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Abstract

Introduction: While surface-electromyography (sEMG) has been widely used in limb motion detection for the control

of exoskeleton, there is an increasing interest to use forcemyography (FMG) method to detect motion. In this paper, we

review the applications of two types of motion detection methods. Their performances were experimentally compared

in day-to-day classification of forearm motions. The objective is to select a detection method suitable for motion

assistance on a daily basis.

Methods: Comparisons of motion detection with FMG and sEMG were carried out considering classification accuracy

(CA), repeatability and training scheme. For both methods, classification of motions was achieved through feed-forward

neural network. Repeatability was evaluated on the basis of change in CA between days and also training schemes.

Results: The experiments shows that day-to-day CA with FMG can reach 84.9%, compared with a CA of 77.8% with

sEMG, when the classifiers were trained only on the first day. Moreover, the CA with FMG can reach to 86.5%,

comparable to CA of 84.1% with sEMG, if classifiers were trained daily.

Conclusions: Results suggest that data recorded from FMG is more repeatable in day-to-day testing and therefore

FMG-based methods can be more useful than sEMG-based methods for motion detection in applications where

exoskeletons are used as needed on a daily basis.
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Introduction

Many human activities, either occupational or in daily

life, require our muscles having a certain level of

strength.1 Exoskeletons2 have the capability to over-

come the muscle strength limitation by providing

power augmentation.3–6 This can contribute to enhance

endurance for workers and to improve motion capabil-

ity for the elderly and people with motion limitations.
In the control of exoskeletons, human motion detec-

tion is critical7 for appropriate assistance control and

human-robot interaction. Many methods have been

developed, which are based on either physical or cog-

nitive interfaces. Of them, sEMG is one of the conven-

tional methods to determine upper limb movement

activities8–16 in terms of elbow/shoulder joint angles,

hand gestures and task identification. EMG based exo-
skeleton controls have been reported in literature.17–22

The effect of training time on sEMG based classifica-
tion has also been studied earlier.23–26 The results indi-
cate that performance continuously downgrades as the
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time difference between training and testing day
increases. On the other hand, FMG as an alternative
to detect upper and lower limb muscle activities has
been used in different applications with healthy
subject27–37 and with stroke/amputated subjects.38,39

Given different applications of these methods, com-
parisons of their performance are necessary for their
proper use in applications. Some comparison works
have been reported in the literature. In Ravindra and
Castellini40 the performances of using pressure sensing
(FMG), sEMG and ultrasound methods for estimating
finger force were reported in terms of overall estimation
accuracy, change in estimation accuracy with repetition
of each task (stability), wearability and cost. It was
reported that pressure sensing performed well in term
of accuracy and stability. In Jiang et al.,41 the perform-
ances of FMG and sEMG for recognizing hand ges-
tures were compared. Average accuracy was reported
as 87.35% for FMG and 81.85% for sEMG.
Moreover, FMG performance was also evaluated by
increasing the number of force sensing resistor (FSR)
sensors and an increase of 5.7% in accuracy was
obtained. The performances in elbow, forearm and
wrist position classification were reported in Xiao and
Menon.42 The results showed that overall performan-
ces with FMG and sEMG were consistent. Study on
combining both sEMG and FMG was also reported to
achieve better performance.43

It is noted that in the aforementioned studies, the
performance of FMG and sEMG was compared for

classifying static postures and finger force estimation.

Moreover, the experiments with FMG were conducted

for one-time data testing. Comparisons of day-to-day

performances with the two methods are not

reported yet.
In this work, we compare day-to-day performances

of FMG and sEMG methods for classifying motions,

including both static pose and dynamic arm movement.

Our interest in this work is to understand the advan-

tages and limitations of the two methods, in order to

apply a proper method for motion assistance through

exoskeletons that are used on a daily basis.
This paper is organized as follows: Materials and

methods for performance testing are explained in the

upcoming section. A further section presents the testing

results, which is followed by the discussion in next sec-

tion. The work is concluded in the final section.

Methods

Motion types

The motions studied in this work include forearm flex-

ion, extension, pronation, supination and rest. Except

rest state, the other four motion types were classified

during the dynamic state. The starting and ending

states of each motion are shown in Figure 1. Flexion

was performed by moving the forearm from neutral to

fully flexed forearm position (Figure 1(a)). Extension

was performed by moving the forearm from fully flexed

Figure 1. Starting and ending states of (a) flexion, (b) extension, (c) pronation and (d) supination.

2 Journal of Rehabilitation and Assistive Technologies Engineering



to fully extended position (Figure 1(b)). Pronation was

performed by rotating the forearm from fully supinated

to fully pronated position (Figure 1(c)) and supination

was performed by rotating the forearm from fully pro-

nated to fully supinated position (Figure 1(d)).

Sensors and placement

The forearm motions are classified separately using

FMG and sEMG based classifiers. With FMG,

muscle activity is recorded in terms of lateral force

caused during muscle deformation, whereas with

sEMG the activity is recorded in terms of electrical

signals.
For FMG testing, two sensor bands with embedded

FSR, namely, FSR-402 developed by Interlink, were

used. One sensor band comprised of six FSR sensors

was placed at the middle of the upper arm. The other

sensor band also comprised of six FSR sensors was

placed at the forearm near the elbow joint. Figure 2

(a) shows the placement of sensor bands.
For sEMG testing, four pairs of EMG electrodes,

Neuroline 720 from Ambu, were used. Their place-

ments are shown in Figure 2(b), for detecting muscle

activities of biceps brachi, triceps, pronator teres, and

supinator, whereas, the reference electrode was placed

at the wrist. Before the placement of the electrodes, the

skin was shaved and cleaned with alcohol wipes.

Conductive gel was also applied to acquire good qual-

ity of signals.

Data collection

Figure 3 shows the hardware setup to collect FMG and

sEMG data. The FMG was recorded through custom

developed non-inverting operational amplifier and
sEMG was recorded through commercially available

AnEMG12 amplifier from OT Bioelettronica. Both sys-
tems were interfaced to Arduino Due. The data from

Arduino was further transmitted to a laptop through
serial communication, where MATLAB based GUI

was designed to record the data at the frequency of

700Hz. The GUI was designed to display each motion
type to be performed in a randomized order during

training and testing sessions. Moreover, all subjects
were instructed to complete each given motion in four

seconds. It was understood that it is less probable that

the subjects will exactly start and finish the motion in the
given time. Therefore, the initial and last quarter second

of the data were not included, only the middle three and
a half seconds of data was used for training and testing.

Data was recorded for three consecutive days for

each subject, the details are as follow

• Day 1: Training dataset, Tr1, 10 repetitions of each
motion type. Testing dataset, Ts1, 5 repetitions of

each motion type.

Figure 2. Sensor placements on human arm, (a) FMG and (b) sEMG.
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• Day 2: Training dataset, Tr2, 2 repetitions of each
motion type. Testing dataset, Ts2, 5 repetitions of
each motion type.

• Day 3: Training dataset, Tr3, 2 repetitions of each
motion type. Testing dataset, Ts3, 5 repetitions of
each motion type.

On each day a new set of electrodes were used and to
maintain the consistent places, electrodes placement was
marked each day. In the case of FMG, the FSR sensors
were not replaced, however, the placement of the sensor
bands were marked every day so that they could be
placed at the same spot. Markers were also placed on
the sensor band in order to achieve similar tightness.

Furthermore, for sEMG signals, a digital high pass
filter of 30Hz was applied to remove the DC offset.
Whereas, FMG was passed through a low pass filter
of 100Hz to remove high-frequency noise. FMG data
was also calibrated to zero for rest condition each day.
The raw data collected for both methods, i.e. FMG and
sEMG, is shown in Figure 4.

Signal processing and feature extraction

In further post-processing, five time-domain features
were extracted from sEMG i.e. mean absolute value,
waveform length, zero crossing, slope sign changes and
wilson amplitude. Time domain features have been
widely used for their classification performance and
low computational complexity.44 Moreover, these
features have been reported in other classification stud-
ies41–43 as well.

In the case of FMG, four time-domain features were
extracted i.e. root mean square, slope, mean-mode dif-
ference and slope sign count, presented in Table 1.

Within these features RMS is a generally used33,42 fea-

ture to obtain the average signal amplitude. Whereas,

slope, mean-mode difference and slope sign count are

used to compute the direction and change in signal

amplitude w.r.t time.
Prior to feature extraction, FSR sensors data from

upper arm sensor band was summed together and used

as a single input. Similarly, FSRs data from forearm

sensor band was also summed together. Furthermore, a

window size of 150ms with an overlapping window of

50ms was used for feature extraction and Neural

Network (NN) was implemented to perform the classi-

fication. In the NN setup number of hidden layers and

neurons were selected according to the rules defined in

Heaton.45 Single hidden layer with 7 neurons and 10

neurons were used for training FMG and sEMG based

classifiers, respectively. Maximum iteration limit in

both cases was set to 10000.

Experiments

Five able-bodied male subjects took part in the experi-

ments. All of them were healthy, right-handed and

their ages were in the range of 27-35 years. Moreover,

all of them were provided written informed consent

prior to participation. Ethical approval to conduct

these experiments was obtained from ethical commit-

tee, Region Nordjylland, Denmark.

Testing scenarios

The primary focus of this study was to investigate

FMG and sEMG based NN classifiers for classifying

forearm motions. The classifiers were tested on all three

testing datasets (Ts1, Ts2 and Ts3) after being trained

Figure 3. Hardware setup to collect data with (a) FMG, and (b) sEMG.
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with different combinations of training datasets, which

leads to two tests. The details on classifier training for

each test is described as following,

• Test A: In this test, the classifiers were tested after

being trained only with Day 1 training dataset Tr1.

CA was separately computed for each testing dataset

Ts1, Ts2 and Ts3 referring to Day 1, 2 and 3 testing

data, respectively. Afterward, statistical analysis

were performed to investigate the consistency and

repeatability of the classification methods.
• Test B: In this test, the classifiers were further eval-

uated by training them with multiple training data-

sets. The classifiers were first trained on training

datasets Tr1 and Tr2 and then on training datasets

Tr1, Tr2 and Tr3. In both sessions, the classifiers were

tested on testing datasets in the same way as in Test

A. The purpose of this study was to investigate the

Figure 4. Raw data obtained with (a) FMG and (b) sEMG.

Table 1. Features extracted from FMG raw data. x represents
the vector containing raw data, twin is the window time for fea-
tures extraction, N is the number of samples collected in 150ms
window and � is the threshold limit determined by rest state
data.

Feature Expression

Root mean square

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

x2i

vuut

Slope
RMSj�RMSj�1

twin
mean-mode

difference 1
N

XN
i¼1

xi � modeðxÞ

Slope sign count
XN
i¼2

f ðxi � xi�1Þ

f ðxÞ ¼
0 jf ðxÞj � �
1 f ðxÞ > �
�1 f ðxÞ < ��

8<
:
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effect of including training data from additional

days on CA.

Furthermore, tests were also performed to compare

the CA with different techniques, i.e. support vector

machine35 (SVM), linear discriminant analysis46

(LDA), k-nearnest neighbor46 (KNN) and random

forest47 (RF), using training datasets Tr1, Tr2 and Tr3.

Results

The results are displayed according to the tasks defined

in the previous section.

Test A

For both FMG and sEMG motion detection methods,
CA was calculated over three days of testing data with
the classifier trained on Day 1. The results of CA w.r.t
each day are displayed graphically in Figure 5. An
average CA of 85.9� 8.64% was obtained for FMG
with the testing dataset Ts1, whereas, for sEMG, aver-
age CA was 88.2� 8.91%. With Day 2 testing dataset,
Ts2, an average CA of 89.4� 6.87% was obtained for
FMG and 79.8� 9.05% for sEMG. With Day 3 testing
dataset, Ts3, FMG has an average CA of 81.2� 9.07%,
while sEMG has an CA of 65.6� 15.84%. The average
CA for each individual subject is shown in Figure 6.

The average CA over all three days was 84.9�
3.36% for FMG and 77.9� 11.06% for sEMG. If we
look only at Day 1 performance, sEMG showed better
results than FMG. However, it has to be noted that for
the next two days the CA with sEMG is reduced by
25,6%. Kruskal-Wallis test also showed that the CA
between days was significantly reduced (p¼ 0.046),
which indicates that the data acquired was not repeat-
able. On the contrary, FMG accuracy of Day 1 testing
was lower than sEMG, however, the average accuracyFigure 5. Average CA for training the classifier with Tr1.

Figure 6. Average CA obtained for individual subjects, (a) with FMG and (b) with sEMG.
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is only reduced by 5.5% in the next two days. There

was also no significant difference observed between

each day average accuracy (p¼ 0.403), which indicates

that data acquired through FMG is comparatively

more repeatable than sEMG.

Test B

The long-term performances of both FMG and sEMG

were further analyzed by testing the datasets Ts1, Ts2

and Ts3 using the classifiers trained with different train-

ing schemes. As the tests lasted for three days, we

define three training schemes (TS):

1. TS1: Training the classifiers using dataset Tr1, same

as Test A.
2. TS2: Training the classifiers using datasets Tr1

and Tr2.
3. TS3: Training the classifiers using datasets Tr1, Tr2

and Tr3.

The results of CA with training scheme TS2 are

shown in Figure 7(b). When comparing the results

with TS1, it can be seen that the CA in the case of

FMG was improved for Day 2 by 3.1% and Day 3

by 2.6%. In the case of sEMG, CA only improved

for Day 2 by 2.2%. However, the change in CA for

both methods, FMG (p-value¼ 0.917) and sEMG (p-

value¼ 0.917), was not significant.
The results of CA with training scheme TS3 are

shown in Figure 7(c). The results show that the CA

obtained through FMG only improved for Day 3 by

1.4% when compared with the results obtained
through TS2. In comparison to TS1, the CA was
increased for Day 2 by 2.2% and Day 3 by 4%.
However, the Kruskal-Wallis test indicated that the
change in CA occurred between all three training sce-
narios was not significant (p-value¼ 0.97). Whereas, in
the case of sEMG, the CA was significantly improved.
When compared with TS2 the CA was increased for all
three days, Day 1, 2 and 3, by 2.2%, 3.1%, and 17.8%,
respectively. Moreover, in comparison to TS1 the CA
for Day 2 and Day 3 were increased by 5.3% and 16%,
respectively. The increase in CA was also observed
from the Kruskal-Wallis test. The p-value of 0.049
was obtained, which indicates the increase in CA was
significant.

The average CA obtained for each training scheme
is shown in Figure 8 and summarized in Table 2. It is
noted that the repeatability in Table 2 represents the
percentage of CA decrease from Day 1 to Day 3 w.r.t
Day 1. In the case of FMG, the average CA slightly

Figure 7. Day-to-Day CA with training schemes (a) TS1, (b) TS2, and (c) TS3.

Figure 8. Average CA for three training schemes.
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increases from TS1 to TS2 but decrease from TS2 to
TS3. Whereas, in the case of sEMG, the CA slightly
decreases from TS1 to TS2, but increased significantly
from TS2 to TS3 by 7.7%. However, repeatability
results showed a similar pattern for both methods.
The difference in CA between Day 1 and Day 3
decreased from TS1 to TS3. Although both methods
showed a similar pattern in repeatability, FMG has a
better performance than sEMG in both aspects i.e. CA
and repeatability.

Figure 9 shows the results for each individual sub-
ject. The CA results obtained with FMG are shown in
Figure 9(a). It can be seen that a significant increase in
CA was only observed for subject 4, which was 5.07%.
However, in the case of sEMG (Figure 9(b)), CA was

improved by 3.9%, 10.18%, 5.78% and 11.69% for

subjects 1, 2, 3 and 5, respectively.

Classification techniques comparison

In this experiment performances of five different clas-

sification techniques were compared i.e. SVM, LDA,

KNN, RF and NN. Results of this experiment are

shown in Figure 10.
It can be seen that LDA has the lowest performance

for both FMG and sEMG. Whereas, highest CA is

achieved using NN approach. However, In case of

FMG, Figure 10(a), the performances of NN and RF

are comparable, accuracy obtained through RF being

only 0.3% less than NN.

Discussion

This study was aimed to investigate the accuracy of

classifying forearm motions using FMG and sEMG

based classifiers. The study addresses the day-to-day

performance of both methods. Results have shown

that FMG (84.9� 3.38%) performed better than

sEMG (77.9� 11.43%). Another noticeable result is

that the FMG method is more stable than sEMG.

Our results show that the CA with FMG method was

nearly the same for all three days for the classifier

Table 2. CA and repeatability achieved through FMG and
sEMG.

Training

scheme

FMG sEMG

% CA Repeatability % CA Repeatability

TS1 84.9 5.5 77.9 25.6

TS2 86.8 2.2 76.4 23.5

TS3 86.5 0.1 84.1 4.7

Figure 9. Within days average CA for each training scenario and each individual subject for, (a) FMG, (b) sEMG.

Figure 10. Results of different classification techniques, (a) FMG, (b) sEMG.
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trained on the first day. On the other hand, the
CA obtained through sEMG was better on the first
day, but significantly decreased for the rest of the
two days, when the classifier was only trained on the
first day.

Our study also showed that retraining the classifier
each day didn’t cause significant improvement in CA
for FMG. On the other hand, a significant increase in
CA was observed for sEMG. The performances for
both methods (FMG and sEMG) were comparable.
FMG yielded the average CA of 86.5� 2.11% and
sEMG yielded the CA of 84.1� 2.18%. It can be
noticed that only 1.6% increase in CA is found
for FMG, which again implies that the data
recorded through FMG was consistent. Therefore,
the inclusion of additional training dataset in retraining
the classifier didn’t improve the average accuracy for
FMG as much as it improved in case of sEMG, which
is 7.63%.

The results obtained in this study comply with the
studies reported in literature,40,41 where it was reported
that FMG performed better then sEMG for classifying
hand gestures and estimating fingers force. It is noted
that those studies were carried out for one day only,
while day-to-day performances were not considered.

In this study, four FMG features were used to pre-
dict the movements. Through experiments it was
observed that slope had the highest contribution in
the CA, whereas mean-mode difference had the
lowest contribution. With the results obtained, CA
can be further increased by applying weight to the
existing features or introducing more features in the
classifier. In future studies, each sensor output will be
considered separately. On the other hand, only two
repetitions were used to retrain the classifiers. More
repetitions can also affect the CA of both methods.
Moreover, the performance comparison in this work
was conducted on healthy young subjects, so the results
are not generally applicable to motion detection of
humans of all ages and physical conditions.

Conclusions

In this study, the performances of FMG and sEMG
were investigated for classifying forearm flexion, exten-
sion, pronation, supination and rest state. CA and
repeatability of these methods were analyzed for
motion identification testing over a period of three
days under different training schemes.

The results show that the accuracy obtained through
FMG was less affected by the time difference between
training and testing day. The results indicate that the
performance was consistent and repeatable. However,
CA obtained through sEMG was significantly affected
by the time difference. The decrease in CA was gradual

and significant. The improvement in CA and repeat-

ability was observed when the classifiers were retrained

each day. Whereas, CA with FMG didn’t show signif-

icant improvement using retraining approach, which

indicates that the data obtained through FMG is com-

paratively more repeatable.
Our testing results on CA and repeatability indicate

that FMG is more suited than sEMG for assistive exo-

skeleton applications, which are designed for ADL

activities. As using exoskeletons on a daily basis user

might take the exoskeleton on and off several times,

a requirement of retraining makes it less acceptable

to end-user. Whereas, sEMG requires retraining to

achieve repeatable performance and therefore it is

more suited for rehabilitation applications, where the

primary focus is on acquiring muscle activity for mon-

itoring and analysis purpose.
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