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ABSTRACT

Objective: The dorsomedial hypothalamus (DMH) has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and
body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including
neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), leptin receptor, and melanocortin 3/4
receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role
of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques.

Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via
locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological
properties of DMH GABAergic neurons were measured using slice patch clamp.

Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half
of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the
paraventricular nucleus of hypothalamus (PVN), where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN
neurons and promoted food intake.

Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via

inhibitory synaptic transmission to PVN.

© 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The dorsomedial hypothalamus (DMH) has been considered an orexi-
genic nucleus, since its lesion reduces food intake and body weight [1]
and induces resistance against diet-induced obesity [2,3]. The DMH
lesion also impairs food-entrainable circadian rhythms [4—6]. The DMH
expresses feeding regulatory neuropeptides including neuropeptide Y
(NPY) [7], cocaine- and amphetamine-regulated transcript (CART) [8],
and prolactin-releasing peptide (PrRP) [9]. It also expresses various re-
ceptors, including leptin receptor [10], melanocortin 3/4 receptors (MC3/
4) [11,12], Y1 receptor, Y5 receptor [13], and CCK receptor [14,15].
Region specific knock down and overexpression studies demonstrated
that NPY neurons in DMH, which are GABAergic and leptin insensitive
[7,16], play a role to promote food intake in rats [17—19], being

consistent with the DMH-lesion studies. However, it was reported that
the level of NPY expression is very low in mice fed with normal chow,
questioning its physiological role, while it is increased in diet-induced
obesity [20]. Hence, the principal orexigenic neuron in DMH under
physiological conditions remains to be identified.

It was reported that the mice deficient in leptin receptor specifically in
GABAergic neurons develop greater increases in food intake and body
weight compared to the mice deficient in leptin receptor specifically in
agouti-related protein (AgRP), proopiomelanocortin (POMC) or ste-
roidogenic factor 1 (SF1) neurons [21]. These results suggested that
GABAergic neurons including those in DMH could be a principal
orexigenic neuron targeted by leptin [21].

In the present study, the role of GABAergic neurons in DMH in feeding
regulation was analyzed using optogenetic and electrophysiological
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techniques. We found that DMH GABAergic neurons are hyperpolarized
by leptin and depolarized by lowering glucose, and that their opto-
genetic activation elicits inhibitory synaptic transmission to the para-
ventricular nucleus of hypothalamus (PVN) where anorexigenic
neurons are localized, and promotes food intake.

2. MATERIALS AND METHODS

2.1. Adeno-associated virus (AAV) 2 production

ChRFR-C167A, one of bistable variants of chimeric channelrhodopsins
[22], was fused with Venus and cloned into AAV2-GAD1 promoter-
WPRE-BGH-polyA vector. The AAV2 virus coded ChRFR-C167A-
Venus was generated using GD1001-RV (Genedetect.com Ltd. Auck-
land, New Zealand). Titer of the virus was 1.1 x 10'? genomic par-
ticles/ml.

2.2. Animals

Male C57blacké/J mice aged 8 weeks were maintained in a 12/12 h
light/dark cycle. The AAV2-GAD1-ChRFR-C167A virus (50 nl/injection
site) was injected stereotaxically to DMH at 1.4 mm caudal to the
bregma in the midline, 0.2 mm lateral and 5.4 mm below the surface
of the skull, under anesthesia with tribromoethanol (200 mg/kg). The
optical fiber with 250 or 500 um diameter was stereotaxically placed
above DMH (at 1.4 mm caudal to the bregma in the midline, 0.5 mm
lateral and 4.8 mm below the surface of the skull) or PVN (at 0.6 mm
caudal to the bregma in the midline, 0.25 mm lateral and 4.4 mm
below the surface of the skull). Mice were allowed to recover from the
operation for 2 weeks. On the day of experiments, food was removed
from cages at 15:30. The food was returned to cages at 19:30, and
food intake at 0.5, 1, 2, 3, 6 h were measured. Exposure to blue laser
(473 nm) followed by yellow (589 nm) laser (LUCIR, Tsukuba, Japan)
was performed via optical fibers with 10 ms pulses, 50 Hz for 2 s,
repeated every 5 s to the DMH or 3 s yellow pulse following 2 s blue
pulse repeated every 10 s to the PVN for 3 h from 19:30 to 22:30. At
the end of the experiments, the mice were perfused with 4% para-
formaldehyde (PFA) in 0.1 M PB and the coronal sections of the hy-
pothalamus were cut, to histologically verify the position of the virus
infection and optical fiber.

The animal experiments for this study were carried out in a humane
manner after receiving approval from the Institutional Animal experi-
ment Committee of Jichi Medical University, and in accordance with
the Institutional Regulation for Animal Experiments and Fundamental
Guideline for Proper Conduct of Animal Experiment and Related Ac-
tivities in Academic Research Institutions under the jurisdiction of the
Ministry of Education, Culture, Sports and Technology.

2.3. Acute slice preparation

The brains were rapidly removed from C57BL/6J male mice infected
AAV2-GAD1-ChRFR-C167A to DMH under anesthesia with tri-
bromoethanol (200 mg/kg). The isolated brains were placed in ice-
cold, carboxygenated (95% 0, and 5% CO5) high mannitol solution
containing (in mM) 229 mannitol, 3 KCI, 6 MgCl,, 0.5 CaCly, 1
NaH,PQ4, 26 NaHCOs3, and 10 glucose at pH 7.4 with 0.5 uM tetro-
dotoxin (osmolarity; 300—305 mOsm). A block of tissue containing the
hypothalamus was isolated and coronal slices (300 pum) were cut on a
vibratome. Following recovery for 1—2 h, slices were moved to a
recording chamber mounted on BX51WI upright microscope (Olympus)
equipped with video-enhanced infrared-differential interference
contrast (DIC) and fluorescence. Slices were perfused with a contin-
uous flow of carboxygenated aCSF containing (in mM) 127 NaCl, 2.5
KCl, 2 MgCl,, 2 CaCly, 1.23 NaH,PO4, 26 NaHCOs, and 2.5—10
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glucose at pH 7.4. Neurons were visualized with Olympus Optical 40 x
water-immersion lens.

2.4. Patch-clamp recording

Whole-cell current-clamp recordings were performed as previously
reported [23]. Briefly, pipettes were used with 3—9 MQ resistance
after being filled with pipette solution. Pipettes were made of bo-
rosilicate glass (Narishige) using a PP-83 vertical puller (Narishige)
or a Sutter micropipette puller (P-1000). The pipettes with 3—9 MQ
resistance after being filled with pipette solution were used. The
composition of the pipette solution for current clamp recording was
(in mM): 135 K-gluconate (for current clamp recording) or KCI (for
IPSC recording), MgCl, 2, HEPES 10, EGTA 1.1, Mg-ATP 2.5, Nay-
GTP 0.3, and Nao-phosphocreatine 10 at pH 7.3 with KOH (osmo-
larity; 290—295 mQOsm). Axopatch 200B amplifier and Clampex 10
software (Axon Instruments) were used for data acquisition. Pclamp
10 (Axon Instruments) software was used for analysis. Liquid
junction potential correction was performed off-line. Access resis-
tance was continuously monitored during the experiments. Only
those cells in which access resistance was stable (changes ~ 30%)
were included in the analysis. The data was analyzed by Clamp fit 10
(Axon instruments) software and GraphPad Prism6 software. If a
change of membrane potential was at least twice the standard
deviation of membrane potential for 2 min before addition of agents,
it was considered the response.

Irradiation was carried out using power LEDs (each from Lumileds, San
Jose, CA) emitting either blue light (peak, 460—490 nm, LXHL-NB98)
or yellow light (peak, 587—597 nm, LXHL-NL98) controlled by a
regulator (SLA-1000-2, Mightex, Toronto, Canada). If the cumulative
distribution of IPSC amplitude for 20 s after light exposure was
significantly larger than that before light exposure by kolomogrv-
semirnov test, it was considered the induction of light-evoked IPSCs.

2.5. Statistical analysis

Data are expressed as means =+ s.e.m. Two-way ANOVA followed by
Sidak multiple range tests was used for food intake experiments and
one-way ANOVA followed by Dunnet multiple range tests for mem-
brane potential experiments.

3. RESULTS

3.1. Optogenetic activation of GABAergic neurons in DMH promotes
food intake

To selectively activate GABAergic neurons in DMH, AAV2 coded
ChRFR-C167A-Venus under GAD1 promoter was infected to DMH.
ChRFR-C167A, a bistable variant of chimeric channelrhodopsin,
provides bimodal regulation: exposure to blue light (470 nm) induces
long lasting opening, which is subsequently terminated by exposure
to yellow light (592 nm) [22]. The mice expressing ChRFR-C167A-
Venus in DMH GABAergic neurons were studied. Venus fluores-
cence was observed in DMH at 2 weeks after virus infection
(Figure 1A). In acute slices including DMH under current clamp
mode, the ChRFR-C167A-Venus expressing neurons were long
lastingly depolarized by blue LED light exposure and repolarized by
yellow LED light (Figure 1B). In these mice, food intake was
measured with or without blue (473 nm) and yellow (589 nm) laser
light exposure for 3 h via optical fiber inserted above DMH. Cumu-
lative food intake at 2 and 3 h of light exposure was significantly
greater than the corresponding values in mice without light exposure
(Figure 1C). These data indicated that activation of DMH GABAergic
neurons promoted food intake.
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Figure 1: Optogenetic activation of GABAergic neurons in DMH promotes food intake. A, Local infection of AAV2-GAD1-ChRFR-C167A virus expressing ChRFR-C167A in
DMH. Scale bar indicates 200 um. B, ChRFR-C167A expressing neuron in DMH was depolarized and repolarized by blue and yellow LED light exposure, respectively (red trace),
while membrane potential was unchanged without light exposure (black trace). G, Cumulative food intake at 2 and 3 h was significantly increased by optical stimulation of DMH
GABAergic neurons for 3 h. Optical stimulation started at the onset of dark phase (19:30). Optical stimulation group n = 3, non-optical stimulation group n = 4. * indicates

p < 0.05, two-way ANOVA followed by Sidak multiple range test.

3.2. Leptin hyperpolarizes and lowering glucose depolarizes DMH
GABAergic neurons

To further assess the feeding-related property of DMH GABAergic
neurons, their responsiveness to systemic metabolic factors, anorex-
igenic leptin and orexigenic low glucose was examined. Neural activity
of ChRFR-C167A expressing neurons in DMH against leptin and
lowering glucose was measured in patch clamp experiments under
current clamp mode. In 10 recordings from 4 mice, leptin hyper-
polarized approximately 40% of ChRFR-C167A expressing neurons
from —47.1 + 1.8 mV to —49.9 + 1.6 mV (Figure 2A,B). Lowering
glucose from 2.5 to 0.5 mM depolarized approximately 60% of ChRFR-
C167A expressing neurons from —4693 + 19 mV
to —42.31 + 1.6 mV (Figure 2A,B), and hyperpolarized 30% of them
from —51.5 + 2.2 mV to —55.1 & 2.4 mV (data not shown). All the
leptin-hyperpolarized neurons were depolarized by lowering glucose
(Figure 2A). These data indicate that the DMH GABAergic neuron is
under reciprocal regulation by leptin and lowering glucose and its
activation promotes food intake.

3.3. DMH GABAergic neurons inhibit PVN neurons and promote
food intake

Axonal fibers and terminals of DMH ChRFR-C167A expressing neurons
were detected by the Venus fluorescence fused with ChRFR-C167A in

MOLECULAR METABOLISM 5 (2016) 709—715 © 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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PVN (Figure 3A), where anorexigenic neuropeptides, oxytocin, CRH and
nesfatin-1, are expressed [24]. To examine the functional connection
between DMH ChRFR-C167A expressing neurons and PVN neurons,
the effect of light exposure on IPSC onto PVN neurons was examined.
In 15 recordings from 5 mice, blue light exposure increased amplitude
of IPSC in 47% of PVN neurons (Figure 3B,C). This result indicated a
functional connection of DMH-ChRFR-C167A expressing neurons to
PVN neurons, and prompted us to examine whether this connection is
linked to feeding behavior. Light exposure was performed via optical
fiber inserted above PVN and food intake was measured. Blue
(478 nm) and yellow (584 nm) laser light exposure for 3 h increased
cumulative food intake for 3 h and 6 h significantly as well as a trend
for increase for 0.5, 1 and 2 h (Figure 3D). These data indicated the
DMH GABAergic neuron’s inhibitory synaptic transmission to PVN,
which promotes food intake.

4. DISCUSSION

The present study indicates that DMH GABAergic neurons are activated
by lowering glucose, a peripheral orexigenic signal, and inhibited by
leptin, a peripheral anorexigenic signal, and that once activated they
promote food intake via inhibitory synaptic transmission to the neurons
of PVN.

m


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

A

Extracellular
glucose (in mM)

2.5 0.5

[Fleptin 100 nM

-40+ sk

-50- I
*

Membrane potential (mV)
=
-

baseline |

leptin A
washout 4
baseline 4
washout A

0.5 mM glucse A

Figure 2: Leptin hyperpolarizes and lowering glucose depolarizes DMH
GABAergic neurons. A, Representative trace of membrane potential recording on
ChRFR-C167A expressing neuron. Leptin (100 nM) hyperpolarized and lowering
glucose (from 2.5 to 0.5 mM) depolarized the neuron. B, averaged membrane potential
before, during and after application of leptin (left) and lowering glucose (right).
*p < 0.05, **p < 0.01. One-way ANOVA followed by Dunnet multiple range test.

Although orexigenic function of DMH has long been suggested,
definitive role of DMH in the regulation of feeding has remained un-
clear. This is partly due to that the neuron subpopulation in the DMH
that regulates feeding is less specified, in contrast to the ARC where
orexigenic NPY/AgRP and anorexigenic POMC/CART neurons have
been well established. The present study employed the optogenetics to
selectively activate DMH GABAergic neurons, and demonstrated that
their activation promotes feeding behavior. Furthermore, DMH
GABAergic neurons substantially projected and exerted inhibitory
synaptic transmission to the neurons of PVN, the integrative center of
feeding. Moreover, DMH GABAergic neurons were directly regulated by
leptin and lowering glucose, the factors reflecting systemic energy
states and implicated in physiological regulation of feeding. These
results suggest that the projection of DMH GABAergic neurons to the
PVN serves as a pathway to promote food intake under physiological
conditions. This finding reinforces that DMH plays a role in promoting
feeding.

The present study indicated that leptin inhibits orexigenic GABAergic
neurons in DMH. This fits with previous report that leptin action on
GABAergic neurons prevents obesity, as evidenced by the study on
leptin receptor-deficient GABAergic neurons [21]. In contrast, it was
reported that leptin activates DMH neurons expressing LepR, NPY,
galanin or PrRP, and thereby stimulates thermogenesis by brown
adipose tissue [9,20,25,26]. Additionally, leptin activates PrRP neurons
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to suppress food intake [9]. Thus, it is suggested that in DMH leptin
inhibits GABAergic neurons to suppress energy intake and activates
another subpopulations of neurons to promote energy expenditure and/
or suppress energy intake, all contributing to reduction of body weight.
The opposing effects of leptin on different subpopulations of neurons
have been well known in ARC where leptin inhibits NPY/AgRP neurons
and activates POMC neurons.

The present study showed that DMH GABAergic neurons project to
PVN, being consistent with previous reports that DMH neurons,
including GABAergic neurons [27], project to PVN [28,29]. Although the
target neuron in PVN remains to be identified, the neurons expressing
oxytocin, CRH, nesfatin-1 and/or MC3/4 [30], potent anorectic neu-
ropeptides and receptor, are the candidates.

The DMH GABAergic projection to PVN may regulate not only feeding
but also other functions, in considering diverse functions of DMH and
PVN. SCN, the master clock governing circadian rhythm, projects to
DMH [31]. PVN is part of a multi-synaptic pathway that is responsible
for the circadian regulation of several functions including glucocorti-
coid and melatonin release [32] and feeding behavior [33,34]. These
findings suggest a possible functional connection between DMH and
PVN for circadian regulation. The DMH GABAergic projection to PVN,
found in the present study, could serve as a neuro-circuit that relays
DMH to PVN for circadian regulation.

We found that light activation of the presynaptic terminal of DMH
ChRFRR-C167-expressing GABAergic neurons evoked IPSC onto PVN
neurons. Open and close time constants of ChRFR-C167A are slower
than those of Channelrhodopsin2 under blue light exposure [22].
Therefore, we expected that photo-activation of ChRFRR-C167 would
evoke IPSCs continually and hence increase both amplitude and fre-
quency of total IPSC for a certain period, unlike channelrhodopsin2 that
evokes single large IPSC immediately after photo-activation. However,
our recording showed that IPSC frequency was not changed, although
the cumulative distribution of IPSC amplitude was increased. The
unchanged IPSC frequency could be due to possible additional
neuronal circuits. DMH GABAergic neurons may project to not only PVN
neurons but also GABAergic interneurons around PVN or presynaptic
terminals of GABAergic neurons onto PVN neurons. Light-evoked GABA
release from presynapses of DMH GABAergic neurons could not only
directly suppress PVN neurons but also inhibit GABAergic interneurons
and/or presynaptic terminals that secondarily suppress PVN neurons.
The net effects of these distinct neuro-circuits could result in little
change in IPSC frequency.

Our findings suggested that DMH GABAergic neurons project axonal
terminals to 47% of PVN neurons (Figure 3C), similarly to ARC AgRP
neurons that project to 49% of PVN neurons [35]. However, acti-
vation of DMH GABAergic neurons took more than 2 h to increase
food intake, whereas activation of AgRP neurons immediately
increased food intake [35]. Although the mechanisms underlying the
different time course of feeding behavior following DMH GABAergic
and ARC. AgRP neuron activation remain to be elucidated, we can
speculate a few explanations for the delayed effect of the DMH
GABAergic neuron activation on food intake. First, AgRP neurons
release AgRP and NPY, well-established potent orexigenic neuro-
peptides. On the other hand, it is still unclear what neuropeptide(s)
DMH GABAergic neurons can release. Secondly, DMH GABAergic
neurons were found to project to not only PVN but other feeding
regulatory nuclei including ARC, VMH, LH, and DMNV (data not
shown), in consistent with previous reports [17,36]. Some of these
projections could inhibit orexigenic neurons and thereby cancel out
the effect of the PVN neuron inhibition that increases food intake,
which may take place for the initial few hours. In contrast, AgRP
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Figure 3: DMH GABAergic neurons inhibit PVN neurons and promote food intake. A, Axonal fibers and terminals of DMH GABAergic neurons projecting to PVN. Scale bar
indicates 200 um in low magnification (left) and 10 um in high magnification images (right). B, Representative traces of IPSC onto PVN neurons that were evoked (upper) and
unaltered (lower) by light. G, In 15 IPSC recordings on PVN neurons, 7 (47%) showed light-evoked IPSC. D, Cumulative food intake was increased by 3 h optical stimulation of
axonal terminals of DMH GABAergic neurons at PVN. Optical stimulation started at the onset of dark phase. Optical stimulation group, n = 3, non-optical stimulation group, n = 4.

*p < 0.05 by two-way ANOVA followed by Sidak multiple range test.

neurons project to the nuclei where anorexigenic neurons dominate
[37,38]. It was also observed that the light administration on DMH
and that on PVN increased food intake in slightly different time
courses. This could be due to that the former activates additional
subpopulations of DMH GABAergic neurons.

5. CONCLUSION
DMH GABAergic neurons are regulated by metabolic signals leptin and

glucose and, once activated, promote food intake via inhibitory syn-
aptic transmission to PVN.
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