This report underlines, for the first time, the
occurrence of clinical encephalitic manifestations due to TBEV in a roe deer, suggesting that this
pathogen should be included in the frame of differential diagnoses in roe deer with neurologic disease.

Keywords: roe deer; tick-borne encephalitis; neurologic disease; pathology; genetic characterization

1. Introduction

Tick-borne encephalitis virus (TBEV), the causative agent of the severe, and even lethal,
zoonosis tick-borne encephalitis (TBE), is a member of the genus Flavivirus, family Fla-
viviridae; the viral genome is a positive-sense, single-stranded RNA molecule of about
11 Kb. Nowadays, five subtypes of TBEV are known, phylogenetically classified and
characterized by different geographical distribution and severity of disease: European
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(TBEV-Eu), Siberian (TBEV-Sib), Far Eastern (TBEV-FE), Baikalian (TBEV-BKl) and Hi-
malayan (TBEV-Him) [1,2]. The prevailing subtype in Western Europe is TBEV-Eu, the
least virulent subtype with a case fatality rate of less than 2% compared to the TBEV-FE
(20–60%) and TBEV-Sib (7–8%) [3,4].

TBEV is mainly transmitted through bites of infected ticks of the genus Ixodes to
different mammals, including humans [5,6]. Occasionally, human infection can also occur
via alimentary route in people consuming unpasteurized milk from infected dairy cattle
or small ruminants [7]. Ixodes ricinus is the main vector of TBEV-Eu, while TBEV-Sib and
TBEV-FE are mainly transmitted by Ixodes persulcatus. Ticks act as the vector and a reservoir
of TBEV, which is transmitted from viraemic competent host animals to ticks [8] or by
infected to uninfected ticks co-feeding on the same host [9–11]. Notably, infected ticks can
transmit the virus to their offspring through transovarian transmission [12].

The ecology and epidemiology of TBEV depend on different interconnected factors,
such as climate, landscape and density of ticks and their hosts, including both species
that are competent for TBEV transmission (as small rodents) and other species (e.g., wild
ungulates) playing a key role in maintaining a consistent tick population, although not
competent for viral transmission [13]. For this reason, natural foci of TBEV have a patchy
distribution, ranging from a few square metres to several square kilometres [14,15].

The actual impact of TBEV in mammals other than humans is poorly investigated.
Indeed, few reports of clinical TBE in animals are available in the literature [16–24] and
the infection is notably asymptomatic in ruminants, with few exceptions [25–28]. No
clinical cases have been reported in roe deer (Capreolus capreolus L.) so far, although this
species is one of the most abundant cervids in Europe and acts as a preferential host for
I. ricinus [29,30]. In roe deer, viraemia is generally low and short, so that it is considered
unable to infect ticks [31–36]. On the other hand, serological monitoring in this species has
been used as a sentinel for TBE foci detection [36].

In the present paper, we describe clinical signs, pathological findings and the viral
characterization in a case of TBE in a roe deer in Belluno province (Veneto region, North-
Eastern Italy), a longtime recognized endemic area, accounting for about 40% of all the
Italian cases of TBE in humans.

2. Materials and Methods
2.1. Case History, Clinical Signs and Autopsy Findings

On 2 June 2021, the Belluno Provincial Police found a one-year-old female roe deer in
the Belluno municipality, in a location named Modolo (46◦07′58.0′ ′ N; 12◦15′11.3′ ′ E; 390 m
a.s.l.). The animal was in poor general condition and showed various neurological signs in-
cluding ataxia, staggering movements, muscle tremors, wide-base stance of the front limbs,
repetitive movements of the head, persistent teeth grinding, hypersalivation and prolonged
recumbency (videos are provided as Supplementary Materials as Videos S1 and S2). Due to
the severity of the clinical manifestation and the passive surveillance plans undertaken in
the region to rule out infectious diseases of public health interest, the animal was, therefore,
humanely culled and promptly submitted to the Istituto Zooprofilattico Sperimentale delle
Venezie (IZSVe) for post-mortem examination and diagnosis.

An autopsy revealed no significant lesions to explain the neurological signs. Be-
sides evident teeth wear, presumably due to grinding, other findings were nonspecific.
Concerning the brain, only mild vascular congestion was observed.

Seventeen engorged ticks, morphologically identified as adult I. ricinus, were found
in the skin and collected for molecular analyses to assess for the presence of common
pathogens of public health interest. Roe deer’s brain was collected for virological and
histological investigations.

2.2. Virologic and Molecular Testing

First, rabies virus infection was ruled out through the direct fluorescent antibody
(DFA) test coupled with real time PCR (RT-PCR) and virus isolation attempt [37,38]. A iQ
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Check Listeria monocytogenes II kit (Certificate number: BRD 07/10–04/05) was also used
to detect DNA of L. monocytogenes. Based on negative results, the presence of a Flavivirus
infection was, therefore, investigated through a specific RT-PCR targeting the 3′ noncoding
region of the TBEV genome [39].

Nucleic acids were extracted from tick samples using the All Prep DNA/RNA mini
Kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s instructions. DNA
was amplified by SYBR Green real-time PCR (rPCR) assays for Borrelia burgdorferi (s.l.),
Rickettsia spp., Babesia spp., and Anaplasma phagocytophilum; RNA was amplified by a
specific real-time PCR (rRT-PCR) for TBEV [39,40].

2.3. Illumina MiSeq Sequencing, Bioinformatics Analysis and Phylogeny

Total RNA was extracted from brain tissue with the QIAamp Viral RNA mini kit
(Qiagen, Valencia, CA, USA) and then subject to double stranded cDNA synthesis using the
Maxima H Minus Double-stranded cDNA synthesis kit #K2561 (ThermoFisher, Waltham,
MA, USA), purified with magnetic beads (Agencourt AMPure XP, Beckman Coulter, Brea,
CA, USA), and quantified with the Qubit dsDNA HS assay kit (ThermoFisher, Waltham,
MA, USA). Library preparation was performed using a Nextera XT DNA sample prepa-
ration kit and processed on an Illumina MiSeq instrument with a MiSeq reagent kit V3
(2 × 300 bp paired-end [PE] mode; Illumina, San Diego, CA, USA)

Illumina reads quality was assessed using FastQC v0.11.2 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc) and consensus sequence of the whole genome obtained
using the pipeline, as detailed in Appendix A.

Whole genome consensus sequence and the nucleotide portion coding for the envelope
protein (E) were compared with the most related sequences available in GenBank database.
A multiple nucleotide sequences alignment for E containing the aforementioned sequences
(21RS1767 and blast results), as well as representative ones for the five subtypes described
so far TBEV-Eu, TBEV-Sib, TBEV-FE, TBEV-Bkl and TBEV-Him was obtained using MAFFT
v. 7 [2,41–44]. A maximum likelihood phylogenetic tree was obtained using GTR + F + I +
G4. To assess the robustness of individual nodes of the phylogeny, 1000 bootstrap replicates
were performed. A phylogenetic tree was visualized using FigTree v1.4.3.

Envelope protein (E) and nonstructural protein 5 (NS5) amino acid sequences have
been inspected to look for major viral determinants of virulence previously identified [45].

2.4. Histological Examination, Immunohistochemistry and Immunofluorescence

A sample of midbrain collected at autopsy was fixed in 10% neutral buffered formalin,
processed routinely, embedded in paraffin, microtome-sectioned, stained with hematoxylin
and eosin (H&E) and mounted on glass slides for histologic examination under optic
microscope. Immunohistochemistry (IHC) for Listeria monocytogenes and Toxoplasma gondii
was performed on further 4 µm formalin-fixed paraffin-embedded sections in an automated
immunostainer (Discovery Ultra; Roche, Ventana Medical Systems™, Oro Valley, AZ,
USA). After dewaxing, sections were submitted to antigen retrieval with ULTRA Cell
Conditioning Solution (pH 6.0, Ventana) at 91 ◦C (24–32 min). Sections were incubated
with polyclonal rabbit antibodies, anti-Listeria O (1:500 diluted for 32 min, BD Difco™,
Franklin Lakes, NJ, USA) and anti-Toxoplasma gondii inflammatory profilin (1:50 diluted for
40 min, Clinisciences™, Nanterre, France) at room temperature. The OmniMap anti-rabbit
HRP (Ventana, Santa Clara, CA, USA) was used as detection system. Sections of bovine and
feline brain naturally infected by Listeria monocytogenes and Toxoplasma gondii, respectively,
were used as positive controls. Replicate tissue sections, submitted to the same protocol
without the primary antibody, were used as negative controls.

For immunofluorescence analysis of the active microglia in the roe deer midbrain,
4 µm-thick sections were re-hydrated and antigen retrieval was performed by incubation in
citrate buffer 0.01 M pH 6 at 95 ◦C for 20 min. Slides were then permeabilized for 20 min at
RT with PBS 1% Triton X-100. Slides were saturated with blocking buffer (BSA 5% in PBS 0.1%
Triton [PBSt]) for 1 h and incubated overnight at 4 ◦C with the mouse monoclonal anti-Iba1

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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(ionized-calcium binding protein 1) primary antibody (1:100 diluted, Abcam, Cambridge, UK).
The following day, samples were incubated in the dark 2 h with a secondary antibody (goat
anti-mouse Alexa Fluor 568, Thermo Fisher Scientific, Waltham, MA USA) conjugated with a
fluorophore, previously diluted in 1% BSA in PBSt. Slides were washed and mounted in with
Fluoroshield Mounting Medium with DAPI (Sigma-Aldrich, Saint Louis, MO, USA), to label
cell nuclei. Images were acquired with Leica TCS SP8 confocal microscope equipped with a
CCD camera using LAS AF 2.7.3.9723 software and analyzed using ImageJ.

3. Results

Molecular investigations performed on the brain yielded positive results for TBEV. The
metagenomic approach allowed us to reveal and identify TBEV as the unique viral pathogen
in the brain. An almost complete genome sequence with a length of 10,897 nucleotides was
obtained (sequences available in GenBank under the accession numbers OM084948). The
coding region extended from the nucleotide position 114 to 10,358 and corresponded to
a polyprotein of 3414 amino acids. From the BLAST carried out with the consensus sequence
of the genome towards the sequences available in the database on
22 November 2021 (https://blast.ncbi.nlm.nih.gov/Blast.cgi), the highest similarity (99.17%)
was identified with the TBEV AS33 (GQ266392) strain isolated from ticks in Germany in
2005. As previously seen for the German strains named Salem (FJ572210) and AS33
(GQ266392), the virus genome presents a deletion of 43 nucleotides in the untranslated
region (NTR) of polyadenosine in relation to reference strain Neudoerfl (U27495) [45]. At
the amino acid level, there were 18 differences scattered throughout the genome compared
to the AS33 strain, while there were 37 compared to the Neudoerfl strain. Amino acids
differences observed from the comparison of E and NS5 proteins of the 21RS1767, AS33
and Neudoerfl viruses are summarized in Table S1 (Neudoerfl numbering for nucleotide
positions was considered). Interestingly, E protein showed three differences in antigenic
domains I and II [46]; in particular, 21RS1767 showed Glu (E) at position 331 of the cen-
tral domain (I) and Thr (T) at position 361 of the dimerization domain (II), similar to the
Neudoerfl virus, whereas, at position 408 (central domain (I)), it showed Ile (I), similar
to the AS33 virus. At position 761 in the E stem anchor, the 21RS1767 virus showed an
Ile (I), whereas AS33 and Neudoerfl showed a Leu (L). NS5 protein showed a total of ten
differences; in particular, five were within the N-terminal RNA methyltransferase (MTase)
domain and one in the RdRp catalytic domain. Position 2532 and 2559 showed Arg (R)
and Glu (E), respectively, similar to Neudoerfl, whereas 2562, 2619 and 2764 showed the
same residues present in AS33. Position 3297 in the RdRp catalytic domain showed a Val
(V) for both 21RS1767 and AS33, whereas Neudoerfl showed Ala (A). Mutations in the E
and NS protein involved in TBE neuroinvasiveness and neurovirulence previously listed in
the review of the Kellman et al. (2018) have not been detected [3].

Based on phylogenetic analysis of gene E, sample 21RS1767 grouped within the Euro-
pean subtype (Figure 1); the highest percentage of nucleotide similarity (100%) was found
to be with the partial sequence (520 nt) of a TBEV obtained from a pool of ticks collected in
2018 on Monte Calisio in Val d’Adige (TN) (Genbank accession number MN746771), about
100 km from Modolo, which also presented the Ile (I) at position 408 [46].

TBEV and Babesia spp. were not found in ticks. Four ticks out of seventeen harbored
A. phagocytophylum, two tested positive for R. helvetica and two were co-infected by two pathogens:
one by A. phagocytophilum and R. helvetica and another by A. phagocytophilum and B. afzelii.

At histological examination, the midbrain showed a moderate, multifocal encephalitis
characterized by perivascular cuffs and neuropil infiltrates of lymphocytes and histiocytes
mixed with fewer eosinophils and rare neutrophils, in both grey (Figure 2) and white matter.
Moreover, gliosis, neuronal chromatolysis and rare microglial nodules were observed in the
grey matter. The presence of active microglia was further confirmed through immunofluo-
rescence staining for the marker Iba1 (Figure 3). The increased number of active immune
cells in the midbrain of the infected roe deer has been observed by comparing the number
of Iba1 cells in a non-infected, control roe deer brain.

https://blast.ncbi.nlm.nih.gov/Blast.cgi


Viruses 2022, 14, 300 5 of 11
Viruses 2022, 14, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 1. Maximum likelihood phylogenetic tree of TBEV E gene. In red the virus OM084948_TBEV_roe
deer_21RS1767_Italy_2021 amplified from the roe deer’s brain. European (TBEV-Eu), Siberian (TBEV-Sib),
Far Eastern (TBEV-FE), Baikalian (TBEV-Bkl) e Himalayan (TBEV-Him) are grouped and highlighted,
respectively, in ligth blue, yellow, purple, green and orange. The highest percentage of nucleotide
similarity (100%) was found with the partial sequence (520 nt) of a TBEV obtained from a pool of ticks
collected in 2018 on Monte Calisio in Val d’Adige (TN) (virus marked in blue).
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midbrain. Nuclei are stained with DAPI, light blue. Scale bar: 50 µm.

Diagnostic tests for L. monocytogenes and T. gondii yielded negative results.
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4. Discussion

We herewith described the clinical, pathological and virological findings of a symp-
tomatic roe deer infected by a TBEV from a known endemic area of North-Eastern Italy. The
TBEV responsible for this case was characterized as a European subtype with the highest
percentage of nucleotide similarity (100%) at the E gene with the partial sequence (520 nt)
of a TBEV (MN746771) obtained from a pool of ticks collected in Trento province in 2018, a
location about 100 km from the case described herein [46].

Histological findings in the roe deer’s midbrain were supportive of a neurotropic
virus infection, although we did not observe any extensive neuronal necrosis and neu-
ronophagy as described in human or canine TBE [47]. Notably, we observed the activation
of microglia in the midbrain of the infected animal, as depicted by histological analysis
and immunofluorescence for the specific marker Iba1. Unfortunately, we did not find
any viral protein by immunofluorescence, as the specimen material was too small and
probably not representative of the ongoing TBEV infection that was actually identified by
real-time RT-PCR. Given the lower presence of eosinophils and neutrophils in the infiltrate,
we further ruled out the presence of co-infections through immunohistochemistry tests for
T. gondii and L. monocytogenes.

Molecular investigations did not reveal the presence of mutations in the E and NS protein
notably involved in TBE neuroinvasiveness and neurovirulence previously identified [3,48]. It
is, however, worth mentioning the presence of amino acid differences compared to AS33 and
Neudoerfl strains in the antigenic domains (I and II), a region involved in the viral membrane
fusion with the host cell, a finding deserving further investigation.

Our report leads to the inclusion of TBEV in the frame of a differential diagnosis of
clinical encephalitis in roe deer, especially within and around known foci. In a public health
perspective, the case herein described, as well as those quoted in the literature, cannot be
used as an alert. Actually, even in the case of the emergence of TBEV, clinical episodes
in animals, if present, would be, unfortunately, preceded by far by cases in humans [49].
Nevertheless, cases in animals should be monitored and framed in a consistently mutating
ecopathological scenario. In fact, like other large wild and domestic mammals, roe deer do
not seem to play a direct role in the maintenance of TBEV, because, generally, the level of
viraemia after natural infection is too low to infect ticks and, therefore, the absence of TBEV
in the ticks collected from the roe deer’s carcass was not surprising [50,51]. Nevertheless, roe
deer play a role in the TBEV ecology, being a key host in granting survival and abundance of
I. ricinus populations [52]. It is worth noting that, in North-Eastern Italy, and, more broadly,
in the Alps, ungulates have been increasing for decades, in parallel to the progressive
depopulation and loss of human activities. Since fawns and yearlings (as the case presented
herein) are the age categories that, more than others, account for an incomplete immunity
to microparasites such as TBEV and heavy infestation by all active stages of I. ricinus [13],
and since studies in other species (e.g., horses) suggest declining levels of TBEV antibodies
following passive transfer from foals to yearlings, a high roe deer population turnover in
conjunction with environmental conditions favorable to ticks may lead to unpredictable
variations in the ecology of the disease [53]. Considering all the above, although referring
to a single case, our report stresses the importance to flank information on host population
dynamics to pathogen knowledge.
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Appendix A

Raw data were filtered by removing: (a) reads with more than 10% of undetermined
(“N”) bases; (b) reads with more than 100 bases with a Q score below 7; (c) duplicated
paired-end reads. Remaining reads were clipped from Illumina adaptors Nextera XT with
scythe v0.991 (https://github.com/vsbuffalo/scythe) and trimmed with sickle v1.33 (https:
//github.com/najoshi/sickle). Reads shorter than 80 bases or unpaired after previous
filters were discarded. Taxonomic assignment of high-quality reads was carried out using
the Basic Local Alignment Search Tool (BLAST 2.10.0+) alignment against the integrated NT
database (version 23 February 2020) and Diamond v0.9.17 alignment against the integrated
NR database (version 23 February 2020) [54]. Alignment hits with e-values greater than 1
× 10−3 were discarded. The taxonomical level of each read was determined by the lowest
common ancestor (LCA)-based algorithm that was implemented in MEGAN v6.18.50 [55].
For the reconstruction of the complete genome, reads taxonomically classified as belonging
to TBE were selected and de novo assembled using IDBA-UD v1.1.1 with the multi-kmer
approach using a minimum value of 24, a maximum value of 124 and an inner increment of
10 [56]. The longest contig produced was blasted online, resulting in >99% similarity with
the Genbank record “Tick-borne encephalitis virus isolate AS33, complete genome” (accession
number GQ266392.1), which was subsequently used for a reference-based assembly. High
quality reads were aligned against the chosen reference genome using BWA v0.7.12 and
standard parameters [57]. Alignments were processed with SAMtools v1.6 to convert them
in BAM format and sort them by position [58]. SNPs were called using LoFreq v2.1.2 [59].
According to LoFreq usage recommendations, the alignment was first processed with
Picard-tools v2.1.0 (http://broadinstitute.github.io/picard/) and GATK v3.5 in order to
correct potential errors, realign reads around indels and recalibrate base quality [60]. LoFreq
was then run on fixed alignment with option “–call-indels” to produce a vcf file containing
both SNPs and indels. From the final set of variants, indels with a frequency lower than
50% and SNPs with a frequency lower than 25% were discarded. To produce the consensus
sequence, we changed the reference genome in agreement with the following rules: (a) for
a position j, if coverage was not enough to reliably call variants, we added an “N” base;
(b) for a position j, if coverage was enough to reliably call variants but no SNP were called,
we added a reference genome base at position j; (c) for a position j, if coverage was enough
to reliably call variants and at least one SNP were called, we added the nucleotide using
the IUPAC nucleotide code (http://www.bioinformatics.org/sms/iupac.html) according

https://github.com/vsbuffalo/scythe
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://broadinstitute.github.io/picard/
http://www.bioinformatics.org/sms/iupac.html
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to the bases present. Finally, high quality reads were re-aligned with BWA against the
consensus sequence produced; we performed a visual inspection of the alignment with
tablet v1.14.10.21 and, if required, manually revised the consensus sequence based on this
alignment [61].
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