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Abstract: Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the
presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs)
specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug
intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude
while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK
activity is critically linked to the pathogenesis of a number of diseases including hematopoietic
diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this
study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly
enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation
imatinib, and second generation dasatinib by approximately 2.5–3.0-fold in BCR-ABL-positive CML-
derived leukemia K562 and KMB5 cells. Knockdown of p38β, which displays the most sequence
similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy.
These results show the importance of isotype-specific intervention in enhancing the therapeutic
efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib-
and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future
clinic application. Taken together, our results demonstrated that p38α is a promising target for
combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to
increase therapeutic efficacy.

Keywords: chronic myeloid leukemia; combined therapy; imatinib; dasatinib; p38 MAPK

1. Introduction

Small-molecule tyrosine kinase inhibitors (TKIs) have profoundly improved the prog-
nosis and life expectancy of various cancer patients since the first tyrosine kinase inhibitor
imatinib was approved for clinical use to treat chronic myeloid leukemia (CML) [1]. How-
ever, these kinase inhibitors, even for those with one known prominent target, frequently
act on multiple protein kinases and often results in adverse off-target side effects leading
to undesired intolerance or toxicity, particularly upon high-dose and long-term treat-
ment [2]. One of the strategies to combat this obstacle is combination therapy, which
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targets either TKI-related or TKI-unrelated survival pathways, death pathways, or feed-
back inhibitory/activating pathways, thus not only reducing drug doses but also providing
additional therapeutic efficacy [3].

CML is a clonal hematopoietic disease characterized by the presence of the Philadel-
phia (Ph) chromosome caused by a reciprocal translocation between chromosomes 9 and
22 [4]. This leads to the formation of the BCR-ABL fusion gene and constitutive activa-
tion of the tyrosine kinase activity resulting in uncontrolled proliferation, survival, and
dysregulated differentiation of myeloid cells [5]. The disease occurs prevalently in elderly
people over the age of 55. This group of people is more fragile and frequently present
underlying health conditions, which increase complications related to drug treatment and
compromise outcomes [6].

The BCR-ABL oncogene activates multiple important signaling pathways, including
Ras-MAPKs, STATs, SFKs (Src family kinases), and PI3K/AKT, to promote growth and
survival [7–9]. The first BCR-ABL-targeted protein TKI, imatinib, has changed the treatment
regimens for CML and resulted in significantly improved remission rate, prognosis, and
overall survival [10]. Imatinib, with an unprecedented specificity toward the kinase activity
of BCR-ABL, achieved a remarkable remission rate of 95% for CML patients in the chronic
stage [11]. It works as a competitive inhibitor at the ATP binding site of BCR-ABL, which
leads to inactivation of the kinase activity and results in the elimination of BCR-ABL-
positive hematopoietic cells [10]. A complete eradication of CML is, however, yet to
be achieved. Approximately 33% of CML patients do not achieve a complete cytogenic
response (CCyR) after treatment [12]. The second-generation TKIs, such as dasatinib, show
significant effects in patients resistant to imatinib; however, intolerance to the drug-related
toxicity and off-target adverse effects leading to unnecessary discontinuation of treatment
remain [13–15]. Studies on the development of potential novel strategies are needed to
overcome these obstacles.

Understanding the molecular mechanisms through which BCR-ABL promotes leukemia
generation and TKIs exert anti-leukemic effects will greatly facilitate the development of
novel combined therapeutic strategies for clinical utility. It is presumed that imatinib
and other TKIs targeting BCR-ABL oncogene exert their anti-leukemic effects by blocking
BCR-ABL-driven mitogenic and anti-apoptotic signaling pathways. However, the precise
role of each pathway is not completely elucidated. The p38 MAPK family is a group of
versatile serine/threonine kinases. Dysregulation of the p38 MAPK activity is critically
linked to the pathogenesis of hematopoietic disease, rheumatoid arthritis (RA), chronic
obstructive pulmonary disease (COPD), and malignancy [16,17] and, therefore, the devel-
opment of specific inhibitors for clinical purposes has attracted vast attention [18]. The
four members of p38 MAPKs (i.e., p38α, p38β, p38γ, and p38δ) exhibit high sequence
homology with either overlapped or distinct physiological and pathological roles [19].
The role of p38 MAPK in imatinib-mediated anti-leukemic effects is controversial. Some
reports have shown that imatinib treatment induced the activation of p38 MAPK signaling
pathways and affected the proliferation or apoptosis of BCR-ABL-expressing cells [20,21].
However, other studies have shown opposite results, where the inhibition of p38 MAPK
with SB202190 did not affect imatinib-mediated caspase activation [22]. This may be, at
least partly, due to the fact that the pharmacological inhibitors used do not discriminate
well between isozymes in the p38 MAPK family, particularly p38α and p38β.

In this study, we elucidated the distinct roles of p38α and p38β in imatinib-mediated
therapeutic effects by gene-specific knockdown. Our results clearly showed that deficiency
in p38α greatly enhanced imatinib-induced therapeutic effects in growth suppression and
apoptotic cell death in two BCR-ABL-positive CML-derived leukemia cells, K562 and
KBM5. Knockdown of p38β did not sensitize cells to the therapeutic effect of imatinib but
rather was more resistant to imatinib-mediated killing and growth suppression. Deficiency
of p38α also enhanced the efficacy of second-generation TKI dasatinib. The potential clinic
application of our results was further supported by similar observations using the p38α-
specific inhibitor TAK715, which possesses a very high discrimination capability between
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the α and β isoforms. Taken together, this study provides strong evidence demonstrating
that p38α is a promising target for combined therapy with BCR-ABL-targeted tyrosine
kinase inhibitors to increase therapeutic efficacy.

2. Results
2.1. Knockdown of p38α Significantly Enhanced Imatinib-Induced Cytotoxicity in
BCR-ABL-Positive K562 Leukemia Cells

Members of MAPK pathways are reported to associate with imatinib-mediated ef-
fects [20–22]; however, the roles of each member in imatinib-mediated effects are still
elusive. Our previous studies have revealed distinct roles for p38α and p38β in the differ-
entiation of K562 cells by using specific gene knockdown [23–25]. We used the established
p38α-knockdown stable clone KD1 of K562 cells (Figure 1A) in this study. The growth of
knockdown cells was slightly slower, approximately 90%, as compared to parental K562
cells under regular culturing conditions (Figure 1B). The total viable cells of KD1 were
approximately 90% compared to those of parental K562 (Figure 1C), which was parallel to
the total cell number (Figure 1B). There was no difference in dead cell numbers between
K562 and KD1 (Figure 1D). This indicated that the viability of KD1 cells was similar to the
parental cells, suggesting knockdown of p38α in K562 cells has no apparent effects on the
survival of K562 cells.
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Figure 1. Knockdown of p38α had no apparent effects on the viability of BCR-ABL-positive K562
leukemia cells. The transcripts of p38α in K562 cells were knocked down using specific shRNAs. The
protein levels of p38α were examined by Western blotting (A). The cell growth of parental K562 and
knockdown KD1 cell clones were examined using hemocytometer counting under a microscope (B).
The viable (C) and dead cells (D) were identified by trypan blue exclusion. All results shown are
representatives of three independent experiments. Cell number and viability are presented as the
mean ± SE of three repeats. * p < 0.05, and *** p < 0.005.

We then investigated the responses of these cell clones to imatinib treatment. At most
concentrations tested, imatinib exhibited a remarkable differential effect in K562 parental
and p38α-knockdown cells. At 0.3 µM, imatinib only slightly affected cell viability, around
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10% at 96 h, in both parental and KD cells (Figure 2A, dead cells); however, imatinib caused
significant growth suppression in p38α-knockdown KD1 to approximately 60% of that
of K562 parental cells (Figure 2A, 72 and 96 h). When the concentration was increased to
0.6 µM, imatinib exhibited remarkable cytotoxic killing in both cell clones with a much
greater effect in the p38α KD cells. The dead cells increased to 25% and 33% in K562 parental
cells at 72 and 96 h, respectively (Figure 2B, K562). In p38α-knockdown cells, the drug killed
37% and 51% cells at 72 and 96 h, respectively (Figure 2B, p38α KD1). The results showed
that the imatinib-mediated killing increased by 1.5-fold when p38α was deficient. When
growth suppression and cytotoxic killing were measured together, the overall differences
in the therapeutic efficacy between p38α KD and parental K562 cells were further increased.
The total viable cells of p38α KD1 were only 42% and 29% to those of the K562 parental cells
at 72 and 96 h, respectively (Figure 2B, viable cells, 0.6 µM). These counted for an increase
of 2.4-fold and 3.5-fold in therapeutic efficacy at 72 and 96 h, respectively, when p38α was
deficient. At 1.2 µM, imatinib exerted a very strong therapeutic effect in K562 cells, as the
viable cells decreased by 40–45% and 75–80% compared to those at 0.3 µM and 0.6 µM,
respectively (Figure 2C). At this concentration (1.2 µM), imatinib still induced a much
stronger response in p38α KD cells (Figure 2C). Similar results were observed with another
p38α-knockdown KD11 cell clone in imatinib-mediated killing and cell growth suppression
(Supplementary Materials Figure S1). The total viable cells represent a combined outcome
of cell death and growth suppression as an overall measurement of therapeutic efficacy.
These results provide strong evidence demonstrating that p38α deficiency greatly enhances
the therapeutic efficacy of imatinib, particularly at the middle concentration of 0.6 µM, in
BCR-ABL-positive leukemia K562 cells.
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Figure 2. Knockdown of p38α significantly enhanced imatinib-induced cytotoxicity in BCR-ABL-positive K562 leukemia
cells. The K562 parental and p38α-knockdown (KD1) cells were treated with 0.3 µM (A), 0.6 µM (B), and 1.2 µM (C) of
imatinib. The viability of cells was examined by trypan blue exclusion. Knockdown of p38α greatly enhanced the therapeutic
efficacy of imatinib. All results shown are representatives of three independent experiments. Total and dead cell numbers
are presented as the mean ± SE of three repeats. * p < 0.05, ** p < 0.01, and *** p < 0.005.
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2.2. Imatinib Induced Apoptotic Cell Death in K562 Cells Which Was Significantly Enhanced
When p38α Was Deficient

We further investigated the molecular events involved in the increased cytotoxicity
of imatinib toward p38α-knockdown cells. The parental and p38α-knockdown KD1 cells
exhibited similar patterns in cell cycle distribution under normal culturing conditions
(Figure 3A, 0 µM). At 0.3 µM, imatinib did not induce apparent change in either cell clones
at 48 h (Figure 3A, 0.3 µM). As the concentration increased to 0.6 µM, imatinib induced
a significant elevation in the sub-G1 population, a characteristic of apoptosis, to 39.1%
in KD1 cells at 48 h, while it only resulted in 9.7% in the sub-G1 population of K562
cells (Figure 3A). When the duration of treatment increased to 72 h, imatinib (0.3 µM)
caused a further increase in the sub-G1 population to 16.8% in p38α KD cells, but it did
not appear to increase the sub-G1 population in K562 parental cells (Figure 3B, 0.3 µM).
At 0.6 µM, imatinib caused a greater increase in the sub-G1 population to 66% in p38α
KD cells. However, K562 cells exhibited only a slight increase in the sub-G1 population
to approximately 16% (Figure 3A,B, 0.6 µM). These results indicate that imatinib caused
a much greater extent of apoptotic cell death in p38α KD cells. Apoptosis was further
examined with caspase activation by Western blotting analysis (Figure 3C). Caspase-3 is a
major executioner caspase in apoptosis and is activated via cleavage of proenzyme [20].
The activated caspase-3 carries out a wide range of proteolytic actions on many important
cellular proteins including PARP (poly ADP-ribose polymerase), a critical player in DNA
repair. The cleavage of these two proteins thus provides good evidence indicating the
progression of apoptosis. Deficiency of p38α significantly enhanced the extent of activation
of caspase-3 and PARP cleavage in a shorter time period compared to parental K562 cells
(Figure 3C). These results are consistent with those observed in the increase in the sub-G1
population and together validate the cytotoxicity effect and cellular viability observed by
using the trypan blue exclusion assay (Figure 2). Etoposide (Ep) is a chemotherapeutic
drug known to induce apoptosis and used as a positive control. The presence of the
sub-G1 population, the activation of caspase-3, and the cleavage of PARP (Figure 3) are
well-known characteristics of apoptosis. Taken together, these results indicate that imatinib
causes apoptotic cell death in BCR-ABL-positive leukemia K562 cells and p38α deficiency
significantly enhances this cytotoxic effect.

2.3. Knockdown of p38β Did Not Sensitize K562 Leukemia Cells to the Therapeutic Effects
of Imatinib

The α and β isotypes of p38 MAPK exhibit the most similarity in sequence homol-
ogy and regulation of enzymatic activity and are the most abundant members in many
tissues [19]. However, many pharmacological inhibitors do not distinguish these two
isozymes well, which hampers the progression in elucidating the individual role of these
two isozymes in imatinib-mediated therapeutic effects. Therefore, we used a gene knock-
down strategy to address whether p38β is involved in enhancing the cellular sensitivity of
K562 to imatinib. The knockdown of p38β protein levels is shown in Figure 4A. The growth
and viability of p38β-knockdown cells were similar to the parental K562 cells under normal
culturing conditions (Figure 4B–D). Similar to what was observed with p38α knockdown
(Figure 2A, upper), imatinib, at 0.3 µM, did not kill p38β-knockdown cells (Figure 4A,
dead cells). Notably, growth suppression mediated by the imatinib treatment in p38β-
knockdown cells was significantly less (Figure 4B, bottom) compared to p38α knockdown
cells (Figure 2A, bottom), indicating the differential responses upon p38α and p38β defi-
ciency. At higher concentrations, 0.6 and 1.2 µM, imatinib significantly caused cell death in
K562 parental cells (Figure 4C,D, upper) as observed above (Figure 2). Notably, p38β defi-
ciency did not render cells more sensitive to imatinib as p38α knockdown (Figure 2). On
the contrary p38β KD cells were slightly more resistant to the killing (Figure 4C,D, upper)
and the growth suppression (Figure 4C,D, bottom) mediated by imatinib as compared to
parental cells.
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p38α-knockdown (KD1) cells were treated with various concentrations of imatinib as indicated for 48 and 72 h. Cells
were fixed and stained with propidium iodide. The cell cycle distribution was analyzed by flow cytometry: (A) 48 h and
(B) 72 h. Knockdown of p38α significantly increased the apoptotic sub-G1 population after imatinib treatment. Activation of
caspase-3 was analyzed by Western blotting using specific antibodies (C). Etoposide (Ep) is a chemotherapeutic drug known
to induce apoptosis and used as a positive control. The ratio of band intensity was quantified as described in Section 4. Both
the active form of caspase-3 and the cleavage of the specific substrate PARP increased in p38α knockdown cells. All results
shown are representatives of three independent experiments.
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Figure 4. Knockdown of p38β did not sensitize K562 leukemia cells to the therapeutic effects of
imatinib. The transcripts of p38β were knocked down using specific shRNAs. The protein levels
of p38β were detected by Western blotting (A). The cell growth and viability of parental K562
and knockdown KD1 cell clones under normal culturing conditions were examined by trypan blue
exclusion using hemocytometer counting under a microscope (A). Cells were treated with 0.3 (B), 0.6
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(C), and 1.2 µM (D) of imatinib and the cell viability was examined. Deficiency of p38β did not
sensitize K562 cells to the killing effect of imatinib as observed with p38α deficiency. On the contrary,
p38β deficiency exhibited a slight but significant resistance to the killing effect of imatinib. All results
shown are representatives of three independent experiments. Viable and dead cell numbers are
presented as the mean ± SE of three repeats. * p < 0.05, ** p < 0.01, and *** p < 0.005.

2.4. The Cytotoxic Effect of Dasatinib Was Enhanced upon p38α Knockdown

Dasatinib is a second-generation BCR-ABL inhibitor with a higher inhibitory efficacy
toward the kinase activity of the BCR-ABL oncogene [26] and is widely used to treat CML
patients. Dasatinib binds to the active conformation of the kinase domain and also has
a high inhibitory efficacy toward other tyrosine kinases, such as Src, and thus renders a
higher risk of side effects [9]. We further investigated whether p38α might affect the killing
effect of dasatinib. Dasatinib exerted a significant cytotoxic effect in K562 parental cells
with 28% and 58% cell death at 1 nM and 2 nM, respectively (Figure 5A,B, 96 h, upper).
The p38α-knockdown cells were much more sensitive to dasatinib. The cell death events
were 57% and 93% at 1 and 2 nM, respectively (Figure 5A,B, 96 h, upper), which were
almost double the death events in K562 parental cells. The total viable cells also reflected
the profound increase in cellular responses to the killing effect of dasatinib (Figure 5A,B,
bottom). Taken together, p38α deficiency greatly enhances the efficacy of two important,
clinically used therapeutic TKIs—imatinib and dasatinib—in BCR-ABL-positive leukemia
K562 cells. These results indicate a potential novel strategy in providing a more effective
and safer treatment for CML by combining TKIs (e.g., imatinib or dasatinib) and specific
p38α inhibition.
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Figure 5. The cytotoxic effect of dasatinib was also enhanced upon p38α knockdown. The K562
parental and p38α-knockdown (KD11) cells were treated with 1 (A) or 2 nM (B) of the second-
generation TKI dasatinib. The viability of cells was examined by trypan blue exclusion. Knockdown
of p38α greatly enhanced the therapeutic efficacy of dasatinib. All results shown are representative
of three independent experiments. Viable and dead cell numbers are presented as the mean ± SE of
three repeats. ** p < 0.01, and *** p < 0.005.
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2.5. The p38α Deficiency-Mediated Drug Sensitivity Was Also Observed in BCR-ABL-Positive
KBM5 Leukemia Cells

KBM5 is a BCR-ABL-positive myelogenous leukemia cell line derived from a patient
in the blast phase [27]. To investigate whether p38α deficiency-mediated drug sensitivity
was also observed in other BCR-ABL-positive cells, we established the p38α-knockdown
KBM5 stable clones M5-8H and M5-11G using shRNAs for investigation (Figure 6A). We
carefully tested the drug concentrations for moderate cytotoxicity and chose 0.2 µM and
0.5 µM for the experiments. The growth of these knockdown cell clones was slightly slower
compared to the parental KBM5 cells; however, the viability was similar (Figure 6A). These
results are similar to those observed in K562 cells. The overall therapeutic efficacy of
imatinib at 0.2 µM increased by 2.5–3.0-fold when p38α was knocked down (Figure 6B,
viable cells). The killing also increased in p38α KD cells by 1.5–2.0-fold (Figure 6B, dead
cells). At 0.5 µM, cell death greatly increased to 85% in p38-α knockdown cells compared
to 46% dead events in parental cells (Figure 6C), which was an increase by approximately
two-fold. These results were similar to those observed in K562 (Figure 2).

We further examined drug response to dasatinib. The results showed that cell death
increased from 30% in parental cells to 45–60% in KD cells at 0.5 nM after 96 h (Figure 7A).
At 1 nM, the death event increased to 45% in parental cells (Figure 7B) and increased
to 70–90% in p38α KD cells (Figure 7B). At these effective drug concentrations, p38α
deficiency greatly increased drug sensitivity by approximately two-fold. The cell viability
presents a combined outcome of cell death and growth suppression and is used as an
overall measurement of therapeutic efficacy. Our results together indicated that p38α
deficiency-mediated sensitivity to therapeutic TKIs appeared to be common in BCR-ABL-
positive CML cells and demonstrated that p38α is a promising target to lower drug dosing
and increase the well-being of chronic myelogenous leukemia patients.

2.6. Specific p38α Inhibitor TAK715 Greatly Increased the Therapeutic Efficacy of Imatinib and
Dasatinib toward CML Cells

Due to the pivotal role of p38α in physiological and pathological processes, exten-
sive efforts have focused on developing pharmacological inhibitors that can efficiently
distinguish isozymes of the p38 family, particularly p38α and p38β [18]. TAK715 is a small
molecule with an IC50 of 7.1 and 200 nM toward the α and β isoforms, respectively [28],
and it exhibits a great capacity to distinguish the activity of these two isoforms. We there-
fore chose TAK715 to examine the response of CML cells to imatinib and dasatinib when
the p38α activity was specifically inhibited by small molecular inhibitors, which have a
more feasible application in clinic usage. TAK715 (10 µM) treatment, in combination with
imatinib (0.3 µM), reduced the cell viability to 31%, whereas cells exhibited a much higher
viability of 70% with imatinib treatment alone (Figure 8A, 96 h). The combined treatment
also increased the cell death event from 20% (imatinib alone) to 53% (imatinib + TAK715)
(Figure 8A, 96 h). These results suggest that with a combination including the p38α inhibitor
TAK715, the therapeutic efficacy of imatinib is enhanced by approximately 2.3–2.7-fold.
Similar effects, to a lesser extent, were also observed with a lower concentration of TAK715
at 5 µM (Figure 8A, IM+5T).
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Figure 6. The p38α deficiency increased cellular sensitivity to imatinib in BCR-ABL-positive KBM5 leukemia cells. The
p38α transcripts in KBM5 cells were knocked down using specific shRNAs. The protein levels of p38α were examined by
Western blotting (A). The cell growth and viability of parental KBM5 and knockdown M5-8H and M5-11G cell clones were
examined using hemocytometer counting under a microscope (A). Dead cells were identified by trypan blue exclusion. Cells
were treated with 0.2 (B) and 0.5 µM (C) imatinib and the cell viability was examined. All results shown are representative
of three independent experiments. Cell number and viability are presented as the mean ± SE of three repeats. * p < 0.05,
** p < 0.01, and *** p < 0.005.



Int. J. Mol. Sci. 2021, 22, 12573 11 of 17

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 18 
 

 

results shown are representative of three independent experiments. Cell number and viability are 

presented as the mean ± SE of three repeats. * p < 0.05, ** p < 0.01, and *** p < 0.005. 

 

Figure 7. The p38α deficiency increased cellular sensitivity to dasatinib in BCR-ABL-positive KBM5 leukemia cells. The 

KBM5 parental and p38α-knockdown (M5-11G and M5-8H) cells were treated with 0.5 (A) or 1 nM (B) of sec-

ond-generation TKI dasatinib. The viability of cells was examined by trypan blue exclusion. Knockdown of p38α greatly 

enhanced the therapeutic efficacy of dasatinib. All results shown are representative of three independent experiments. 

Viable and dead cell numbers are presented as the mean ± SE of three repeats. * p < 0.05, ** p < 0.01, and *** p < 0.005. 

2.6. Specific p38α Inhibitor TAK715 Greatly Increased the Therapeutic Efficacy of Imatinib and 

Dasatinib toward CML Cells 

Due to the pivotal role of p38α in physiological and pathological processes, exten-

sive efforts have focused on developing pharmacological inhibitors that can efficiently 

distinguish isozymes of the p38 family, particularly p38α and p38β [18]. TAK715 is a 

small molecule with an IC50 of 7.1 and 200 nM toward the α and β isoforms, respectively 

[28], and it exhibits a great capacity to distinguish the activity of these two isoforms. We 

therefore chose TAK715 to examine the response of CML cells to imatinib and dasatinib 

when the p38α activity was specifically inhibited by small molecular inhibitors, which 

have a more feasible application in clinic usage. TAK715 (10 µM) treatment, in combina-

tion with imatinib (0.3 µM), reduced the cell viability to 31%, whereas cells exhibited a 

much higher viability of 70% with imatinib treatment alone (Figure 8A, 96 h). The com-

bined treatment also increased the cell death event from 20% (imatinib alone) to 53% 

(imatinib + TAK715) (Figure 8A, 96 h). These results suggest that with a combination in-

cluding the p38α inhibitor TAK715, the therapeutic efficacy of imatinib is enhanced by 

Figure 7. The p38α deficiency increased cellular sensitivity to dasatinib in BCR-ABL-positive KBM5 leukemia cells. The
KBM5 parental and p38α-knockdown (M5-11G and M5-8H) cells were treated with 0.5 (A) or 1 nM (B) of second-generation
TKI dasatinib. The viability of cells was examined by trypan blue exclusion. Knockdown of p38α greatly enhanced the
therapeutic efficacy of dasatinib. All results shown are representative of three independent experiments. Viable and dead
cell numbers are presented as the mean ± SE of three repeats. * p < 0.05, ** p < 0.01, and *** p < 0.005.

The combinatorial effect of TAK715 was further examined together with dasatinib.
Results similar to those for imatinib were observed. Dasatinib (1 nM) treatment caused a
reduction in cell viability to 63%. The viability was further reduced to 20% when cells were
treated with dasatinib and TAK715 together (Figure 8B, D+10T, 96 h). The death events
increased from 23% (dasatinib alone) to 58% (dasatinib + TAK715) (Figure 8B, D+10T, 96 h).
These results indicate that the efficacy of dasatinib was enhanced by 2.5–3.2-fold when
combined with TAK715. Similar effects, to a lesser extent, were also observed with a lower
concentration of TAK715 at 5 µM (Figure 8B, D+5T). The treatment with TAK715 alone
exhibited a growth suppression effect in a dose-dependent manner with 90% and 68%
viable cells at 5 and 10 µM, respectively (Figure 8C, left); however, TAK715 alone had only
mild effects on inducing cell death (Figure 8C, right). These results promise a feasible
application for CML by combining p38 inhibition and imatinib/dasatinib treatment.
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Figure 8. Specific p38α inhibitor TAK715 greatly increased the therapeutic efficacy of imatinib and
dasatinib toward CML cells. K562 leukemia cells were treated with imatinib (0.3 µM) (A) or dasatinib
(1 nM) (B) in combination with p38α inhibitor TAK715 (5 or 10 µM). Alternatively, cells were treated
with TAK715 (5 or 10 µM) alone (C). The viability of cells was examined by trypan blue exclusion.
All results shown are representative of three independent experiments. Viable and dead cell numbers
are presented as the mean ± SE of three repeats. * p < 0.05, ** p < 0.01, and *** p < 0.005.

3. Discussion

The tyrosine kinase inhibitors targeting the BCR-ABL oncogene have profoundly
changed the treatment regimen for CML by reaching sustained remission and prolonged
survival. However, there are drawbacks to the use of these TKIs due to the fact of drug
intolerance and undesired side effects after long-term usage [1]. In this study, we demon-
strate that the therapeutic efficacy of two frontline drugs for CML, imatinib and dasatinib,
was significantly enhanced when p38α activity was deficient upon gene knockdown or
pharmacological inhibition. These results provide opportunities to lower drug doses and
reduce side effects and, thus, shed light on a novel strategy for CML treatment through
combination therapy.

Imatinib and dasatinib impede BCR-ABL-mediated aberrant pro-survival and mi-
togenic signaling [7,8]. Imatinib is the first TKI approved for clinic utility and greatly
improves the remission rate, prognosis, and overall survival of CML patients [10]. How-
ever, there are approximately 15–25% non-responsive patients [12]. Adverse effects, such
as pulmonary edema and congestive heart failure, leading to the discontinuation of treat-
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ment, develop after long-term drug treatment. The off-target effects and activation of
BCR-ABL-independent pathways account, at least in part, for these obstacles [12]. Al-
though imatinib was initially thought to target only BCR-ABL, it was later found to act
on other kinases, including c-KIT and platelet-derived growth factor receptor (PDGFR),
but not the Src family [10]. PDGFRβ is involved in regulation of fluid retention and
may be one of the mechanisms for imatinib-associated pulmonary edema [15]. Dasatinib
exhibits a much higher potency toward BCR-ABL inhibition [9]. Our results with K562
cells (Figures 1 and 2) and KBM5 (Figures 6 and 7) are consistent with these reports on the
efficacy of these two TKIs. However, dasatinib is also more effective in inhibiting other
kinases, such as the Src family of kinases (SFKs) and PDGFR, resulting in a higher toxicity
and drug intolerance [15]. New strategies to lower drug concentrations while maintaining
therapeutic efficacy are needed.

Adverse effects after TKI treatment are frequently observed. The underlying mech-
anisms include the off-target effect of kinase inhibitor, elicitation of multiple pathways
of oncogenes, and aberrant activation of survival/downstream pathways upon drug
treatment [1]. Satisfactory outcomes have been obtained through multiple pathway inhibi-
tion [3]. For instance, the combination of B-Raf inhibitor, dabrafenib (or vemurafenib), and
MEK1/2 inhibitor, trametinib (or cobimetinib), for melanoma [29,30] and the combination
of EGFR inhibitor and c-Met inhibitor for non-small cell lung cancer [31,32] have shown
great improvement in therapeutic efficacy. MEK1/2 is a downstream effector of B-Raf, and
EGFR shares several common downstream effectors with c-Met. These combination thera-
pies have overcome drug resistance that arose due to the aberrant activation of downstream
pathways. Possibilities to reduce the side effects associated with TKI treatment in CML by
drug combination have been explored. Ponatinib, a third-generation TKI against BCR-ABL,
is effective; however, with serious adverse effects such as cardiovascular disorders. A com-
bination of ponatinib and forskolin, a natural chemical known to increase cellular cyclic
AMP, shows a significant reduction in cell viability in CML cell lines [33]. The antiapoptotic
BCL-2 family plays a key role in the survival of chronic myeloid leukemia. A combined
treatment with a BCL-2 inhibitor and TKI markedly reduced CML cells and prolonged
survival in a mouse CML model [34]. These results support that combination therapy has
promising potential to reduce adverse side effects in CML.

The p38 MAPK pathway is one of the BCR-ABL-mediated downstream pathways [8];
however, their roles in the pathogenesis induced by BCR-ABL and in TKI-mediated ther-
apeutic effects are still elusive. Imatinib treatment induces the activation of p38 MAPK
signaling pathways in BCR-ABL-expressing CML-derived KT-1 cells [21] and K562 cells [35]
as examined by Western blotting, suggesting a potential role in imatinib-mediated effects.
Inhibition of p38 MAPK activity with pharmacological inhibitors SB203580 or SB202190,
which inhibit both the α and β isoforms of p38 MAP, shows either reversion of imatinib-
mediated cell growth suppression assayed by colony formation [21] or no apparent influ-
ence assayed by MTT assay [35]. These inconsistent results may arise due to the fact of
various possibilities. In addition, the expression levels of these two isoforms in different
cells vary to different extents. Therefore, the function of one isoform may be preferentially
suppressed over the other one in a certain cell context, which leads to the controversial
results. Dasatinib treatment is reported to induce activation of the p38 MAPK pathway in
BCR-ABL-expressing cells [36]. Gene silencing using mouse MAPK14 (p38) SMARTpool
siRNA reverses dasatinib-mediated pro-apoptotic activity in mouse pro-B cell-derived
BAF3/p210 cells and suppression of colony formation in CML KT-1 cells [36]. Our results
show that knockdown of p38α enhances dasatinib-mediated cytotoxicity assayed by the
trypan blue exclusion method (Figure 5). Further mechanistic investigation under various
cell contexts and using various methods will be of great help in unveiling these differences.
In this study, we clearly show that p38α deficiency enhances imatinib-mediated cytotoxicity
and cell growth suppression in BCR-ABL-positive K562 and KBM5 cells (Figure 2, Figure
3, and Figure 6). A comparable therapeutic effect of imatinib, as measured by total viable
cells, can be reached by using half amounts of drug in the p38α knockdown cells. The total
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viable cells of p38α KD1 were only 42% and 29% compared to those of K562 parental cells
at 72 and 96 h, respectively (Figure 2B, viable cells, 0.6 µM). These counted for an increase
of 2.4-fold and 3.5-fold in therapeutic efficacy at 72 and 96 h, respectively, when p38α was
deficient. Similar effects were obtained with dasatinib treatment (Figure 5) and another
BCR-ABL-positive KBM5 (Figures 6 and 7). These results suggest a potential novel strategy
in providing a more effective and safer treatment for CML by combining TKIs, imatinib or
dasatinib, and specific p38α inhibition.

The p38 MAPK family is a group of versatile serine/threonine kinases. The four
members of p38 MAPKs (i.e., p38α, p38β, p38γ, and p38δ) exhibit high sequence homology
and either overlap or have distinct physiological and pathological roles. Dysregulation of
p38 activity is critically linked to the pathogenesis of hematopoietic disease, rheumatoid
arthritis (RA), chronic obstructive pulmonary disease (COPD), and malignancy [17]. Since
development of inhibitors with high specificity, particularly among the members of the
sub-family, is very challenging, elucidation of the role of each isozyme is sometimes
hampered. Due to the important role of p38α in pathogenesis, several highly specific p38α
inhibitors have been discovered including TAK715. TAK715 displays high selectivity with
an IC50 of 7.1 and 200 nM toward p38α and p38β, respectively [28]. In this study, we
used either specific gene knockdown or a specific pharmacological inhibitor to provide
unambiguous evidence discriminating the effect of the α and β isozymes on imatinib-
mediated therapeutic efficacy (Figures 4 and 8). This study unveiled the importance of
isotype-specific intervention in enhancing therapeutic efficacy of imatinib.

Imatinib and dasatinib exert their therapeutic effects by targeting BCR-ABL, blocking
downstream signaling and, thus, suppressing cell growth and inducing apoptosis [7,8].
These drugs may likely activate other pathways that play roles in promoting cell survival
and cell proliferation due to the off-target effects. These unexpected effects may thus
counteract the therapeutic efficacy of these drugs. We further searched the CLUE database,
analyzed gene expression profiles with the TOUCHSTONE function, and unveiled that
the gene signature of p38α overexpression exhibited a marked similarity with the gene
signatures of imatinib and dasatinib [37] (Supplementary Materials Table S1), suggesting
the possibility that imatinib and dasatinib may activate p38α signaling which has pro-
survival and pro-proliferation effects. Together with the observation that imatinib and
dasatinib activate the p38 MAPK pathway [20,21,35,36], a hypothesized model is shown
in Supplementary Materials Figure S2. This provides an explanation for the significant
enhancement of the therapeutic efficacy of imatinib and dasatinib upon knockdown or
inhibition of p38α MAPK.

Taken together, our study using either specific gene knockdown or a specific phar-
macological inhibitor provides strong evidence that p38α is a potential valuable target for
combinational therapy to enhance the therapeutic efficacy of tyrosine kinase inhibitors,
imatinib and dasatinib, toward CML patients. Imatinib is also used to treat BCR-ABL-
positive ALL (acute lymphoblast leukemia) patients. Our findings are also potentially
applicable for ALL patients in addition to CML patients.

4. Materials and Methods
4.1. Cell Culture

The human chronic myelogenous leukemia (CML) K562 cells were purchased from
BCRC (Bioresource Collection and Research Center, Hsinchu, Taiwan) and cultured in
RPMI1640 media containing 10% FBS as described [38]. KBM5 cells were obtained from
Bing E. Carter (The University of Texas MD Anderson Cancer Center, Houston, TX, USA)
and cultured in IMDM media containing 10% FBS. The pLKO.1 puro-based shRNAs spe-
cific to p38α and p38β were purchased from National RNAi Core Facility, Taiwan [22].
Transfection of K562 and KBM5 cells was performed using LipofectamineTM 2000 Reagent
(Invitrogen, Carlsbad, CA, USA) and electroporation (Gene Pulser XcellTM, Bio-Rad, Her-
cules, CA, USA), respectively. Stable clones of gene knockdown were selected in the



Int. J. Mol. Sci. 2021, 22, 12573 15 of 17

presence of puromycin (0.5 µg/mL, Calbiochem, San Diego, CA, USA) for K562 cells or
puromycin (0.15 µg/mL) for KMB5 cells.

4.2. Drug Treatment and Cytotoxicity Assay

To examine the effects of therapeutic agents, K562 and KBM5 cells clones were seeded
(8 × 104 cells/35 mm dish) in regular media supplemented with 10% FBS for 24 h before
the addition of drugs. Imatinib (SC-202180, Santa Cruz Biotechnology, Dallas, TX, USA)
and dasatinib (SC-358114, Santa Cruz Biotechnology, Dallas, TX, USA) were dissolved in
sterile distilled water, diluted to the desired concentrations, and added directly into media.
The cells were then incubated at 37 ◦C in a CO2 incubator for periods as indicated. Cell
numbers were counted using a hemocytometer under a light microscope. Dead cells were
determined by trypan blue exclusion assay as described [24]. Briefly, an equal amount
of cell suspension was mixed with trypan blue (0.4% in PBS), and cells were examined
under a light microscope. Trypan blue can enter cells only when the cell membrane is
disrupted. Therefore, the dead cells are stained blue and the viable cells remain clear under
a light microscope. Total cell numbers represent the sum of dead cells and viable cells. The
total viable cell numbers after drug treatment represent a combined outcome of cell death
and growth suppression and were used as an overall measurement of therapeutic efficacy.
The ratio of total viable cells between parental and knockdown cells is expressed as a fold
increase.

To test the effect of specific p38α inhibitor, TAK715 (10 mM stock in DMSO) (HY-
10456, MedChemExpress, Monmouth Junction, NJ, USA) was added into cells 1 h prior
to the addition of imatinib or dasatinib. Cells were collected at different time points
and examined.

4.3. Flow Cytometric Analysis

For cell cycle analysis, K562 parental and p38α KD1 cells (2 × 105 cells/60 mm
dish) were seeded in culture media for 24 h and then treated with various concentrations
of imatinib for 48 or 72 h. Cells were collected, washed, and fixed in 70% ethanol at
−20 ◦C overnight. Cells were gently washed, treated with RNase (0.5 mg/mL) at 37 ◦C
for 15 min, and stained with propidium iodide (50 µg/mL) in the dark for 1 h at room
temperature. Cells were filtered with cell strainer (35 µM, BD Falcon, Franklin Lakes, NJ,
USA) and subjected to analysis by flow cytometry using the FACSCanto Flow Cytometer
(BD Biosciences, Franklin Lakes, NJ, USA) equipped with FLOWJO software.

4.4. Western Blotting

Cells were seeded (4 × 105) in a 100 mm dish. After drug treatment, cells were
collected, washed, and lysed in RIPA buffer (i.e., 150 mM NaCl, 10 mM Tris, pH7.4,
1% Triton X-100, 0.1% SDS, 1% Na-deoxycholate, 5 mM EDTA, 1 mM PMSF, 10 µg/mL
leupeptin, 10 µg/mL aprotinin, and 10 µg/mL pepstatin). Proteins were fractionated by
SDS-PAGE followed by transfer to nitrocellulose membranes and subjected to detection
using antibodies. The primary antibodies used were anti-caspase-3 (9662, 1:500, Cell
Signaling, Danvers, MA, USA), anti-cleaved PARP (9541, 1:750, Cell Signaling, Danvers,
MA, USA), anti-p38 (9212, 1:1000, Cell Signaling, Danvers, MA, USA), and anti-GAPDH
(G9545, 1:10,000, Sigma–Aldrich, Burlington, MA, USA)). The secondary antibodies used
were anti-mouse (Sigma–Aldrich, Burlington, MA, USA) or anti-rabbit (GeneTex, Irvine,
CA, USA) IgG linked-horseradish peroxidase. The band intensity of cleaved PARP and
caspase proteins in each lane was normalized to the band intensity of the corresponding
GAPDH first, and the number of K562 at 0 h was 1.0.

4.5. Statistical Analysis

Data are presented as the means ± SEM. Statistical significance was determined
using the Student’s t-test. A p-value < 0.05 was considered statistically significant. All
experiments were performed at least three times independently.
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