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Abstract

Rapid technological advancements have made it possible to generate single-cell data

at a large scale. Several laboratories around the world can now generate single-cell

transcriptomic data from different tissues. Unsupervised clustering, followed by anno-

tation of the cell type of the identified clusters, is a crucial step in single-cell analyses.

However, there is no consensus on the marker genes to use for annotation, and cell-

type annotation is currently mostly done by manual inspection of marker genes, which

is irreproducible, and poorly scalable. Additionally, patient-privacy is also a critical
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issue with human datasets. There is a critical need to standardize and automate cell-

type annotation across datasets in a privacy-preserving manner. Here, we developed

SwarmMAP that uses Swarm Learning to train machine learning models for cell-type

classification based on single-cell sequencing data in a decentralized way. SwarmMAP

does not require any exchange of raw data between data centers. SwarmMAP has a

F1-score of 0.93, 0.98, and 0.88 for cell type classification in human heart, lung, and

breast datasets, respectively. Swarm Learning-based models yield an average perfor-

mance of 0.907 which is on par with the performance achieved by models trained

on centralized data (p-val=0.937, Mann-Whitney U Test). We also find that increasing

the number of datasets increases cell-type prediction accuracy and enables handling

higher cell-type diversity. Together, these findings demonstrate that Swarm Learning is

a viable approach to automate cell-type annotation. SwarmMAP is available at https:

//github.com/hayatlab/SwarmMAP.

Keywords: Swarm Learning, Single-cell RNA Transcriptomics, Cell Type Annotation,

Classification, Decentralized Learning

1 Introduction

Recent technological advances in single-cell sequencing have led to a plethora of scien-

tific discoveries improving our understanding of human tissue and diseases [1], including

COVID [2, 3], lung [4], cardiovascular [5–7], renal diseases [8], and cancer [9–11] at single-

cell resolution. Typical single-cell analysis pipelines use unsupervised clustering, followed

by cell-type annotation of identified clusters based on the expression level and specificity

of selected marker genes [12]. Cell-type annotation is still primarily a manual effort in

which subject experts review marker genes per cluster to annotate cell types. There is no

consensus on marker genes and their importance for cell type annotation yet. This reduces

reproducibility as the selection of marker genes and their importance for annotation is

dependent on the expert annotating the data and can vary from person to person. Further-

more, with increasing amounts of data emerging from different labs, this approach is not

scalable or transferable. Additionally, secure data sharing and maintaining data privacy is

a critical issue while working with human patient data [13].

To leverage the full potential of multiple studies, tools to generate standardized cell-

type annotation while maintaining data privacy are needed to unify and compare data

across studies. Furthermore, to increase reproducibility, scalability, and limit individual

bias, manual annotation of cell clusters should be increasingly replaced by machine learn-

ing models that automatically assign individual cells to a cell type [14–17]. Some tools have

also been developed to map new unannotated data to a reference data set [18–20]. How-

ever, it is challenging to train a universal machine learning model to classify cell types

based on individual single-cell sequencing datasets due to the underlying technical batch

effects. Moreover, generalizable machine learning models need to be trained on large,

multi-centric, and diverse datasets to account for this variability. The usual procedure

to create such datasets is centralized data collection. This requires multiple participating

institutions to send their data to a single location. Such data transfer can create practical,
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legal, and even ethical problems and is often a rate-limiting step to train machine learning

models in biology and medicine [21].

Swarm learning is a computational technique to co-train machine learning models

at multiple institutions in a decentralized way, without exchanging underlying data[22].

Swarm learning does not require a central coordinator of the network and thus avoids

monopolization of resources and machine learning models [23]. In medical image and

computational pathology analysis, Swarm learning has been shown to enable a high per-

formance of machine learning models, which is on par with models trained in a centralized

way [23–25]. Ultimately, Swarm learning could enable training of machine learning mod-

els in a massively parallelized way, increasing the resilience of the training process and

democratizing access to the resulting models.

Here, we show that Swarm learning can be efficiently applied to train machine learn-

ing models for cell type classification based on single cell sequencing data. We evaluate

this on human data from multiple organs generated by different research centers. Our tool,

SwarmMAP, shows high accuracy for cell-type classification in a privacy-preserved setting

where patient data is not shared among users. SwarmMAP enables comparative analy-

ses across datasets, enabling novel discoveries in single-cell datasets while maintaining

patient privacy.
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Fig. 1: Overview of the SwarmMAP workflow. (A) Pipeline for training our annotation clas-

sifier: scaling and normalization is done independently for each study, except for selecting

the highly variable genes (HVGs), where the union of the top 2000 HVGs across studies

is used; (B) Local learning (LL) framework, where all the data is shared to learn a single

model (dashed inner circle); (C) Swarm learning (SL) framework, where no data is shared

and decentralized sharing of models’ parameters is enable by a blockchain (dashed inner

circle); (D) Experimental design for local learning (LL): for each organ, all combinations of

train and test sets are used. The settings where 1, 2, or 3 training sets are used are termed

Local_1, Local_2, and Local_3. For Swarm leaning (SL), all 3 training sets are used in a data

privacy-preserving manner.
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2 Materials and Methods

2.1 Overview of the workflow

SwarmMAP is a Swarm learning based method to classify cell-types in single-cell tran-

scriptomic data. It is trained in a supervised learning manner for each organ. We access the

utility of SwarmMAP in both local learning (LL) and Swarm learning (SL) settings using the

same data pre-processing pipeline, and classifier is used to compare performance (Figure

1A). In LL, a single model is trained using a common training dataset (Figure 1B) while

in SL, each agent keeps its data and model private (Figure 1C), as a blockchain-enabled

Swarm learning framework allows each agent’s model to learn from the other models. To

assess model performance, the predicted annotation is compared with the annotation

provided by the authors in the test dataset in a study-specific manner.

2.2 Dataset description

SwarmMAP is trained and tested on single-cell transcriptomic data from human heart,

lung, and breast (Supplementary Table 1) totaling 284 donors and 1,956,243 cells. Each

collection consists of 4 separate studies. Lung and breast collections are taken from the

human lung cell atlas [4] and breast atlas [9], respectively. The heart collection is created

from individual datasets, where the cell-types provided by individual studies have been

standardized. Four studies were selected from each collection, with varying sample sizes

and cell composition (S12). Training and testing is performed at two annotation levels: cell

types and cell subtypes, which are used as the ground truth for the classifier. The datasets

and their cell-types are represented in Supplementary Figures S1 and S2 using UMAP [26].

2.3 Preparation of labels from cell type annotation

We perform the classification of cell labels at two annotation levels: a coarse annotation

level, “cell types”, and a finer annotation level, “cell subtypes”. Each annotation level is

trained independently using its own model.

All datasets included in this study come with their own annotations by the respective

authors. For the heart atlas, the level 1 annotation (“Annotation_1”) was used as cell types

(14 cell types). The level 1 annotation (“Subclustering”) contained 65 cell subtypes, which

are too specific for cell type annotation. Thus, the subtypes were grouped together to arrive

at 17 subtypes of cells. The “Subclustering” labels were manually matched to their closest

cell ontology terms [27]. Then, hierarchical clustering was performed across the 4 studies

to measure distance between subtypes and the closest subtypes are merged together, the

names being set to their respective common ancestors in the cell ontology. For heart, we

obtained 17 cell subtypes from 65 initial “Subclustering” labels.

For lung and breast atlases, the same merging process was used, except that cell ontol-

ogy terms were already available. For the lung atlas, the initial “cell_type” label with 50

categories was gradually merged to obtain 24 cell subtypes, and then further to obtain 17

cell types. For the breast atlas, the initial “cell_type” label with 26 categories was gradually

merged to obtain 22 cell subtypes and 14 cell types.

The resulting annotations have the number of classes comparable between the heart,

lung, and breast collections: 14, 17, and 14, respectively, for cell types, and 17, 24, and 22,
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respectively, for cell subtypes. The hierarchical clustering of the final annotations are pro-

vided in dendrograms (Supplementary Figure S7) and the correspondence between cell

types and cell subtypes is represented in a Sankey diagram (Supplementary Figure S5).

2.4 Data preprocessing for supervised learning

For each data collection, we apply the following preprocessing steps before training.

• Suspension type: Suspension types (single-cell or single-nuclei) are filtered to ensure

that all observations in every data collection have the same suspension type. The heart

collection consists of single nuclei, and the lung and breast collections consist of single

cell data.
• Tissue: Data are also filtered with respect to the tissue. For the heart, only cells from the

left ventricle are selected. For the lung, only cells from the lung parenchyma are selected.

The breast collection has no tissue specification.
• Quality Control: Standard quality control (QC) of counts is performed and cells deemed

outliers are filtered out. Four QC metrics are used: log1p value of total counts, log1p

value of number of genes by counts, percentage of counts in the top 20 genes, and

percentage of reads mapped to mitochondrial genes. For each metric, each cell whose

metric is smaller or greater than a margin of five times the median absolute deviation

around the median value is set as an outlier. Furthermore, all cells with more than 8

percent of reads mapped to mitochondrial genes are also set as outliers.
• Feature selection: For each study, the 2000 most highly variable genes (HVGs) are com-

puted. The choice of 2000 features constitutes a trade-off between model simplicity

and model complexity. The effect of the number of HVGs is reported in Supplementary

Figure S9. The set of features is then defined as the union of these genes in all studies

(3516, 3566, and 3174 features for heart, lung, and breast, respectively). Consequently,

in the SL setting, each model is trained after sharing the union of all other agents’ HVGs.

We consider that sharing this information constitutes no privacy breach concerning the

expression data (see section 4). Moreover, the initial number of HVGs used can have an

effect on the model performance and is the result of a trade-off between model com-

plexity and generalizability. Supplementary Figure S9 displays the F1 scores for each

cell type for several number of HVGs: 200, 500, 1000, and 2000. For the heart and lung,

performance increases continually as the number of HVGs increases, but with dimin-

ishing returns. For breast collection, interestingly, the number of HVGs showed no effect

on performance. Overall, these results suggest that a higher number of HVGs, is bene-

ficial for classification. However, this comes at the cost of computing time and model

complexity, we choose the standard value of 2000 HVGs throughout [28].

The final dataset consists of 1,196,647 (1,117,502), 243,031, 516,565 cells in heart (heart

subtype), lung and breast collections, respectively (see S12) from 144, 51, and 89 donors

(see Supplementary Table 2), respectively. Finally, raw counts are normalized (10,000

counts per cell) and scaled using the log(1+x) transform.
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2.5 Experimental design

The experiment design for local learning (LL) is detailed in Figure 1D. Each column repre-

sents an experiment and the experiment design (28 experiments in total) and is applied to

each organ separately. Each experiment only uses one dataset as a test set. Then, for each

choice of test set, all combinations of training sets are used, that is, training on 1 (“Local_1”,

12 experiments), 2 (“Local_2”, 12 experiments), and 3 (“Local_3”, 4 experiments) datasets.

This design compares the classification performance as a function of the number of cells,

averaging out the difference in cell count between datasets. For Swarm learning (SL), only

the four experiments designs with 3 training sets are used, using all combinations of test

set.

2.6 Machine learning classifier model

Briefly, the classifier is trained in both the local and Swarm learning setups separately. In

the local learning (LL) setup, classification performance is evaluated when training on 1,

2, or 3 datasets, where the fourth dataset is used for testing. These simulation settings are

called Local_1, Local_2, and Local_3, respectively. All possible combinations of training

and testing datasets are used. In the Swarm learning (SL) setup, 3 datasets are used for

training and one for testing. For each combination of train and test datasets, the validation

set is obtained by splitting the training data into train and validation sets.

The model used for classification is a multi-layer perceptron (MLP) classifier. We

use two fully connected inner layers with 128 and 32 neurons, respectively. We use a

tanh activation function and a cross-entropy loss. Optimization is performed using the

Adam optimizer. After hyperparameter fine-tuning using cross-validation on the heart

dataset with cell types as labels, the following parameters are used: a learning rate of 1e-

3 and no weight decay; a batch size of 128; 100 training epochs. The following alternative

configurations were tested:

- using dropout for regularization (dropout rates of 0.25 and 0.5);

- using weight decay with the AdamW optimizer (value between 1e-3 and 1e-7);

- using weighted class resampling to counterweight the class imbalance; and

- including inverse class proportions as weights in the loss function;

- using different batch sizes (32, 64, or 256).

These did not produce a significant improvement in classification.

2.7 Swarm Learning

Swarm learning (SL) allows decentralized collaborative training of machine learning

(ML) models on multiple physically distinct computing systems (peers) [29]. Here, we

implemented SL using three separate peers, representing the institutions. Each peer inde-

pendently trained a machine learning model on its proprietary dataset, with no raw data

shared between peers. During training, model weights and biases were exchanged in mul-

tiple synchronization events (sync events). These sync events occurred at the end of each

synchronization interval, defined as a fixed number of training batches. At each sync

event, the model weights were averaged, and training was resumed at each peer using

the updated parameters. To account for differences in sizes of the datasets, we applied a
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weighted SL approach, where the contributions of each peer were scaled by a weighting

factor proportional to the size of its dataset. Motivated by previous studies on patho-

logical and radiology data [23, 30]. This approach ensured balanced contributions from

peers with varying dataset sizes, where larger datasets are not overrepresented in the final

model. After completing all training epochs, a final round of model merging is performed,

providing all peers with a unified model. The Hewlett Packard Enterprise (HPE) SL frame-

work was utilized, which consists of five major components: the ML node, the SL node,

the Swarm Network (SN) node, identity management, and HPE license management. The

ML node defines the ML model and access to the data. Where the SL node process han-

dles the parameter sharing, while the SN node process manages peer communication. To

manage global model state information and enable decentralized parameter merging, an

Ethereum blockchain (https://ethereum.org) was employed. Unlike traditional federated

learning, SL does not rely on a central server; instead, smart contracts facilitate the selec-

tion of peers for parameter merging. All processes were executed in Docker containers. A

detailed description of this process and instructions for reproduction can be found under

https://github.com/KatherLab/swarm-learning-hpe/tree/dev_single_cell.

2.8 Comparison with state-of-the-art cell type classifiers

The Swarm learning framework can be applied using any machine learning model, the

only constraint being that no data are shared between agents. Thus, SwarmMAP can be

built using a variety of classifiers. There have been many approaches to cell type classifica-

tion in single-cell RNA sequencing data. Garnett [31] uses marker genes already curated to

annotate cells using a regularized multinomial linear classifier. ACTINN [32] uses an MLP

classifier with 3 hidden layers (100, 50 and 25 neurons, respectively). Celltypist [14] uses

L2 regularized logistic regression. Supervised Contrastive Learning for Single Cell (SCLSC)

[33] employs contrastive learning to learn an embedding representation for cell types and

a KNN classifier to annotate cells. devCellPy is a machine learning-enabled pipeline for

automated annotation of complex multilayered single-cell transcriptomic data, based on

the XGBoost classifier. scTab [34] introduces a feature-attention-based classifier model for

single cell transcriptomic data based on TabNet, a deep learning classifier for tabular data

[35]. The classification performance of TabNet was compared with several models, includ-

ing XGBoost [36] and MLP. [34] found that the feature attention-based classifier model

outperformed the other models in the context of large-scale and curated datasets (signif-

icant differences in the macro F1 score), but with minor differences in F1 values (0.83 for

scTab, 0.81 for XGBoost, 0.80 for MLP).

However, scTab is trained on very large datasets with between 103 and 106 cells per

cell type, while SwarmMAP is considering the more challenging setting where some cell

types have cell counts of the order of 102, and 101 for some cell types. Since in gen-

eral settings, XGBoost is preferred over TabNet [37] and is considered to be more flexible

for classification task, we chose to compare the performance of our MLP classifier with

XGBoost. Specifically, XGBClassifier classifier was used from the XGBoost Python package,

with default parameters. XGBoost was compared to MLP for cell type classification in the

LL framework, on the same data (3 organs, see Section 2.4 and with the same experiment

design (Local_1, Local_2, and Local_3, see Section 2.5). MLP compares slightly favorably
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to XGBoost while being faster to train by a factor of 2 to 4 (see Supplementary Figure S3).

Thus, SwarmMAP is built using an MLP classifier.

2.9 Data and code availability

The 12 datasets are publicly available from CellxGene1 and the Broad Institute Single

Cell portal2. The download links are provided in Supplementary Table 3. The processed

datasets will be made available on Zenodo upon publication of the manuscript. The Swar-

mMAP method and the code to reproduce the results in this study are available at https:

//github.com/hayatlab/SwarmMAP.

3 Results

3.1 Machine learning-based cell type prediction in multiple datasets

The average weighted F1 score for main cell-type classification in heart datasets are 0.947,

0.957, and 0.958 when training on 1, 2 or 3 (Local_3) datasets, respectively. The correspond-

ing values for cell subtype classification are 0.961, 0.968, and 0.972 respectively (Figure 2).

Similar values are obtained from the lung and breast datasets (Figure 2). Here, weighted F1

score (which averages the F1 score for each class weighted by the support of the class) was

used as the main classification metric. Results from micro F1 score (based on global true

positives, false negatives, and false positives) and the macro F1 score (unweighted average

of the F1 score for each class) are also provided in Supplementary Figure S4.

Mann–Whitney U tests were performed to compare F1 scores between the different

simulation settings. Despite the increase in mean performance as more datasets are used

for training, the differences are not statistically significant, owing to the small sample size

of the simulation runs (12, 12, and 4 respectively). Moreover, some cell types are hard to

classify (see Section 3.1.2), making the distribution of F1 scores more dispersed. This is

especially true for breast data, in which classification is harder (see Section 3.2.3). How-

ever, there is an increase in the averaged F1 scores, especially for heart subtypes, lung main

cell types, and subtypes. The respective average scores of Local_1, Local_2, and Local_3 are

0.961, 0.968, and 0.972 for heart subtypes; 0.978, 0.981, and 0.982 for lung types; and 0.945,

0.954, and 0.958 for lung subtypes (see Supplementary Table 4 for weighted F1 scores).

1https://cellxgene.cziscience.com/datasets
2https://singlecell.broadinstitute.org/single_cell
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Fig. 2: Classification performance of the local learning framework. Weighted F1 scores are

averaged over all simulation runs. F1 score distributions for classifying main cell types

and subtypes using Local_1 (training on 1 dataset), Local_2 (training on 2 datasets), and

Local_3 (training on 3 datasets) setting in local learning.

3.1.1 Classification performance increases as more datasets are used for

training

3.1.2 Classification performances vary greatly between cell-types.

Model performance (F1-score) per cell type varies between different cell types (Figure

3). The corresponding results for cell subtypes are represented in Supplementary Figure

S11. In particular, for heart data, “Epicardium” cells and “Ischemic cells (Myocardial

infarction)” are difficult to classify, in line with the scarcity of these classes, their uneven

distribution among datasets (see cell count barplots in Figure S8), and the difficulty to

define ischemic cells biologically (see UMAP representation in Figure S1). In addition, the

ischemic cells is a collection of cells from different lineages including cardiomyocytes,

epithelial, etc. Thus, they do not have well-defined marker genes and are thus inherently

difficult to classify. For the lung data, all cell types are well classified, except “respira-

tory basal cells”, which are classified as “epithelial cells”. For the breast data, classification

is more challenging, with four cell types with F1 score below 0.5: mature alpha-beta T

cells, mature B cells, naive thymus-derived CD4-positive, alpha-beta T cells, and capillary

endothelial cells. Some other cell types like endothelial tip cells and macrophages have a

high disparity in classification performance between simulation runs (see Section 3.2.3).
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Fig. 3: Classification performance of the local learning framework. F1 scores are averaged

over all simulation runs for each cell type. Overall, there is a notable disparity in classifica-

tion accuracy between cell types.

3.1.3 Cell type prediction performance improves as cell count increases

To investigate that increasing the sample size of a cell type improves its classification accu-

racy, we evaluate the link between classification performance and the rarity of cell types.

For each cell type and averaged over all studies, we compute the Gini impurity index,

which is a measure of the rarity of the cell type (higher values are rarer classes). Then

we computed the F1 score for each cell type and each study, averaged over all simulation

runs (28 runs, combining Local_1, Local_2, and Local_3 together). Figure 4 represents the
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F1 score as a function of the Gini impurity index of cell types. The results show that the

classification performance increases as the rarity of the cell types increases.
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(a) Heart data collection

(b) Lung data collection

(c) Breast data collection

Fig. 4: Classification performance as a function of the rarity of the cell types. The x-axis

represents the Gini impurity index of true cell types (higher values are rarer classes). The

y-axis represents the F1 score. Each dot is a cell type and the values are averaged over all

studies for the Gini indices and all simulation runs (Local_1, Local_2, Local_3) for the F1

scores. 13
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Organ Classification level Intercept Slope p-value of slope Adjusted R2

Heart Cell type -0.007 0.131 0.531 -0.047

Lung Cell type -0.585 0.718 0.211 0.042

Breast Cell type -0.104 0.344 0.013 0.368

Heart Cell subtype -0.143 0.291 0.018 0.224

Lung Cell subtype -0.104 0.194 0.300 0.006

Breast Cell subtype -0.052 0.249 0.001 0.408

Table 1: Parameters of the linear regression models fitting the F1 score

as a function of cell type rarity. Significant p-values are in bold.

To quantify this, a linear model was fitted to the data for each organ and level (consid-

ering the mean values as independent samples and discarding the estimated confidence

intervals), and the results are reported in Table 1. All linear models have an estimated

positive slope, with a significant p-value for the 3 cases: the breast collection (both cell

types and subtypes) and the heart collection for cell subtypes. This confirms that the

classification performance increases as the rarity of the cell types increases.

3.2 Swarm learning performs on par with centralized models

3.2.1 Classification performance across cell types using Swarm learning

The SL classifier is compared to the LL classifier trained on 3 studies (“Local_3”). Figure

5 shows the weighted F1 score in all cell types and subtypes for LL and SL. The SL setting

is directly compared to the corresponding LL setting Local_3, while Local_1 and Local_2

are also included for comparison purposes. The difference in distribution between SL and

LL F1 scores is non-significant (p-value < 0.05) in all settings using a two-sided Mann-

Whitney test. When comparing Local_3 with SL in each organ, the values are 0.958 versus

0.934, and 0.972 versus 0.966 for the heart; 0.982 versus 0.982, and 0.958 versus 0.958 for

the lung; 0.970 versus 0.809, and 0.796 versus 0.808 for the breast datasets, respectively. The

numeric prediction accuracy values for all settings, as well as their confidence intervals,

are reported in Supplementary Table 4.
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Fig. 5: Weighted F1 score across all cell types and subtypes for LL and SL settings. Signif-

icance levels are provided by Mann-Whitney tests. Overall, the performance of local and

Swarm learning approaches are comparable, showing that there is no performance loss

even when training is done without sharing datasets and models in the Swarm learning

setting.

3.2.2 Classification performance per cell type using Swarm learning

The classification accuracy shows largely high accuracy for most cell types across the

three organs as shown in the normalized confusion matrices (Figure 6 and Supplemen-

tary Figure S6). For heart, SL performs on par with LL for all cell types except Ischemic

cells, Epicardium, and, to a lesser extent, Lymphatic ECs. Epicardium cells are present in

low quantity and their small sample sizes (217, 0, 9, and 61) hinders efficient classification,

which is reflected in lower SL performance, while “Ischemic cells” and “Lymphatic ECs” are

difficult to differentiate using expression profiles. For lung, SL performs as well as LL for all

cell types except respiratory basal cells, which are classified mainly as epithelial cells. This

is explained by the fact that this cell type is present in small numbers (262, 245, 50, and 11,

the smallest sample size for this collection). Finally, for the breast datasets, the SL classifier

performs overall as well as LL. It performs on par or outperforms slightly for well-classified

cell types (basal-myoepithelial cells of mammary gland, endothelial cell of lymphatic

vessel, fibroblast of mammary gland, liminal hormone-sensing cell of mammary gland,

macrophage, mammary gland epithelial cell, mature alpha-beta T cell, perivascular cell),

it outperforms for blood vessel endothelial cells, and it slightly under-performs for some

cell types which are already poorly classified by LL (capillary endothelial cell, endothelial

tip cell, mature B cell, naive thymus-derived CD4-positive, alpha-beta T cell, and plasma

cell). Overall, as more data are added to the collections, the “rare” cell types are better

classified by LL, and thus also by SL. For LL, blood vessel endothelial cells are predicted

as endothelial cells. Furthermore, several cell types are predicted as mammary gland

epithelial cell: mature B cell, and two T cell types (mature alpha-beta T cell and naive

thymus-derived CD4-positive, alpha-beta T cell). The very specific cell type naive thymus-

derived CD4-positive, alpha-beta T cell has prediction scattered over 5 cell types. In LL

setting, endothelial tip cells are predicted as mammary gland epithelial cell. For SL, in

comparison, some cell types have their prediction performances significantly degraded:

capillary endothelial cells, mature B cells, naive thymus-derived CD4-positive, alpha-beta

15

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2025. ; https://doi.org/10.1101/2025.01.13.632775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632775
http://creativecommons.org/licenses/by-nc/4.0/


T cells (which is a difficult case, even for Local), and plasma cells, which were well classified

in the Local_3 setting.

Visualization of the classification prediction score is available in Supplementary Figure

S13.

Fig. 6: Confusion matrices for classifying cell types using Local_3 (left) versus Swarm_3

(right) classifier on heart (top), lung (center), and breast (bottom) datasets. The accuracies

are are averaged over all simulation runs and normalized by row.
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3.2.3 Cell subtype classification is challenging

Cell subtypes are defined as cell-states in a given cell lineage or main cell type that are

closely related to each other and share biological properties with other cell subtypes

identified within the main cell types.

For heart, in LL setting, the only cell subtype that is misclassified in the relative majority

of the time is dendritic cells, which are predicted to be macrophages 47% of the time. In SL,

this cell subtype is correctly classified < 10% of the time and is predicted as macrophages a

(absolute) majority of the time. The other misclassified subtypes are: CD8-positive, alpha-

beta regulatory T cell and T cell, jointly; circulating angiogenic cell and endothelial cells,

jointly; lymphocytes, as alpha-beta regulatory T cells, T cells, and natural killer cells, and

plasma cells as natural kill cells, and myofibroblast cells as fibroblasts. For SL setting, 7

cell subtypes have an average accuracy < 10% (B cells, CD8-positive, alpha-beta regu-

latory T cells, circulating angiogenic cells, dendritic cells, lymphocytes, megakaryocytes,

and plasma cells), and another subtype has an accuracy < 50% (myofibroblast cells). All

of these subtypes also have low prediction accuracy in LL, with the notable addition of B

cells (0.84% accuracy in LL), classified by SL mostly as monocyte and natural killer cells.

All other cell subtypes with accuracy greater than 70% in LL had similar or better accuracy

in SL.

In the lung datasets, in LL setting, 13% of CD1c-positive myeloid dendritic cells

were predicted as lung macrophages; 16% of CD4-positive, alpha-beta T cells were pre-

dicted as and CD8-positive, alpha-beta T cells; 14% of elicited macrophages as alveolar

macrophages; 12% of epithelial cell of alveolus of lung as epithelial cell of lower respiratory

tract and 18% as type II pneumocytes; 15% of non-classical monocytes as classical mono-

cytes; and 11% of pulmonary artery endothelial cells as capillary endothelial cells. In SL,

the six aforementioned cell subtypes show a drop in accuracy, with epithelial cells of alve-

olus of lung having the largest drop in accuracy from 65% to 13%. Notably, most subtypes

well classified in LL are also well classified in SL, with respiratory basal cells standing out,

having an accuracy of 82% in local learning down to below 10% in Swarm learning.

In breast datasets, only seven subtypes have an accuracy over 80% in LL: basal-

myoepithelial cells of mammary gland, fibroblasts of mammary gland, luminal adaptive

secretory precursor cell of mammary gland, macrophages, plasma cells, and vein endothe-

lial cells. Of the 11 subtypes which are classified with> 50% accuracy in LL, 10 are classified

with an increased or equal accuracy (the outlier is mature NK T cells, which drop from

an accuracy of 50% to < 10%). On the opposite side, of the 11 subtypes which are clas-

sified with < 50% accuracy in LL, 10 are classified with decreased accuracy in SL (the

outlier is CD8-positive, alpha-beta memory T cells, which increase from 47% to 60%).

Furthermore, for breast in LL, 6 subtypes are misclassified as luminal adaptive secretory

precursor cells of mammary gland in a relative majority of cases: Tc1 cells (20%), capillary

endothelial cells (41%), class switched memory B cells (25%), mammary gland epithelial

cells (misclassified in an absolute majority of cases, 51%), naive thymus-derived CD4-

positive, alpha-beta T cells (21%), and unswitched memory B cells (15%). This could be

explained by a difficulty in finding expression signatures which differentiate well these

subtypes from the biomarkers of luminal adaptive secretory precursor cells of mammary

gland. These results are carried over to SL, in which the misclassification rates increase in

these 6 subtypes.
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Taken together, these results highlight that SL performs worse than LL when the

cell subtypes are poorly classified in LL and performs better when the cell subtypes are

sufficiently well classified by LL.

4 Discussion

Our study shows that there were no significant differences in the precision of cell type

prediction between the Swarm model and the model trained on all combined data. This

suggests that using the Swarm model approach is efficient method for predicting cell types

in large-scale single-cell transcriptomics datasets while maintaining data privacy. How-

ever, challenges remain for predicting cell-types that are not clearly differentiable. This

could be due to low sample count, lineage that is a mixture of multiple cell-types e.g.

ischemic cells, over- or under- clustering, or closely related cell-types. Figures 6 and S6

highlight (i) the challenge in annotating cell types which are present in small numbers

and (ii) the higher accuracy of annotating cell types which are well-defined and present in

higher numbers.

In heart datasets tested here, cluster annotated as ischemic cells was difficult to clas-

sify in both LL and SL settings. This is due to ischemic cells being a aggregated cluster

comprising of several lineages including cardiomyocytes, fibroblasts and endothelial cells.

Additionally, lymphatic endothelial cells are misclassified as endocardial cells. Both cell-

types are closely related and share marker genes [38]. For lung datasets, performance

is good throughout classes for LL, except for “respiratory basal cells” (cell ontology id

“CL:0002633”), which are classified as “epithelial cells” (cell ontology if “CL:0000066”).

This is biologically sensible, as the former is a subtype of the latter in the Cell Ontol-

ogy. Likewise, SL performs well across cell types except for the latter case, in which

77% of respiratory basal cells are misclassified as epithelial cells. For breast datasets, cell

types including blood vessel endothelial cells, fibroblasts of mammary gland, luminal

hormone-sensing cells of mammary gland, and mammary gland epithelial cells, that are

well classified in LL setting, are also classified correctly in the SL setting.

The cell subtype classification task is harder than the prediction of the main cell type

as different cell states can have similar marker genes (see Supplementary Figure 4). In gen-

eral, the classification is fairly accurate across subtypes for the lung (1 cell subtype out

of 24 with below 70% accuracy), followed by the heart (5 of 21 cell subtypes below 70%

accuracy) and finally the breast (13 of 22 cell types below 70% accuracy).

This study highlights the potential of Swarm learning to build scalable and privacy-

preserving models from single-cell transcriptomic data. The next step will consist in

training hierarchical models for all annotation levels. Using the cell ontology as a priori

information, hierarchical classifiers [39] can be used to annotate cells at the correct depth

in the ontology. This approach will benefit from fine-grained annotated datasets which are

now increasingly available to resolve automated fine-grained annotation. Another exten-

sion of this work is the building of a cross-organ model for annotation. Since many cell

types are present in different organs, pooling datasets across organs will directly increase

the available training size in terms of cell count per cell type, without hindering prediction

of organ-specific cell types. Finally, as Swarm learning is applicable to any classifier, it can

18

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2025. ; https://doi.org/10.1101/2025.01.13.632775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632775
http://creativecommons.org/licenses/by-nc/4.0/


be applied to multi-omics data, leveraging different types of biological information (sur-

face protein, chromatic accessibility, etc.) to gain a deeper insight into not only cell types,

but also cell states.
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Supplementary Figure S1: UMAPs of all datasets used in this

study colored by cell type

(a) Heart (b) Lung (c) Breast

Fig. S1: 2D Visualization of the dataset collections, colored by the manually-curated anno-

tation of higher level (“cell types”). UMAP projections were computed independently for

each study.

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2025. ; https://doi.org/10.1101/2025.01.13.632775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632775
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure S2: UMAP of every dataset colored by

cell subtype

(a) Heart (b) Lung (c) Breast

Fig. S2: UMAP representation of the cell types in the heart, lung, and breast collections

showing the cell subtypes.
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Supplementary Figure S3: Comparison of MLP and XGBoost

classifiers

Fig. S3: Comparison of MLP and XGBoost classifiers in terms of weighted F1 score (top)

and training time (bottom) at the cell type level in local learning.
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Supplementary Figure S4: Weighted, macro, and micro F1

scores for local and swarm learning.

Fig. S4: Micro, macro, and weighted F1 scores for cell types (top) and cell subtypes (bot-

tom) for LL and SL. Significance levels are not shown as no Mann-Whitney U tests are

significant.
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Supplementary Figure S5: Sankey plots between cell types and

subtypes

Fig. S5: Correspondence between cell types and subtypes for each organ.
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Supplementary Figure S6: Confusion matrices for classifying

cell subtypes

Fig. S6: Confusion matrices of Local_3 (left) versus Swarm (right) at cell subtype level for

the heart (top), lung (center), and breast (bottom) datasets. The accuracies are averaged

over all simulation runs and are normalized by row.
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Supplementary Figure S7: Dendrograms of cell labels

Fig. S7: Ontology of cell types and subtypes obtained by hierarchical clustering of collec-

tions after dataset integration.
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Supplementary Figure S8: Cell type composition per dataset

Fig. S8: Cell composition of all datasets, at both type and subtype levels.
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Supplementary Figure S9: Effect of the number of HVGs

(a) Heart

(b) Lung

(c) Breast

Fig. S9: Classification performance for various numbers of HVGs selected at preprocess-

ing.
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Supplementary Figure S10: Effect of using a low-dimensional

embedding

Our classifier learns cell type compositions in the presence of batch effects between

datasets without needing to account for these batch effects. This is possible because

the feature space is the (normalized) counts. If a low-dimensional embedding were used

instead, the classifier could not recover batch-effect agnostic decision boundaries. This is

illustrated by the classification performance of the MLP classifier trained on (i) the nor-

malized counts, (ii) the PCA of the counts using 50 PCs, and (iii) the embedding provided

by scVI (Figure S10). The classification performance is significantly lower when using the

low-dimensional embeddings, across organs and F1 scores average methods, with an even

lower performance for the scVI embedding. This suggests that in the presence of batch

effects, the low-dimensional embeddings do not capture the relevant information for cell

type classification, and that the classifier is not able to recover the cell type composition in

the presence of batch effects when using these embeddings.
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(a) Heart

(b) Lung

(c) Breast

Fig. S10: Classification performance using different representations of the data.
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Supplementary Figure S11: Local learning F1 scores per cell

subtype

Fig. S11: F1 score for each cell subtype with LL when training on an increasing number of

studies.

39

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2025. ; https://doi.org/10.1101/2025.01.13.632775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632775
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Table 1: Composition of datasets by cell and

cell types

Collection Organ Study Number

of cells

Number

of cell

types

Number

of cell

subtypes

1 Heart Chaffin 2022 [40] 560696

(542216)

14 21

Kuppe 2022 [6] 189349

(146325)

13 21

Litvinukova 2020 [41] 84953

(79916)

14 21

Reichart 2022 [42] 361649

(349045)

14 21

2 Lung [4] Banovich Kropski 2020 [43] 115249 17 24

Krasnow 2020 [44] 39901 17 24

Misharin 2021 [45] 47301 17 24

Misharin Budinger 2018 [46] 40580 17 24

3 Breast [9] Murrow 2022 [47] 80726 14 22

Nee 2023 [48] 219239 14 22

Pal 2021 [49] 116432 14 22

Twigger 2022 [50] 100168 14 22

Table 1: Datasets used for training and testing SwarmMAP. Each data collection con-

cerns one organ and is composed of 4 datasets, called “studies”. For heart, some cells had

unknown subtype labels and were filtered out when using subtypes. The corresponding

sample sizes are provided in parentheses.
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Supplementary Table S12: Detailed composition of datasets
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Cell Type
Chaffin

2022

Kuppe

2022

Litvinukova

2020

Reichart

2022

Adipocytes 3914 457 150 599

Cardiomyocytes 149933 58279 42695 132252

Endocardial 5688 1686 46 1390

Endothelial 93673 24064 5994 45095

Epicardium 217 0 9 61

Fibroblast 142441 37012 13030 63816

Ischemic cells (MI) 531 33620 113 839

Lymphatic EC 4584 794 62 321

Lymphocytes 15361 3980 847 6567

Mast cells 3925 157 582 1113

Monocytes 53995 15244 2316 28295

Neuronal 3656 2061 688 3585

Pericytes 66530 9961 16334 67622

VSMC 16248 2034 2087 10094

Total 560696 189349 84953 361649

(a) Heart Data Cell Types

Cell Subtype
Chaffin

2022

Kuppe

2022

Litvinukova

2020

Reichart

2022

B cell 184 132 9 210

CD8-positive, alpha-beta regulatory T cell 3978 1269 277 1485

T cell 6138 1481 235 2250

adipocyte 3903 457 150 599

cardiac muscle cell 146191 55383 36159 119486

circulating angiogenic cell 20365 2840 795 12474

dendritic cell 231 287 218 345

endothelial cell 69080 17640 4156 24899

fibroblast 122773 25517 11814 57790

lymphocyte 19 36 2 42

macrophage 42596 12874 1699 24324

mast cell 3683 147 436 907

megakaryocyte 5 36 10 20

monocyte 11165 2083 399 3624

myofibroblast cell 5876 4952 120 2399

natural killer cell 4761 827 248 2162

neural cell 3656 2061 688 3585

pericyte 66530 9961 16334 67622

plasma cell 94 96 19 300

smooth muscle cell 16512 2203 4997 15108

vein endothelial cell 14476 6043 1151 9414

Total 542216 146325 79916 349045

(b) Heart Data Cell Subtypes

Cell Type

Banovich

Kropski

2020

Krasnow

2020

Misharin

2021

Misharin

Budinger

2018

blood vessel endothelial cell 7729 2546 1862 458

capillary endothelial cell 7368 10041 903 83

ciliated columnar cell of tracheobronchial tree 6674 821 646 533

endothelial cell of lymphatic vessel 2395 323 721 161

epithelial cell 1335 529 145 391

lymphocyte of B lineage 618 135 204 29

macrophage 30004 11829 24704 14342

mast cell 913 986 46 70

mature alpha-beta T cell 12347 4132 345 157

monocyte 11277 1335 3084 1224

mononuclear phagocyte 2951 577 2732 619

natural killer cell 4179 2845 29 27

pulmonary interstitial fibroblast 2343 979 6787 144

respiratory basal cell 262 245 11 50

tracheobronchial smooth muscle cell 534 670 240 29

type I pneumocyte 4435 480 831 675

type II pneumocyte 19885 1428 4011 21588

Total 115249 39901 47301 40580

(c) Lung Data Cell Types

Cell Subtype

Banovich

Kropski

2020

Krasnow

2020

Misharin

2021

Misharin

Budinger

2018

B cell 618 135 204 29

CD1c-positive myeloid dendritic cell 1809 302 591 410

CD4-positive, alpha-beta T cell 6455 2184 273 120

CD8-positive, alpha-beta T cell 5892 1948 72 37

alveolar macrophage 16841 11279 22322 13403

alveolar type 1 fibroblast cell 826 766 1424 121

alveolar type 2 fibroblast cell 1517 213 5363 23

capillary endothelial cell 7368 10041 903 83

ciliated columnar cell of tracheobronchial tree 6674 821 646 533

classical monocyte 6026 788 2038 992

elicited macrophage 13163 550 2382 939

endothelial cell of lymphatic vessel 2395 323 721 161

epithelial cell of alveolus of lung 554 219 54 265

epithelial cell of lower respiratory tract 781 310 91 126

lung macrophage 1142 275 2141 209

mast cell 913 986 46 70

natural killer cell 4179 2845 29 27

non-classical monocyte 5251 547 1046 232

pulmonary artery endothelial cell 4103 1328 622 198

respiratory basal cell 262 245 11 50

tracheobronchial smooth muscle cell 534 670 240 29

type I pneumocyte 4435 480 831 675

type II pneumocyte 19885 1428 4011 21588

vein endothelial cell 3626 1218 1240 260

Total 115249 39901 47301 40580

(d) Lung Data Cell Subtypes

Cell Type
Murrow

2022

Nee

2023

Pal

2021

Twigger

2022

basal-myoepithelial cell of mammary gland 16967 58449 16793 13993

blood vessel endothelial cell 3961 13218 6816 2284

capillary endothelial cell 167 350 702 2603

endothelial cell of lymphatic vessel 620 867 822 360

endothelial tip cell 3617 18699 4039 25944

fibroblast of mammary gland 13592 53260 17882 5212

luminal hormone-sensing cell of mammary gland 19397 22624 19187 9551

macrophage 376 23 930 2696

mammary gland epithelial cell 16013 24790 38307 24660

mature B cell 464 475 379 438

mature alpha-beta T cell 1563 1736 1641 2717

naive thymus-derived CD4-positive, alpha-beta T cell 1015 3145 1364 1142

perivascular cell 2877 21482 7326 8485

plasma cell 97 121 244 83

Total 80726 219239 116432 100168

(e) Breast Data Cell Types

Cell Subtype
Murrow

2022

Nee

2023

Pal

2021

Twigger

2022

CD4-positive helper T cell 298 255 287 720

CD8-positive, alpha-beta memory T cell 848 1097 965 1063

Tc1 cell 201 247 285 641

basal-myoepithelial cell of mammary gland 16967 58449 16793 13993

capillary endothelial cell 167 350 702 2603

class switched memory B cell 211 228 257 285

effector memory CD8-positive, alpha-beta T cell 177 90 80 242

endothelial cell of artery 1341 2294 1466 672

endothelial cell of lymphatic vessel 620 867 822 360

endothelial tip cell 3617 18699 4039 25944

fibroblast of mammary gland 13592 53260 17882 5212

luminal adaptive secretory precursor cell of mammary gland 15692 24460 38109 24440

luminal hormone-sensing cell of mammary gland 19397 22624 19187 9551

macrophage 376 23 930 2696

mammary gland epithelial cell 321 330 198 220

mature NK T cell 39 47 24 51

naive B cell 149 159 50 98

naive thymus-derived CD4-positive, alpha-beta T cell 1015 3145 1364 1142

perivascular cell 2877 21482 7326 8485

plasma cell 97 121 244 83

unswitched memory B cell 104 88 72 55

vein endothelial cell 2620 10924 5350 1612

Total 80726 219239 116432 100168

(f) Breast Data Cell Subtypes

Fig. S12: Number of cell for each cell type and subtypes, for each organ.
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Supplementary Table 2: Number of donors in each dataset

Organ Study Number of donors

Heart

Chaffin 2022 42

Kuppe 2022 20

Litvinukova 2020 14

Reichart 2022 68

Lung

Banovich Kropski 2020 38

Krasnow 2020 3

Misharin 2021 2

Misharin Budinger 2018 8

Breast

Murrow 2022 28

Nee 2023 22

Pal 2021 21

Twigger 2022 18

Total 284

Table 2: Number of donors for each organ and

study.
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Supplementary Table 3: Data download links

Collection Organ Dataset Download link

1 Heart

Chaffin 2022 https:

//singlecell.broadinstitute.org/single_

cell/study/SCP1303/

Kuppe 2022 https:

//cellxgene.cziscience.com/collections/8191c283-

0816-424b-9b61-

c3e1d6258a77

Litvinukova 2020 https:

//cellxgene.cziscience.com/collections/b52eb423-

5d0d-4645-b217-

e1c6d38b2e72v

Reichart 2022 https:

//cellxgene.cziscience.com/collections/b52eb423-

5d0d-4645-b217-

e1c6d38b2e72e75342a8-

0f3b-4ec5-8ee1-

245a23e0f7cb

2 Lung

Banovich Kropski 2020

https://cellxgene.cziscience.com/collections/b52eb423-5d0d-

4645-b217-e1c6d38b2e726f6d381a-7701-4781-935c-db10d30de293

Krasnow 2020

Misharin 2021

Misharin and Budinger

2018

3 Breast

Murrow 2022

https://cellxgene.cziscience.com/collections/b52eb423-5d0d-

4645-b217-e1c6d38b2e7248259aa8-f168-4bf5-b797-af8e88da6637

Nee 2023

Pal 2021

Twigger 2022

Table 3: List of human heart, lung, and breast datasets used in this study. Download links

of all datasets for CellxGene platform are provided.
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Supplementary Table 4: Averages of weighted F1 scores for LL

and SL.

Organ Label Training set Weighted F1 score (Confidence Interval)

Heart Cell type

Local_1 0.947 (0.896, 0.997)

Local_2 0.957 (0.917, 0.996)

Local_3 0.958 (0.884, 1.032)

Swarm 0.934 (0.813, 1.056)

Heart Cell subtype

Local_1 0.961 (0.953, 0.968)

Local_2 0.968 (0.964, 0.973)

Local_3 0.972 (0.966, 0.978)

Swarm 0.966 (0.962, 0.971)

Lung Cell type

Local_1 0.978 (0.97, 0.985)

Local_2 0.981 (0.975, 0.987)

Local_3 0.982 (0.971, 0.993)

Swarm 0.982 (0.972, 0.992)

Lung Cell subtype

Local_1 0.945 (0.922, 0.969)

Local_2 0.954 (0.933, 0.975)

Local_3 0.958 (0.921, 0.995)

Swarm 0.941 (0.899, 0.982)

Breast Cell type

Local_1 0.786 (0.661, 0.91)

Local_2 0.794 (0.664, 0.924)

Local_3 0.79 (0.536, 1.044)

Swarm 0.809 (0.547, 1.07)

Breast Cell subtype

Local_1 0.78 (0.653, 0.908)

Local_2 0.791 (0.657, 0.926)

Local_3 0.796 (0.547, 1.046)

Swarm 0.808 (0.544, 1.072)

Table 4: Averages of weighted F1 scores for LL and SL across all set-

tings. Confidence intervals are computed using the t-distribution.

For each setting, the highest value is highlighted in bold.
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Supplementary Figure S13: Visualizing classification

prediction score

Both local and Swarm classifiers display heterogeneous classification performance across

cell types. To understand the reasons thereof, Figure S13 compares the true label with its

prediction score. The results are represented for the two best classified and two worst clas-

sified cell types, for every organ. The values are represented in the UMAP of the test study.

On one experiment experiment from Local_3 is considered for each organ and the test

studies used are “Litvinukova 2020”, “Misharin 2021”, and “Twigger 2022” for heart, lung,

and breast collections, respectively.
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(a) Heart

(b) Lung

(c) Breast

Fig. S13: Top 2 best (left) and worst (right) classified cell types for lung. For each row, the

left pane shows the true cell types and the right pane shows the prediction score.
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