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Abstract: In livestock production, deeply understanding the molecular mechanisms of
growth and metabolic differences in different breeds of cattle is of great significance for
optimizing breeding strategies, improving meat quality, and promoting sustainable de-
velopment. This study aims to comprehensively reveal the molecular-level differences
between Chinese domestic cattle and Simmental crossbred cattle through multi-omics
analysis, and further provide a theoretical basis for the efficient development of the beef
cattle industry. The domestic cattle in China are a unique genetic breed resource. They
have characteristics like small size, strong adaptability, and distinctive meat quality. There
are significant differences in the growth rate and meat production between these domestic
cattle and Simmental hybrid cattle. However, the specific molecular-level differences be-
tween them are still unclear. This study conducted a comprehensive comparison between
the domestic cattle in China and Simmental crossbred cattle, focusing on microbiology,
short-chain fatty acids, blood metabolome, and transcriptome. The results revealed notable
differences in the microbial Simpson index between the domestic and Simmental crossbred
cattle. The differential strain Akkermansia was found to be highly negatively correlated
with the differential short-chain fatty acid isocaproic acid, suggesting that Akkermansia
may play a key role in the differences observed in isocaproic acid levels or phenotypes.
Furthermore, the transcriptional metabolomics analysis indicated that the differentially
expressed genes and metabolites were co-enriched in pathways related to insulin secre-
tion, thyroid hormone synthesis, bile secretion, aldosterone synthesis and secretion, and
Cyclic Adenosine Monophosphate (cAMP) signaling pathways. Key genes such as ADCY8
and 1-oleoyl-sn-glycero-3-phosphocholine emerged as crucial regulators of growth and
metabolism in beef cattle.

Keywords: Chinese domestic cattle; Simmental crossbred cattle; short-chain fatty acids
(SCFAs); 16sRNA sequencing; transcriptome; metabolome

1. Introduction
The growth and metabolism of beef cattle are influenced by a variety of factors,

including microorganisms, nutrient metabolism, and genetic variation [1]. Microorganisms
can enhance the performance and health status of ruminants [2]. Reasonable nutritional
formulation and feeding management can influence the body’s metabolism, leading to a
significant improvement in growth rate and feed utilization efficiency [3]. Genetic variation
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is essential for determining growth and metabolic potential, making the selection of superior
varieties and individuals a critical factor [4,5].

As a distinct and valuable genetic breed resource, the domestic cattle in Leibo County,
Sichuan Province, China, possess the characteristics of diminutive size, robust adaptability,
and exceptional meat quality, thereby holding significant research value and latent potential
for further exploration. Simmental cattle attract attention because of their rapid growth,
superior meat quality, and high meat production [6,7]. In China, they are often used as
a parental breed for high-quality beef cattle. Crossbreeding with domestic cattle breeds
helps preserve the high-quality meat genes of domestic cattle. It also improves slaughter
performance and increases the yield of high-grade beef. The resulting hybrids have shown
remarkable advantages and effectively increased the economic benefits of domestic cattle
breeding [8,9].

In comparison with domestic cattle, Simmental crossbred cattle display substantial
differences in production performance. The underlying molecular mechanisms responsible
for these differences warrant further investigation and elucidation. In this study, short-
chain fatty acids and microbial sequencing technology, in conjunction with transcriptome
and metabolome sequencing technologies, were utilized to explore the disparities in fecal
microbial community structure, transcriptional expression, and metabolic pathways be-
tween local cattle and Simmental crossbred cattle in Leibo County. This enabled an in-depth
examination of the uniqueness of native cattle among domestic animals, the revelation of
their distinctive gene regulatory loci and metabolic mechanisms, and the clarification of
their specific molecular-level differences from Simmental crossbred cattle.

2. Results
2.1. Microbial Composition

At the phylum level, the primary observed microbial phyla included Firmicutes, Bac-
teroidota, Euryarchaeota, Spirochaetota, and Verrucomicrobiota. At the genus level, Bacteroides,
Alistipes, Monoglobus, Methanobrevibacter, and Romboutsia were the most prevalent. Notably,
Romboutsia is relatively well represented in the T8 sample (Figure 1a,b). Short-chain fatty
acid results showed that AA, BA, and PA levels were relatively high in both TN and LB
groups. But there was a significant difference in 4—MVA (p < 0.05), with higher levels in
the TN group (Figure 1c; see Supplementary Table S1 for details). ASV-based PCA analysis
showed that the overall distribution of fitting circles between the LB group and the TN
group was located on both sides of the longitudinal axis. The sample distribution in the
LB group was more concentrated, while that in the TN group was relatively dispersed
(Figure 1d). A highly significant difference in the Simpson index was observed by the
rank-sum test (p < 0.01). Each diversity index was listed in Supplementary Table S2. After
conducting LEfSe analysis (with an LDA threshold of 4.0), a comparison of the relative
abundance of bacteria in the LB and TN groups revealed significant differences in the
following microbiota: In the TN group, the flora with significant differences included
Clostridia at the class level, unidentified Clostridia at the order level, Oscillospiraceae at the
family level, unidentified Oscillospiraceae at the genus level, and gut metagenome at the species
level. In the LB group, the flora with significant differences included Treponema, Akker-
mansia, and unidentified Clostridiaceae at the genus level, metagenome at the species level,
Spirochaetaceae at the family level, Spirochaetales at the order level, and several specific
species and family classifications. Clostridiales bacterium enrichment culture clone 06 1235251
76 and Akkermansiaceae show statistically significant differences (Figure 1e). The results of
differential metabolic pathways calculated by the metagenomeSeq method showed that the
TN group was significantly more effective in tetracycline biosynthesis. The biosynthesis of
type II polyketone backbones, biosynthesis of various secondary metabolites Part 1, cell
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adhesion molecules, and plant hormone signaling pathways are down-regulated relative to
LB (Figure 1f).
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Figure 1. Microbial composition and SCFAs content of TN and LB. The species composition of
fecal microorganisms in the TN group and LB group covered two levels: phylum (a) and genus (b).
(c) Short-chain fatty acids of TN and LB, 2-BA (2-Methylbutyric acid), 2-ECA (2-Ethylcaproic acid),
4-MVA (Isocaproic acid), AA (Acetic acid), BA (Butyric acid), CA (Caproic acid), DEA (Decanoic acid),
HPA (Heptanoic acid), IBA (Isobutyric acid), IVA (Isovaleric acid), OA (Octanoic acid), PA (Propionic
acid), VA (Valeric acid). (d) Microbial principal component analysis of TN and LB. (e) Differential
microorganisms with LDA score greater than the set value (default setting of 4). (f) ASV-based
histogram of PICRUSt2 differential pathway.

2.2. Transcriptomic Analysis

After conducting a comparative analysis between TN and LB, 1078 differentially
expressed genes (DEGs) were successfully identified. Among these genes, 772 were up-
regulated, and 306 were down-regulated. The volcano plot in Figure 2a visualizes the dis-
tribution of the differentially expressed genes. At the same time, the heatmap in Figure 2b
further reveals the expression levels of these genes. At the transcriptome level, the dif-
ferentially expressed genes (DEGs) identified in the TN group compared to the LB group
were significantly enriched (p < 0.05) among 525 Gene Ontology (GO) terms (Table S3),
primarily associated with immune receptor cell recombination based on immunoglobulin
superfamily domains. The regulation of reactions to biostimuli, lymphocyte-mediated im-
munity, and leukocyte-mediated immune pathways are illustrated in Figure 2c. Text: DEGs
detected in the TN group compared to the LB group were significantly enriched (p < 0.05)
in 65 KEGG terms (Table S4). The results of KEGG functional enrichment indicated that the
main enrichment was observed in primary immunodeficiency disease, graft-versus-host
disease, IgA-producing intestinal immune network, autoimmune thyroid disease, allograft
rejection, Staphylococcus aureus infection, asthma, antigen processing and presentation,
rheumatoid arthritis, African trypanosomiasis, Chagas disease, malaria, Viral myocarditis,
calcium signaling pathway, NF-κB signaling pathway, Yersinia infection, natural killer
cell-mediated cytotoxicity, Th1 and Th2 cell differentiation, type I diabetes mellitus, and
systemic lupus erythematosus (Figure 2d).
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Figure 2. Number of differentially expressed mRNAs in the control/experimental TN group com-
pared to the LB group. (a) Volcano diagram of DEGs. (b) Hierarchical clustering of DEGs. (c) GO
item enrichment of DEGs in the TN group compared with the LB group. (d) KEGG term enrichment
of DEGs in the TN group and LB group.

2.3. Metabolomic Analysis

After conducting a comparative analysis between TN and LB, a total of 1253 differ-
entially expressed metabolites were successfully identified. Specifically, the expression
levels of 288 metabolites showed an upward trend, while 965 showed a downward trend.
This result has been visualized by the volcano diagram in Figure 3a. At the same time,
the heatmap in Figure 3b further reveals the specific expression levels of these differential
metabolites. The KEGG functional enrichment results showed that the differential metabo-
lites were mainly enriched in arachidonic acid metabolism, α-linolenic acid metabolism,
glycerophospholipid metabolism, linoleic acid metabolism, retrograde endocannabinoid
signaling, steroid hormone biosynthesis, and choline metabolism in cancer (Figure 3c).
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compared to the LB group. (a) Volcano diagram of differential metabolites. (b) Hierarchical clustering
of differential metabolites. (c) KEGG term enrichment analysis of differential metabolites in the TN
group and LB group.

2.4. Joint Analysis Result

The results showed that isocaproic acid was positively correlated with Frisingicoccus,
unidentified rickettsia, unidentified Enterobacteriaceae, Tannerella (p < 0.05), and Streptococcus
(p < 0.01). It was negatively correlated with Streptomyces, Ruminobacterium, yeast, treponemal,
and unidentified Clostridaceae (p < 0.05) and highly significantly negatively associated with
Ackermansia, anaerobes, and hydro anaerobic bacilli (p < 0.01) (Figure 4). Co-enrichment
analysis revealed that the metabolome and transcriptome were enriched in processes such
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as insulin secretion, thyroid hormone synthesis, bile secretion, aldosterone synthesis and
secretion, and the cAMP signaling pathway (p < 0.05) (Figure 5).
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Figure 4. Correlation heatmap between differential SCFAs isocaproic acid concentrations and micro-
bial species composition. Rows represent microorganisms, and columns represent metabolites. The
phylogenetic tree on the left represents the hierarchical clustering results of microorganisms, while
the phylogenetic tree on the upper side represents the hierarchical clustering results of metabolites.
Red indicates a positive correlation, and green indicates a negative correlation. The p-value < 0.05 of
the significance test of the correlation coefficient indicates a significant difference, denoted by “*”,
while the p-value < 0.01 indicates a very significant difference, denoted by “**”. The figure shows the
genus level.
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3. Discussion
Leibo domestic cattle are important livestock in Leibo County, Sichuan Province.

They are known for their strong adaptability and tolerance to rough feeding. They are
small in size, have a variety of coat colors, delicate flesh, and are adept at navigating
complex terrain and utilizing domestic forage resources. Simmental crossbred cattle are the
offspring of Simmental cattle crossed with native cattle. They combine the advantages of
fast growth, large size, and good meat quality, exhibiting a tall, muscular body and high
economic value [10]. Simmental crossbreeds usually sell for more, but Lebo’s cattle also
meet the local demand for beef. Both have their own characteristics and play an important
role in agricultural production and market demand. In order to conserve and utilize
these resources, it is necessary to strengthen research and breeding for the sustainable
development of the livestock sector.

In this study, the microorganisms in the feces of the TN and LB groups were meticu-
lously identified, complemented by the analysis of short-chain fatty acids, and a compre-
hensive evaluation was conducted. The results showed a significant statistical difference
in the Simpson index within the alpha diversity index (p < 0.01). This suggested that
various environmental conditions, lifestyle habits, or disease states might influence the gut
microbiome. For short-chain fatty acids, only one, isocaproic acid, was detected, showing
significant differences between the control and experimental groups. In the growth and
metabolism of beef cattle, isocaproic acid, as one of the short-chain fatty acids, might play
a role through a variety of mechanisms. Some studies have noted that short-chain fatty
acids influence growth metabolism by impacting energy metabolism, fat synthesis, and
intestinal homeostasis in animals [11]. However, current research on the effects of this
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substance on growth metabolism is relatively limited, so it is not clear whether it is a key
factor contributing to phenotypic differences. In the LEfSe analysis, a variety of differential
strains were identified. Among them, bacteria of the genus Akkermansia are thought to
be closely related to gut health and metabolism. In mice-related studies, the absence of
Akkermansia has been found to be associated with intestinal mucosal barrier damage and
metabolic inflammation [12]. The deficiency or reduction in this bacterium is associated
with a variety of diseases, such as obesity, diabetes, hepatic steatosis, inflammation, and
response to cancer immunotherapy. Akkermansia plays an important role in maintaining
gut health and is currently being developed as one of the next generation of probiotics [13].
Using the metagenomeSeq method, differential metabolic pathways were analyzed. The
results suggest that tetracycline biosynthesis might be related to the metabolism and growth
of bacteria. The presence of bacteria in the gut might have an impact on the health and
growth of beef cattle. The biosynthesis of type II polyketone backbones might be related to
specific cellular structures or metabolic pathways that could impact cellular function and
metabolism in beef cattle. Subsequently, a joint analysis was conducted to create a cluster
heatmap of isocaproic acid and associated microorganisms. Observations have shown
the presence of individual microorganisms that are highly associated with isocaproic acid.
Among them, isocaproic acid was significantly positively correlated with Streptococcus
(p < 0.01), but negatively correlated with Akkermansia, Anaerovorax, and Hydrogenoanaerobac-
terium (p < 0.01). It is worth noting that Akkermansia is not only a distinct strain among these
strains but also highly correlated with varying short-chain fatty acids in the joint analysis.
This suggested that it might be a crucial strain contributing to isocaproic acid differences or
phenotypic variations. However, its specific effects still require further exploration.

In transcriptome analysis, 1078 differentially expressed genes (DEGs) were identified.
Among these genes, 772 were up-regulated and 306 were down-regulated. The Gene
Ontology (GO) analysis revealed that the identified differentially expressed genes were
associated with serine-type endopeptidase activity, serine-type peptidase activity, and
serine hydrolase activity. Serine is an amino acid that plays an important role in protein syn-
thesis [14]. The metabolism of serine plays a crucial role in muscle growth and metabolism,
influencing various processes like protein synthesis, the regulation of growth hormones,
and metabolic pathways. Maintaining proper serine metabolism can help promote healthy
muscle growth [15]. GO analysis revealed that, apart from the enrichment of differentially
expressed genes in certain immune pathways, the primary metabolic pathways associated
with muscle growth and metabolism were those related to serine metabolism and its en-
zymatic activities. Serine is a metabolite with expanding metabolic and non-metabolic
signaling properties that affect macromolecular biosynthesis and functional modifications.
It largely influences cell survival and function, which might be key to phenotypic differ-
ences between the two [16]. Insulin metabolism has been shown to be highly correlated
with serine metabolism, and alterations in serine metabolism might lead to changes in
insulin sensitivity [17]. KEGG pathway enrichment analysis revealed that differentially
expressed genes (DEGs) were significantly enriched (p < 0.05) in 65 KEGG terms, including
autoimmune thyroid disease, Th1 and Th2 cell differentiation, and type I diabetes. Enrich-
ment in the immune pathway might be a more adaptable aspect of TN. KEGG enrichment
analysis revealed that the two groups did not exhibit significant enrichment in the key
pathways influencing growth metabolism, such as the FoxO and PPAR pathways [18]. The
variances between the two groups could potentially be attributed to other factors.

In metabolomics analysis, 1253 differential metabolites were successfully identified.
Specifically, the expression levels of 288 metabolites showed an upward trend, while 965
showed a downward trend. The results of KEGG functional enrichment analysis revealed
that the differential metabolites were primarily enriched in pathways such as arachidonic
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acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism, linoleic
acid metabolism, retrograde endocannabinoid signal transduction, steroid hormone biosyn-
thesis, and choline metabolism in cancer. Among them, glycerophospholipid metabolism,
linoleic acid metabolism, and steroid hormone biosynthesis have been shown to affect the
growth and metabolism of animals. For example, glycerophospholipids are involved in
cell signaling and cell survival. The metabolism of beef cattle might impact the structure
and function of their cells, consequently influencing growth metabolism. Linoleic acid is
involved in cell membrane structure and function [19]. In fish studies, it has been found
that the linoleic acid content affects the signaling pathways associated with fatty acid
metabolism and glucose metabolism. These changes might subsequently lead to alterations
in muscle and protein content [20]. In studies on bovine muscle growth, it has been found
that anabolic steroid-promoted bovine muscle growth involves complex interactions of
many pathways and receptors. Its biosynthesis might affect growth, metabolism, and
immune function in beef cattle [21].

Combined transcriptome and metabolome analysis has significant advantages as it
provides comprehensive information on gene expression and metabolic changes, reveals
the association between genes and metabolism, and improves the accuracy and reliability
of data analysis [22,23]. In the joint analysis of this study, it was found that the pathways
co-enriched by the metabolome and transcriptome were completely different from those
identified through transcription and metabolic analysis alone. Co-enrichment analysis
demonstrated remarkable enrichment in growth-associated pathways, prominently includ-
ing amino acid metabolism and hormone synthesis. Notably, multiple pathways such
as insulin secretion, thyroid hormone synthesis, bile secretion, aldosterone synthesis and
secretion, and the cAMP signaling pathway exhibited significant enrichment. The genes
involved in the enrichment of each pathway are presented in Supplementary Table S5.
Taking insulin secretion as an example, insulin is a key factor in regulating cell prolif-
eration, differentiation, apoptosis, glucose transport, and energy metabolism, and plays
a crucial role in cell fate determination [24,25]. In this pathway, four genes were identi-
fied (SNAP25, KCNMA1, CHRM3, KCNMB3), while three genes were down-regulated
(KCNMB4, PLCB1D, ADCY8). Subsequently, integrative analysis of genes enriched in
other pathways revealed that ADCY8 was enriched in each of these pathways. It has been
confirmed that bile secretion affects fat deposition and meat quality in heifers for each of
the other pathways [26]. Thyroid hormones play various roles in fat metabolism, increasing
basal metabolism to promote energy expenditure and promoting the oxidation of fatty
acids instead of being stored as fats [27]. This might play a role in enhancing intramus-
cular fat (IMF) deposition in cattle. However, the corresponding molecular mechanisms
have not been discovered, and participants in the thyroid hormone signaling pathway are
significantly associated with IMF in cattle [28]. As an example, the mRNA expression of
the thyroid hormone-responsive protein (THRSP) gene is regulated by thyroid hormones,
predominantly in adipose tissue [29], and is generally higher in muscles with higher intra-
muscular fat (IMF) content than in muscles with lower IMF content [30]. All of these data
suggested a role for thyroid hormones in regulating intramuscular fat (IMF) deposition
in cattle. The synthesis and secretion of aldosterone, a mineralocorticoid, are responsible
for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis [31].
Aldosterone is the primary mineralocorticoid synthesized and secreted in the glomerular
zone of the adrenal cortex, primarily in response to angiotensin II, elevated serum potas-
sium levels, and the adrenocorticotropic hormone. It plays a central role in electrolyte and
fluid volume regulation and the maintenance of blood pressure homeostasis. It is tightly
regulated by the renin–angiotensin–aldosterone system, which is also considered one of
the causal relationships between obesity and hypertension [32–34]. The regulation of cyclic
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adenosine monophosphate (cAMP) signaling involves multiple energy-balanced signaling
systems that affect metabolism. Additionally, cAMP influences glycogenolysis in skeletal
muscle [35]. ADCY8 was remarkably enriched in multiple pathways mentioned above.
This enrichment strongly indicates that ADCY8 can be regarded as a core gene in regulating
the growth and metabolism of beef cattle.

Through screening the co-enrichment pathway and comparing data (selecting genes
and metabolites with absolute correlation values greater than 0.8 and statistically signifi-
cant), it was discovered that ACDY8 was strongly correlated with 1-oleoyl-sn-glycero-3-
phosphocholine. This correlation suggested that these could be regarded as the central
gene and metabolite to influence the growth and metabolism of beef cattle. Both the gene
and metabolites were significantly down-regulated (p < 0.01). The anticipated outcome
of this study was to observe significant differences in growth metabolism-related genes
and metabolites between the two groups. However, the transcriptome analysis revealed
that the differences were primarily focused on immunity. While the metabolome analysis
yielded expected results to some extent, no key metabolites were identified. The ACDY8
gene identified through joint analysis is enriched and down-regulated in several important
pathways. This gene might play a crucial role in regulating growth and has been identified
in meat sheep in recent studies. It has been found to be involved in the metabolic function
of tissue and organ structures, as well as in the secretion of hormones such as aldosterone,
cortisol, oxytocin, and the adrenocorticotropic hormone in the endocrine system [36].

1-Oleoyl-sn-glycero-3-phosphocholine is a phospholipid that primarily influences the
structural function of cell membranes, fat metabolism, energy metabolism, and choline
synthesis [37]. At present, there are few studies on this substance, and it is impossible
to confirm its specific effect on the growth of beef cattle. The ADCY8 gene, along with
1-oleoyl-sn-glycero-3-phosphocholine, might play a crucial role in beef cattle breeding.

4. Materials and Methods
4.1. Ethics Statement

The authors confirm that this study was performed in accordance with the Guidelines
of Good Experimental Practices adopted by the Institute of Animal Science of the Sichuan
Agricultural University, Chengdu, China. All experimental protocols involving animals
were approved by the Animal Care and Use Committee for Biological Studies, Sichuan
Province, China (DKY-B2019302083).

4.2. Animal Sample Collection

All samples were obtained from Junhao Co., Ltd. in Leibo County, Liangshan City,
Sichuan Province, China. This included 10 Simmental crossbred cattle, designated as from
within the farm, and 10 samples of domestic cattle, referred to as collected from local
farmers. All cattle were gathered at the farm one month in advance. They are fed TMR
feed twice a day, with the diet level set according to the 12-month-old feeding standard.
All cattle were female, healthy, and 12 ± 2 months old.

4.3. Short-Chain Fatty Acids (SCFAs) in Feces

After thawing the fecal sample, 20 mg was weighed into a 2 mL centrifuge tube.
Then, 1000 µL of a 0.5% (v/v) phosphoric acid solution was added, and the mixture was
ground using a ball mill at 30 Hz for 1 min. The sample was vortexed at 2500 r/min for
10 min, after which it was sonicated at 4 ◦C for 5 min. Next, it was centrifuged at 4 ◦C
and 12,000 r/min for 10 min. After centrifugation, 100 µL of the supernatant was carefully
pipetted into a 1.5 mL centrifuge tube. Subsequently, 500 µL of MTBE (CNW Technologies,
Berlin, Germany) extractant containing an internal standard was added to the tube with
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the supernatant. The mixture was then vortexed at 2500 r/min for 3 min, followed by
sonication at 4 ◦C for another 5 min. After that, it was centrifuged again at 4 ◦C and
12,000 r/min for 10 min. Finally, 200 µL of the supernatant was pipetted into the liner of a
vial and stored in a −20 ◦C freezer until GC—MS/MS analysis.

4.4. Microbiome

The total genomic DNA from the samples was extracted using the Cetyltrimethy-
lammonium Bromide (CTAB) method, and its concentration and purity were monitored
by a 1% agarose gel. After diluting the DNA to 1 ng/µL, the 16S rRNA/18S rRNA/ITS
gene was amplified using specific primers and barcodes. The PCR reaction was performed
using Phusion’s® High-Fidelity PCR Master Mix (New England Biolabs, London, UK),
forward and reverse primers, and template DNA. The PCR products were detected by
electrophoresis on a 2% agarose gel and purified. Sequencing libraries were generated
using the TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, San Diego, CA, USA)
and indexed barcodes. Sequencing was performed on an Illumina NovaSeq platform to
generate 250 bp paired-end reads. FASTP (v0.22.0) was used for quality filtering, and
FLASH (v1.2.11) was used to merge paired-end reads [38]. The UCHIME algorithm was
used to detect and remove the chimera sequence [39,40]. The 97% similarity sequences
were divided into identical Operational Taxonomic Units (OTUs) using Uparse (v7.0.1001)
software, and representative sequences were selected for each OTU for subsequent tax-
onomic annotations [41]. For 16S analysis, annotation was conducted using the Mothur
algorithm and the Silva database [42], available at http://www.arb-silva.de/ (accessed on
11 October 2024). MAFFT (v7.490) was used to study the metabolic relationships between
Operational Taxonomic Units (OTUs) by conducting multi-sequence alignment [43]. Opera-
tional taxonomic unit (OTU) abundance data were standardized to prepare for subsequent
alpha and beta diversity analyses. These standardized data are fundamental for accurately
assessing species diversity and community composition differences, minimizing biases
from sampling and sequencing variations. Sample species diversity was assessed using
QIIME and R (version 4.1.2) software, which included metrics such as observed species,
Chao1, Shannon, Simpson, ACE, and Good’s coverage. Beta diversity, both weighted and
unweighted, was calculated using UniFrac in QIIME. Differences among samples were
analyzed using Principal Component Analysis (PCA) and Principal Coordinates Analysis
(PCoA) in R (version 4.1.2). The Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) clustering method was employed for hierarchical clustering to interpret the
distance matrix.

4.5. Transcriptomics

RNA was extracted using the Trizol method and subsequently identified and quan-
tified using Qubit and Qsep400. Polyadenylated mRNA was enriched using Oligo(dT)
magnetic beads (China, MCE) and then cleaved into small fragments, which were reverse
transcribed into complementary DNA (cDNA). Strand-specific libraries were constructed,
followed by sequencing adapter ligation and PCR amplification. The concentration and frag-
ment size were determined using Qubit and Qsep400. Finally, quantitative PCR (Q-PCR)
quantification was performed. Illumina sequencing was conducted on qualified libraries
based on the principle of sequencing by synthesis. Data analysis included quality control
filtration using fastp [44], alignment to reference genomes with HISAT [45], new gene pre-
diction with StringTie [46], gene alignment calculation with featureCounts [47], and quan-
tification using FPKM. Differential expression analysis was performed using DESeq2 [48],
with p-values corrected accordingly. Enrichment analysis was also conducted. Variable
splice events were analyzed using rMATS [49], variation site analysis was performed with

http://www.arb-silva.de/
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GATK (version 4.1.9.0) [50], and annotation was completed using ANNOVAR [51]. Dif-
ferentially expressed genes were analyzed based on the STRING database [52]. Gene set
enrichment analysis was performed using GSEA [53], and weighted gene co-expression
network analysis was conducted with WGCNA (version 1.71, mergeCutHeight = 0.25) [54].

4.6. Metabolomics

We removed samples from the −80 ◦C freezer and thawed them on ice until no ice
remained. After vortexing for 10 s to ensure thorough mixing, 50 µL of the sample was
transferred to a centrifuge tube. Next, 300 µL of acetonitrile–methanol internal standard
was added and vortexed for 3 min, and then centrifuged at 4 ◦C at 12,000 rpm for 10 min.
Afterwards, 200 µL of the supernatant was taken and transferred to another centrifuge
tube. It was allowed to stand at −20 ◦C for 30 min. After 3 min of centrifugation, 180 µL
of the supernatant was transferred to the inner liner of the injection bottle for analysis.
The column used was a Waters ACQUITY Premier HSS T3 Column with a particle size of
1.8 µm and dimensions of 2.1 mm × 100 mm. The mobile phase A consists of 0.1% formic
acid in water, while mobile phase B consists of 0.1% formic acid in acetonitrile. The
column temperature was maintained at 40 ◦C, the flow rate was set to 0.4 mL/min, and the
injection volume was 4 µL. Mass spectrometry data were converted to the mzXML format
using ProteoWizard [55]. Peak extraction, alignment, and retention time correction were
performed using the XCMS program [56]. Peaks with a deletion rate exceeding 50% were
filtered out, the K-nearest neighbors (KNNs) method was used to fill in blank values, and
support vector regression (SVR) was employed to correct the peak area. Metabolites were
identified by searching self-constructed databases, public databases, prediction databases,
and using metDNA methods. Substances with a comprehensive score of 0.5 or higher and
a coefficient of variation (CV) value of less than 0.3 in quality control (QC) samples were
extracted. The results from both positive and negative modes were combined, retaining
only the substances with the highest qualitative grade and the lowest CV value.

4.7. Joint Analysis

To intuitively reflect the similarities and differences in the expression patterns of
different microorganisms and different metabolites, Spearman correlation hierarchical
cluster analysis was performed on different microorganisms and different metabolites. The
closer the branches are, the more similar the expression patterns of microorganisms or
metabolites. Heatmaps were plotted using the ComplexHeatmap package in the R software
(version 4.4.2). According to the results of the KEGG enrichment analysis of differential
metabolites and differential genes, the KEGG pathway of the two omics was identified, and
a bubble map was created using the KEGG pathway that was co-enriched by the two omics.

5. Conclusions
In this study, by integrating multi-omics approaches including 16S microbial sequenc-

ing, short-chain fatty acid assay, and transcriptome and metabolome analysis, we have
successfully established a comprehensive research framework for exploring the growth
and metabolic mechanisms in beef cattle. This integrated methodology not only enabled us
to systematically analyze the complex interactions between the gut microbiota, metabo-
lites, and gene expressions but also provided a novel perspective on understanding the
regulatory network underlying beef cattle metabolism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26041547/s1.
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