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Abstract

Background

A number of epidemiological studies demonstrated that postprandial hyperglycemia is a
risk factor for cardiovascular disease in individuals with impaired glucose tolerance.
Although several laboratory studies have addressed the plausible causal role of postpran-
dial acute hyperglycemia (glucose spikes) in the development of atherosclerosis, there is lit-
tle convincing evidence in vivo whether the atherosclerotic lesion formation can be
accelerated solely by glucose spikes. Here, we assessed the effect of repetitive glucose
spikes on atherosclerotic lesion formation in mice.

Methods

Female C57BL/6 mice were fed an atherogenic diet from 8 to 28 weeks of age. During the ath-
erogenic diet feeding period, the mice orally received a glucose solution (50 mg glucose/
mouse; G group) or water (W group) twice daily, 6 days a week. Atherosclerotic lesion forma-
tion in the aortic sinus was quantitatively analyzed in serial cross-sections by oil red O staining.

Results

G group mice showed transient increases in blood glucose level (~5 mmol/L above W
group), and the levels returned to levels similar to those in W group mice within 60 min. No
significant differences in glucose tolerance, insulin sensitivity, and plasma lipid profiles
were observed after the 20-week repetitive administration between the 2 groups. G group
mice showed an approximately 4-fold greater atherosclerotic lesion size in the aortic sinus
than W group mice. Gene expression levels of Cd68 and Icam1 in the thoracic aorta were
higher in G group mice than in W group mice.

Conclusions

These results indicate that glucose spikes can accelerate atherosclerotic lesion formation,
with little influence on other metabolic disorders. Repetitive glucose administration in wild-
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type mice may serve as a simple and useful approach to better understanding the causal
role of glycemic spikes in the development of atherosclerosis.

Background

An increasing body of epidemiological evidence links diabetes to atherosclerotic cardiovascular
disease [1]. Even in individuals with impaired glucose tolerance (IGT), which generally pre-
cedes the clinical onset of type 2 diabetes, postprandial hyperglycemia has been reported to be
associated with an increased risk of cardiovascular disease [2,3]. Moreover, several epidemio-
logical studies indicate that post-glucose challenge hyperglycemia is a better predictor of car-
diovascular events and all-cause mortality than fasting blood glucose level [4-7].

Since repetitive postprandial acute hyperglycemia (glucose spikes) is considered to result in
an increase in cardiovascular events in individuals with IGT, several laboratory studies have
addressed the plausible underlying mechanisms [2,3,8]. However, largely due to the lack of
suitable animal models that well explain the pathophysiological conditions of IGT, the causal
mechanisms underlying IGT-induced atherosclerosis remain to be fully elucidated in vivo.

Recently, we established 2 mouse lines, with distinctively different susceptibilities to diet-
induced glucose intolerance, by selective breeding (designated selectively bred diet-induced
glucose intolerance-prone [SDG-P] and-resistant [SDG-R]) [9,10], and demonstrated that
SDG-P mice showed accelerated atherosclerotic lesion formation compared to SDG-R mice
[11]. Since SDG-P mice manifested post-glucose challenge hyperglycemia without overt fasting
hyperglycemia, the mice may serve as useful animal models for studying IGT-related disorders.
However, SDG-P mice also showed greater body weight gain and moderate insulin resistance
compared to SDG-R mice. Thus, it is difficult to discriminate the effect of glucose spikes per se
from those of concomitant metabolic factors on the atherosclerotic process in these mice. In
this study, we assessed atherosclerotic lesion formation in atherogenic diet-fed wild-type
C57BL/6 mice that received repetitive glucose administration, to focus on the effect of glycemic
spikes on the pathogenesis of atherosclerosis.

Methods
Ethics statement

This study was conducted with the approval from the institutional animal care and use com-
mittee of Nippon Medical School (25-081 and 26-128) and in strict accordance with the com-
mittee’s animal care guidelines. All efforts were made to minimize suffering and the number of
animals used. No obvious adverse events were observed.

Animals

Specific pathogen-free 7-week-old female C57BL/6] mice were purchased from CLEA Japan
(Tokyo, Japan). Female mice are known to be more susceptible to atherosclerotic lesion forma-
tion than males [12,13]. After acclimatized with a standard rodent chow (MF; Oriental Yeast,
Tokyo, Japan) for 1 week, the mice (17.7 £ 0.2 g, n = 16) were assigned to 2 groups, i.e., glu-
cose-administered (G, n = 8) and water-administered (W, n = 8), ensuring equal weight aver-
age. The G group mice received a 20% glucose solution (50 mg glucose/mouse) by oral gavage
twice a day (08:00 and 16:00), 6 days a week for 20 weeks. The W group mice similarly received
distilled water alone. During the 20-week administration period, both groups of mice were fed
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an atherogenic diet (F2HFD1, Oriental Yeast) based on Paigen’s formulation [14]. The mice
were housed in standard plastic cages (235 x 325 x 170 [h] mm; 4 mice/cage) with paper chip
bedding and maintained in a temperature controlled room (22-24°C) with a 14-h light (06:00-
20:00 h)/10-h dark cycle, with free access to food and water. The cages, bedding, food, and
water bottles were changed weekly.

Diurnal blood glucose profile

Diurnal blood glucose levels were measured in the 2nd, 11th, and 20th week of the administra-
tion period. Blood samples were obtained by tail bleeding at 20 min before and at 20, 60, and
180 min after the administration of glucose (in G group) or water (in W group). Blood glucose
levels were measured with a glucose sensor (Glutest Neo Super; Sanwa Kagaku Kenkyusho,
Nagoya, Japan).

Oral glucose tolerance test (OGTT)

Glucose tolerance was evaluated by OGTT in the 19th week of the administration period. After
an overnight fast, both groups of mice were given a 20% glucose solution (50 mg glucose/
mouse) by oral gavage. Blood glucose levels were measured before and at 15, 30, 60, and 120
min after glucose administration as described above.

Insulin tolerance test (ITT)

ITT was performed in the 20th week of the administration period. After 6 h-fasted blood glu-

cose levels were measured, insulin (Humulin R, Eli Lilly Japan, Tokyo, Japan) was intraperito-
neally injected at 0.2 U/kg of body weight. Blood glucose levels at 15, 30, 60, and 90 min after

the injection were measured as described above.

Plasma lipids and insulin

At the end of the administration period, blood was collected 2-3 h after the final administra-
tion of glucose (G group) or water (W group) from the inferior vena cava under deep anesthe-
sia with intraperitoneal sodium pentobarbital injection (100 mg/kg). Total cholesterol, high-
density lipoprotein (HDL) cholesterol (sodium phosphotungstate-magnesium chloride precip-
itation method), triacylglycerol, and non-esterified fatty acid levels in the blood plasma were
measured using commercial kits (Wako Pure Chemical, Osaka, Japan). Non-HDL cholesterol
level was calculated from the total and HDL cholesterol levels. Plasma insulin concentration
was measured with an Ultra Sensitive Mouse Insulin ELISA (Morinaga Institute of Biological
Science, Yokohama, Japan).

Evaluation of atherosclerosis in aortic sinus

Atherosclerotic lesion size in the aortic sinus was quantitatively analyzed based on the method
of Paigen et al. [13] with modifications [11]. In brief, after perfusion in situ with saline, the
heart was isolated and fixed with 4% formaldehyde in phosphate buffered saline. It was then
immersed in 30% sucrose solution and cut at a plane parallel to the atrial appendages. The
upper part, including the aortic root, was embedded in optimum cutting temperature com-
pound (Sakura Finetek, Tokyo, Japan). Cryostat sections were cut from the left ventricular out-
flow tract until 3 valve cusps were exposed. Thereafter, 10-um-thick 45 serial cross-sections
were prepared. Of the serial sections, every 5 sections (9 sections, each separated by 50 um)
were stained with oil red O, and then counterstained with hematoxylin. The oil red O-stained
area was determined manually from the photomicrograph images by an observer who was not
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aware of the group allocation (YS), using Photoshop Elements software (Adobe Systems, San
Jose, CA). The oil red O-stained area of the 9 sections was averaged and expressed as the mean
lesion size for each mouse. Immunohistochemical staining was also performed to confirm mac-
rophage infiltration into the lesions. In brief, adjacent sections to the oil red O-stained ones
were stained with MOMA-2 rat monoclonal antibody to mouse macrophages (AbD Serotec,
Oxford, UK) using Vectastain Elite ABC kit (Vector, Burlingame, CA), followed by hematoxy-
lin staining.

Gene expression in thoracic aorta

Total RNA was extracted from the thoracic aorta using Isogen II reagent (Nippon Gene,
Tokyo, Japan), and the cDNA was generated using SuperScript VILO (Life Technologies,
Carlsbad, CA). Quantitative polymerase chain reaction (PCR) was performed using TagMan
Gene Expression Assays (Life Technologies), and the differential expression was determined by
the 222" method, with Actb (B-actin) used as the internal control.

Statistical analysis

All data are expressed as mean + standard error of the mean (SEM). Values of p < 0.05 by Stu-
dent ¢-test were considered statistically different between G and W groups.

Results
Blood glucose fluctuation

Fig 1 shows diurnal blood glucose profiles in the 2nd, 11th, and 20th week of the administra-
tion period. G group mice showed transient increases in blood glucose level 20 min after each
administration, by ~5 mmol/L above that in W group. The blood glucose levels in G group
mice returned to levels similar to those in W group within 60 min.

Glucose tolerance and insulin sensitivity

There were no significant differences in blood glucose levels in the OGTT between G and W
groups at any time point (Fig 2A). The ITT showed no significant difference in insulin sensitiv-
ity between the 2 groups (Fig 2B).

Body weight, tissue weight, plasma lipids, and insulin

There were no significant differences in body weight gain, liver weight, and gonadal fat mass
between the 2 groups after the 20-week administration period (Table 1). No significant differ-
ences were seen in plasma insulin, total cholesterol, HDL cholesterol, non-HDL cholesterol,
and triacylglycerol levels after the administration period (Table 1).

Atherosclerotic lesion formation in aortic sinus

After the 20-week administration period, lipid-laden plaque was observed in the intimal area
of the aortic sinus of both groups of mice (Fig 3A and 3B). Atherosclerotic lesion formation
was confirmed by the immunohistochemical detection of macrophages (Fig 3C and 3D). The
lesion size in G group mice was approximately 4-fold greater than that in W group (Fig 3E).

Gene expression in thoracic aorta

Gene expression levels of a macrophage marker Cd68 and an adhesion molecule Icam1 (inter-
cellular adhesion molecule-1) were significantly higher in G group mice than those in W group
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Fig 1. Diurnal blood glucose profile. Blood glucose levels were monitored in the 2nd (A), 11th (B), and 20th (C) week of repetitive glucose (G group) or
water (W group) administration. Arrows indicate the administration time (08:00 and 16:00). Values are expressed as mean + SEM of 8 mice for each group.
*p <0.05, **p < 0.01, ***p < 0.001 vs. W group.

doi:10.1371/journal.pone.0136840.g001

in the thoracic aorta (Fig 4). Similar trends toward higher gene expression levels in G group
mice were also seen for other adhesion molecules Vcam1 (vascular cell adhesion molecule-1)
and Sele (E-selectin), though they did not reach statistical significance.

Discussion

In this study, we clearly demonstrated that repetitive glucose spikes accelerate atherosclerotic
lesion formation in wild-type C57BL/6 mice. During the 20-week administration period, G
group mice showed acute and transient hyperglycemia just after oral glucose doses. After the
administration period, no significant differences were observed in body weight, glucose toler-
ance, insulin sensitivity, plasma insulin level, and plasma lipid profiles between G and W
groups. Taken together, the augmented atherosclerotic lesion formation in G group mice was
considered predominantly to be the result of repetitive glucose spikes, with little influence of
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Fig 2. Blood glucose levels in oral glucose tolerance test (A) and insulin tolerance test (B). Values are
expressed as mean + SEM of 5 mice for each group. No significant differences were seen in blood glucose
levels between G and W groups at any time point in the oral glucose tolerance test and the insulin tolerance
test.

doi:10.1371/journal.pone.0136840.9002
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Table 1. Body weight gain, relative tissue weight, plasma insulin, and plasma lipid profile after the 20-week administration period.

Body weight gain (g/20 weeks)

Tissue weight (mg/g body weight)

Liver
Gonadal fat
Insulin (ng/mL)
Plasma lipid (mmol/L)
Total cholesterol
HDL cholesterol
Non-HDL cholesterol
Triacylglycerols

G group
43104

89.6+2.5
11.5+£0.7
0.41 +£0.05

5.44 + 0.50
0.36 + 0.04
5.08 £ 0.50
0.17 £ 0.02

Values are expressed as mean + SEM of 8 mice for each group.

doi:10.1371/journal.pone.0136840.t001

G group

W group

W group
35+04

86.1 £ 3.0
124 £ 0.7
0.32 £0.02

5.19+£0.28
0.48 + 0.06
4.71 £0.29
0.16 + 0.02

p value
0.13

0.38
0.36
0.15

0.67
0.13
0.53
0.64

chronic metabolic disorders such as chronic hyperglycemia, insulin resistance, and

dyslipidemia.

A number of observational epidemiological studies have demonstrated an increased cardio-
vascular risk not only in individuals with diagnosed diabetes but also in those with IGT [2,3].
Furthermore, post-interventional observations of the Diabetes Chronic Complications Trial
(DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) showed that intensive
glycemic control early in the course of diabetes could reduce subsequent cardiovascular events
[15,16]. These findings imply that glucose spikes in individuals with pre-diabetes or early-stage
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Fig 3. Atherosclerotic lesions in aortic sinus. (A,B) Representative images of oil red O-stained atherosclerotic lesions in aortic sinus. (C,D)
Immunohistochemical staining of macrophages (brown) in the cross-sections adjacent to the oil red O-stained images. (E) Quantitative analysis of the lesion
area. Each dot indicates mean size of the oil red O-stained lesion area in each mouse. Bars indicate mean + SEM of 8 mice for each group.

doi:10.1371/journal.pone.0136840.g003
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Fig 4. Relative gene expression levels in thoracic aorta. Gene expression levels were normalized to Actb
(B-actin) in each mouse and expressed as relative values to the mean expression levels in W group. Icam1,
intercellular adhesion molecule-1; Vcam1, vascular cell adhesion molecule-1; Sele, E-selectin. Values are
expressed as mean = SEM of 8 mice for each group.

doi:10.1371/journal.pone.0136840.9g004

diabetes may play a crucial role in the pathogenesis of atherosclerosis. In fact, blunting post-
prandial hyperglycemia (by an o-glucosidase inhibitor acarbose) in subjects with IGT resulted
in decreased cardiovascular events in the Study to Prevent Non-Insulin-Dependent Diabetes
(STOP-NIDDM) [17].

Besides the epidemiological results, several laboratory studies have addressed the causal role
of glucose fluctuations in the pathogenesis of atherosclerosis. In cell culture experiments, for
instance, oscillating glucose concentrations have been demonstrated to induce more deleterious
pro-atherogenic changes via increased reactive oxygen species production in endothelial cells
compared to constant high glucose concentration [18-20]. Transient hyperglycemia-induced
oxidative stress and endothelial dysfunction have also been reported in human studies [21-23].

Studies in animal models would be helpful to evaluate pivotal pathways that substantially
contribute to the pathogenesis of atherosclerosis in vivo. However, most of the existing animal
models for investigating the role of hyperglycemia in atherosclerosis are genetically hyper-
cholesterolemic mice (e.g., apolipoprotein E [apoE] or low-density lipoprotein receptor-defi-
cient mice), in combination with streptozotocin-induced pancreatic B-cell destruction or
crossbreeding with genetically obese diabetic mice [24,25]. Since those mice display severe
chronic hyperglycemia, they serve as models for overt diabetes rather than for IGT. In addition,
severe hypercholesterolemia-induced highly accelerated development of atherosclerosis in
these mice often masks the glycemic effect on the atherosclerotic process [26,27]. For example,
similar to the present study, Mita et al. [28] previously reported augmented atherosclerotic
lesion formation with repetitive maltose administration in apoE-deficient mice; however, the
increment in lesion size (~1.5-fold relative to the water-administered control mice) was less
pronounced compared to that in the present study (~4-fold). The overwhelming impact of
hypercholesterolemia in apoE-deficient mice might make it difficult to accurately assess the
glycemic effect on the development of atherosclerosis. Hence, the present approach using wild-
type C57BL/6 mice may be more appropriate to clearly demonstrate the atherogenic role of
glucose spikes than that using genetically hypercholesterolemic mice.

In contrast to the existing animal models, the simple approach of the present study (i.e., repet-
itive oral glucose administration in wild-type mice) successfully induced repetitive glucose spikes
and accelerated atherosclerosis without chronic hyperglycemia and overt hypercholesterolemia.
In addition, since we used wild-type mice in this study, obvious lipid-laden lesion formation was
limited in the aortic sinus, and the size was much less than that in genetically hypercholesterol-
emic mice. Taken together, the present method would be suitable for investigating the effect of
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repetitive glucose spikes on the early stages of atherosclerosis. For instance, since the lesion size
was evidently different between the 2 groups after the 20-week administration period, biochemi-
cal and histological analyses of the causative mechanisms in the aortic tissues are now of great
interest. In gene expression analysis, G group mice showed signs of increased macrophage infil-
tration and elevated cell adhesion molecule expression in the thoracic aorta, where lipid-laden
lesions are hardly detectable in wild-type mice, even after long-term atherogenic diet feeding.
These results in the thoracic aorta, the adjacent part of the lipid-laden lesion site, would imply
the causal atherogenic changes in the arterial wall. A number of studies have demonstrated the
role of cell adhesion molecules (including ICAM-1, VCAM-1, and E-selectin) in atherogenesis in
knockout mice, although those results have not yet been conclusive [29]. In cell culture experi-
ments, intermittent high glucose was reported to induce ICAM-1, VCAM-1, and E-selectin
expression via protein kinase C and mitochondrial superoxide production [19]. Post-glucose
load increase in circulating levels of ICAM-1, VCAM-1, and E-selectin was also observed in
humans [30]. In addition, increased monocyte adhesion to the thoracic arterial wall was reported
in animals experienced blood glucose fluctuations [28, 31]. These pro-atherogenic changes may
therefore actually precede and predispose to the development of atherosclerosis.

There are several limitations to this study. First, although repetitive glucose spikes actually
accelerated atherosclerotic lesion formation, the in vivo molecular mechanisms still remain
largely obscure. Further research is needed to investigate the potential causative mechanisms
(e.g., involvement of repetitive transient hyperinsulinemia in response to the glucose spikes,
advanced glycation end product-related changes, and protein expression analysis) in arterial
tissues. Second, although statistical differences were observed in lesion size in the aortic sinus
and some gene expression levels in the thoracic aorta between the 2 groups, large individual
variations were seen in the values. A larger sample size study with analyzing biological func-
tions (e.g., monocyte adhesion, transmigration, and macrophage form cell formation in vivo)
will therefore be necessary for more convincing evidence. Third, a cholate-containing athero-
genic diet (Paigen diet) causes several adverse effects, including cholesterol gallstones and fatty
liver, whereas cholate ensures cholesterol absorption and consequent atherosclerotic lesion for-
mation in wild-type mice. Hence, the present study with Pagain diet may not be suitable for
evaluating systemic metabolic disorders other than atherosclerosis. Fourth, as mentioned
above, atherosclerotic lesions are small and can be formed in the limited area of aortic sinus in
wild-type mice. Thus, other methodologies will be required to fully understand the impact of
glucose spikes on subsequent severe cardiovascular events such as acute coronary syndromes.

Conclusions

The present results demonstrate that repetitive glucose spikes can accelerate atherosclerotic
lesion formation in mice, with little influence of other metabolic disorders. The present simple
method of repetitive glucose administration in wild-type mice with atherogenic diet feeding
may serve as a useful approach to address the underlying pathophysiological links between glu-
cose spikes and the development of atherosclerosis in IGT.
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