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ABSTRACT

In mammalian cells, the main pathway for DNA
double-strand breaks (DSBs) repair is classical
non-homologous end joining (C-NHEJ). An alterna-
tive or back-up NHEJ (B-NHEJ) pathway has
emerged which operates preferentially under
C-NHEJ defective conditions. Although B-NHEJ
appears particularly relevant to genomic instability
associated with cancer, its components and regula-
tion are still largely unknown. To get insights into
this pathway, we have knocked-down Ku, the main
contributor to C-NHEJ. Thus, models of human cell
lines have been engineered in which the expression
of Ku70/80 heterodimer can be significantly lowered
by the conditional induction of a shRNA against
Ku70. On Ku reduction in cells, resulting NHEJ com-
petent protein extracts showed a shift from C-
to B-NHEJ that could be reversed by addition
of purified Ku protein. Using a cellular fractionation
protocol after treatment with a strong DSBs inducer
followed by western blotting or immunostaining, we
established that, among C-NHEJ factors, Ku is the
main counteracting factor against mobilization of
PARP1 and the MRN complex to damaged chroma-
tin. In addition, Ku limits PAR synthesis and
single-stranded DNA production in response to
DSBs. These data support the involvement of

PARP1 and the MRN proteins in the B-NHEJ route
for the repair of DNA DSBs.

INTRODUCTION

Double-strand break (DSB) is toxic DNA damage that, if
improperly repaired, can lead to cell death or cancer fol-
lowing genomic rearrangement (1). DSBs are formed in
response to endogenous cellular processes such as V(D)J
recombination, Class Switch Recombination (CSR) and
oxidative metabolism in addition to genotoxic agents
such as ionizing radiation, radiomimetic compounds and
topoisomerase inhibitors. In mammalian cells, the main
pathway for DSB repair is canonical non-homologous
end joining (thereafter named C-NHEJ), which through-
out the cell cycle ligates the two DNA ends together with
minimal end processing (2–4).
C-NHEJ is a multi-step process involving several essen-

tial factors (5,6). The prerequisite event for all the subse-
quent steps is the binding of Ku70/Ku80 heterodimer to
DNA ends (7). In the most recent model drawn from live
cell imaging following nuclear laser micro-irradiation
experiments, the other core components of the reaction
are then independently recruited to Ku-bound DSB (8).
These include the DNA-dependent protein kinase cata-
lytic subunit (DNA-PKcs), Cernunnos-XLF (Cer-XLF)
and the XRCC4/DNA Ligase IV (LIG4) complex which
is preassembled by a tight association between the two
partners (9). Multiple interactions then take place
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among these factors resulting in stable assembly of the
NHEJ machinery. As a result the NHEJ complex associ-
ates more tightly with damaged sites and becomes resist-
ant to biochemical extraction from the damaged
chromatin, at least during the repair time (10–12).
DNA-PK holoenzyme (Ku/DNA-PKcs) carries out recog-
nition, protection and bridging activities on the
DNA-ends in addition to a serine/threonine protein
kinase activity (13). DNA-PK conformational change
mediated by autophosphorylation is necessary for activa-
tion of end-processing enzymes such as the ARTEMIS
nuclease (14). DNA-PK may also function outside DNA
repair through phosphorylation of other substrates
(15,16). Ligation requires the concerted action of LIG4,
XRCC4 and Cer-XLF, the latter promoting
re-adenylation of LIG4 (17). The ligation complex also
has a role upstream the ligation reaction since it stimulates
processing of DNA ends (18,19).
Recently, evidence has accumulated in yeast as well as

in mammalian cells of an alternative or backup NHEJ
route (thereafter named B-NHEJ) which accounts for
residual end-joining of DSB in cells deficient in compo-
nents of C-NHEJ (20–23). B-NHEJ may also operate at
telomeres in telomerase-deficient mouse cells (24) or fol-
lowing a defect of Ku or DNA-PKcs (25,26). This alter-
native pathway may be particularly relevant to genomic
instability associated with cancer. For example, frequent
translocations lead to a high level of lymphomagenesis
and other cancers in C-NHEJ deficient animal models
(27,28). In addition, chromosomal translocations like
those at the origin of leukemia are mediated by a re-
joining pathway which is mostly Ku- and XRCC4/
LIG4-independent (29–32). Thus, deciphering the compo-
nents and the mechanisms of these pathways is an import-
ant step in the understanding of tumorigenesis
Established features of the B-NHEJ pathway include :

(i) kinetics of DSB repair appears slower than C-NHEJ
(33,34) and enhanced in G2 (35); (ii) it is repressed by Ku
under normal conditions (29,34,36–40); (iii) it relies pref-
erentially on resection of DNA ends and ends annealing
driven by microhomology (MH) >4 bp for intrachro-
mosomal substrates (36,37,41,42), V(D)J junctions (43)
or CSR joins (30,40), although this feature has been ques-
tioned in some reports (44).
Studies in cells have implicated members of the MRN

complex in B-NHEJ (45–51), together with PARP1 and
XRCC1/DNA Ligase III (LIG3) proteins, otherwise
acting in base excision repair (BER) (44,52–55). Our
group and others have characterized some features of
B-NHEJ using biochemical assays with cell extracts. It
has been shown in vitro that Ku competes with PARP1
DNA end-binding, that PARP1 can perform a synapsis
activity owing to short homology at the DNA ends and
that PARP1 activity is required for a subsequent XRCC1/
LIG3 joining step favored by MH (34,52,53,56).
One missing link between these genetic and biochemical

data is the characterization in human cells of the nuclear
mobilization of candidate B-NHEJ proteins in response to
DSB at early time points following damage infliction.
Since C-NHEJ represses other DSB repair mechanisms
possibly through Ku binding to DNA ends, little chance

exists in normal human cells for the isolation of B-NHEJ
proteins at DNA breaks. In addition, Ku is an essential
protein in humans probably through telomere stabiliza-
tion (57) and no stable human Ku knock-out cell line
exists, although conditional genetic ablation of Ku80 has
been described (39,57). Here, we have engineered models
of human cell lines in which the expression of Ku can be
significantly lowered by the conditional induction of a
shRNA against Ku70. These cells offer the opportunity
to assess the function of Ku in antagonizing other DNA
end-binding activities and to study the mobilization of
candidate repair proteins other than C-NHEJ factors
after DSB infliction.

We report that after Ku reduction in cells, NHEJ com-
petent protein extracts obtained from these cells showed a
shift from C- to B-NHEJ that could be reversed by
addition of purified Ku protein. Using a cellular fraction-
ation protocol after treatment with a strong DSB inducer,
we found that mobilization to damaged chromatin of
PARP1 and the MRN complex increases preferentially
upon Ku-deficiency compared to other conditions of
NHEJ deficiency. Enhanced recruitment of these
proteins to damaged chromatin was correlated with an
increase in poly(ADP-ribose) (PAR) synthesis and
single-stranded DNA (ssDNA) production. Our data
support the involvement of these proteins in the
B-NHEJ pathway for the repair of DNA DSBs.

MATERIALS AND METHODS

Cell lines and cell culture

Cells were grown in a 5% CO2 humidified incubator at
37�C. All culture media and antibiotics were from
Invitrogen. Media were supplemented with 10% fetal
calf serum, 125U/ml penicillin and 125 mg/ml strepto-
mycin. HT1080 human fibrosarcoma cells and
MRC5-SV immortalized human non-tumoral fibroblasts
were grown in DMEM. MRC5-SV cells that stably
express an shRNA against LIG4 or a control shRNA
were maintained in D-MEM supplemented with 0.1mg/
ml hygromycin B (9). DNA-PKcs-deficient and -comple-
mented cell lines [Fus9 and Fus1, respectively (58) gift
from C. Kirchgessner, Standford University School of
Medecine, CA, USA] were maintained in D-MEM-F12
1/1 medium.

Expression vectors, cell transfection and transduction

Both pLV-tTR-KRAB-Red and pLVTHM vectors were
obtained from Tronolab (59). pLV-tTR-KRAB-Red is a
lentiviral vector encoding the transcriptional
repressor tTR-KRAB fused to the DsRed fluorescent
protein. pLVTHM is a lentiviral vector allowing condi-
tional expression of an shRNA of interest under the
control of the H1 promoter and the tetracyclin operator/
repressor system (TetO/TetR). The pLVTHM-shKu70
vector allowing conditional expression of an shRNA
against Ku70 was obtained by inserting a duplex oligo-
nucleotide (sh70-1: 50-CGC GTC CCC GAG TGA AGA
TGA GTT GAC ATT CAA GAG ATG TCA ACT CAT
CTT CAC TCT TTT TGG AAA T-30; sh70-2: 50-CGA
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TTT CCA AAA AGA GTG AAG ATG AGT TGA CAT
CTC TTG AAT GTC AAC TCA TCT TCA CTC GGG
GA-30) between MluI and ClaI restriction sites in the
pLVTHM plasmid. The targeted sequence corresponds
to nucleotides 156–174 of the human Ku70 coding
sequence. Transfection of HEK-293T cells (kindly
provided by Genethon, Evry, France) with
pLV-tTR-KRAB-Red or pLVTHM-shKu70, and prepar-
ation of high titer lentiviruses pseudotyped with VSV-G
protein have been performed as previously described (60).
For the transduction step, fifty thousand HT1080 cells or
MRC5 cells were plated on 35-mm dishes 24 h prior
to co-transduction with the two different viral vectors at
an MOI of 10:1. Individual clones from the transduced cell
population were then isolated and selected for their
capacity to downregulate Ku70 expression under treat-
ment by the tetracyclin analog doxycyclin. The data pre-
sented were obtained on one clone of each cell type.

For construction of the sh-resistant Ku70 expressing
vector, the pcDNA3-Neo vector (Invitrogen) was
modified so as to contain a FLAG tag encoding
sequence between HindIII and BamHI restriction sites
(pcDNA3-Neo-FLAG). The human Ku70 cDNA was
modified by PCR in order to introduce silent mutations
to obtain an shRNA-resistant version of the correspond-
ing Ku70 mRNA. This shRNA-resistant Ku70 cDNA was
then inserted into the BamHI and NotI sites of the
pcDNA3-Neo-FLAG in frame with the FLAG tag
encoding sequence.

Chemicals and cell treatment

Calicheamicin-g1 (Cali), a generous gift from PR Hamann
(Wyeth Research, Pearl River, NY, USA), was dissolved
at 4.4mM in ethanol and stored at �80�C. DPQ
(3,4-dihydro-5[4-(1-piperindinyl)butoxy]-1(2H)-
isoquinoline, Sigma) and NU7026 (Calbiochem) were
dissolved in DMSO (10mM stock solution) and stored
at �20�C. Small aliquots of these stock solutions were
used once. Doxycyclin (Sigma) was stored at �20�C as a
10mg/ml stock solution in sterile water. Methyl methane
sulfonate (MMS) was purchased from Sigma.

When necessary, cells were incubated in the presence of
doxycyclin (4 mg/ml) in the growth medium for the time
required and the medium was renewed every 3 or 4 days.
For exposure to DNA-damaging treatment, cells were
exposed to freshly diluted Cali (44 nM) or MMS
(10mM) in medium for 1 h unless other indication, at
37�C in culture dishes and then harvested at the indicated
time points. When necessary, DPQ or NU7026 at concen-
trations as indicated were added to the culture medium for
1 h and maintained during treatment with Cali.

Antibodies

The antibodies used were: mouse monoclonal anti-DNA-
PKcs (18-2), anti-Ku80 (S10B1), anti-Ku70 (N3H10),
anti-Ku (p70/p80) (clone 162, Thermo Fisher Scientific),
anti-XRCC1 (Neomarkers), anti-LIG3, anti-MRE11,
anti-NBS1 (BD transduction laboratories), anti-Rad50
(13B3, GeneTex), anti-BrdU (Roche), anti-b Actin
(AC-15, Ambion), anti-PARP1 (4C10-5, BD

Pharmingen), anti-PARP1 (C2-10, Trevigen), anti-PAR
(Trevigen), anti-a tubulin (Sigma), anti-SAF-B (6F7,
Abcam), anti-gH2AX (JBW301, Upstate Biotechnology),
anti-RPAp34 (9H8, gift of MS Wold, Carver College of
Medicine, University of Iowa, USA) and rabbit polyclonal:
anti-XRCC4 (produced in our laboratory), anti-DNA
LIG4 (Serotec), anti-phospho-Ser2056-DNA-PKcs (gift
of DJ Chen, UTSMC, Dallas, TX, USA), anti-H2AX
(GeneTex). Goat anti-rabbit or anti-mouse secondary
antibodies conjugated to horseradish peroxydase were
from Jackson Immunoresearch Laboratories, Alexa-
Fluor� 594-conjugated goat anti-mouse IgG (1:600) were
from Molecular Probes, Invitrogen.

End-joining extracts and protein purification

Cell extract preparation and Ku protein purification were
carried out as previously described (26).

End-joining assay

When necessary, extracts were preincubated with NU7026
(Sigma-Aldrich), or purified Ku protein as indicated for
10min at 4�C. Pretreated or mock-treated extracts (40mg)
were incubated for 2 h at 25�C in 10 ml reaction mixture
containing 5 ng EcorRI-linearized pBluescript-KS-II(�)
plasmid in EJ buffer (50mM Triethanolamine pH 8.0,
0.5mM magnesium acetate, 1mM dithiothreitol, 0.1mg/
ml BSA, 60mM potassium acetate) with 1mM ATP
added at last to initiate the reaction. Samples were then
treated with 100 mg/ml RNAse A for 10min at 37�C and
deproteinized. DNA ligation products were separated in
0.7% agarose gels together with GeneRulerTM DNA
ladder mix (0.5–10 kb, Fermentas) in one lane and
stained with SYBR-Green (Invitrogen). Fluorescence
was detected and analyzed on a Typhoon fluorimager
(Molecular Dynamics). Quantitative analysis of the gel
was performed with the ImageJ software (version 1.4).

Biochemical fractionation and immunoblotting

After drug exposure, cells were washed with phosphate-
buffered saline (PBS) and harvested. Pellets of �5� 106

cells were fractionated as reported (61) with minor modi-
fications. Briefly, cells were first resuspended for 5min on
ice in 200 ml of fractionation buffer (50mM HEPES, pH
7.5, 150mM NaCl, 1mM EDTA) containing 0.05%
Nonidet P-40 (NP40) and supplemented with the Halt
protease and phosphatase inhibitor cocktail (Pierce).
Following centrifugation at 1000� g for 5min, the super-
natant was collected (fraction I), and pellets were
incubated in 200 ml of the same buffer supplemented
with 100 mg/ml RNaseA (Sigma) for 10min at 20�C. The
supernatant was collected as before (fraction II), and the
nuclear pellets were further extracted for 40min on ice
with 200ml of fractionation buffer containing 0.5%
Nonidet P-40. The extracts were clarified by centrifugation
at 16 000 g for 15min (fraction III). The pellets were re-
suspended in 200ml extraction buffer supplemented with
1% Triton X-100 and 0.45M Nacl and sonicated
(Vibracel, Bioblock Scientific).
Whole-cell extracts (WCE) were obtained by direct lysis

in extraction buffer (50mM HEPES, pH 7.5, 450mM
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NaCl, 1mM EDTA, 1% Triton) followed by sonication.
Protein concentration was determined by the Bradford
assay (BioRad).
Aliquots of soluble or chromatin fractions I–IV, derived

from equivalent cell numbers for each culture conditions,
or WCE samples with the same amount of proteins were
added to loading buffer, boiled and loaded on SDS–
PAGE. After migration, proteins were blotted to PVDF
membrane (Millipore). Immunoblots were visualized by
enhanced chemiluminescence (Yelen).

In situ detergent extraction and immunofluorescence

Cells incubated in the presence or absence of doxycyclin
for 8 days and plated onto coverslips were mock-treated
or treated with Calicheamicin at the dose indicated. After
45min of drug exposure, cells were washed in PBS then
fixed in 4% paraformaldehyde for 20min at RT and
permeabilized by a 5-min incubation with 0.2% Triton
X-100 in PBS at RT. After each step, the coverslips were
rinsed three times with PBS. Coverslips were blocked with
3% BSA and RNAse A (100mg/ml) in PBS for 60min at
RT. Then cells were incubated with the appropriate
primary antibodies in PBS, 2% BSA for 2 h at RT.
After extensive washing with PBS, antibody binding was
detected by incubation with Alexa-Fluor� 594-conjugated
goat anti-mouse IgG (1:600) for 1 h at RT. DNA was
stained with 40, 60-diamidino-2-phenylindole (DAPI)
(Sigma) for 5min at RT. Coverslips were mounted in
Dako mounting medium. Images were taken with a
Leica (DM5000) microscope equipped with a
CoolSnapES camera. Images were processed for publica-
tion using the Adobe PhotoShop 7.0 software program.
For in situ detergent extraction experiments, cells were

grown on collagen (PARP1 immunostaining) or poly-L-
lysine (Rad50 immunostaining) coated glass coverslips,
mock-treated or treated with Calicheamicin at the dose
indicated. Pre-extraction was carried out by incubating
the coverslips in extraction buffer (50mM HEPES, pH
7.5, 150mM NaCl, 1mM EDTA, 300mM sucrose,
2mM MgCl2) containing 0.1% Triton X-100 on ice for
5min for Cali-treated cells and 8min for mock-treated
cells. Non pre-extracted control cells were incubated in
the same buffer without detergent. Immunolabeling with
anti-PARP antibodies (1:1000) and anti-RAD50
antibodies (1:500) was performed as described above.

In situ ssDNA detection

Visualization of ssDNA in situ was performed by follow-
ing the protocol of Radershall et al. (62) with minor modi-
fications. Briefly, cells incubated with doxycyclin for 8
days were labeled with 20 mM 50 bromo 20 deoxyuridine
(BrdU, Sigma) for 6 days before immunofluorescent
staining while proliferating control cells were incubated
with BrdU for 48 h. Cells plated on glass coverslips were
treated with Calicheamicin for 45min, post-incubated in
fresh medium, then washed with PBS and processed for
immunofluorescent staining at different times post-
treatment. After fixation in ice-cold methanol for 10min
at �20�C and blocking with 3% BSA in PBS for 1 h,
cells were immunolabeled with monoclonal anti-BrdU

antibody (1:50) for 1 h at room temperature followed
by incubation with Alexa-Fluor� 594-conjugated goat
anti-mouse IgG (1:600) for 1 h at room temperature. To
check for BrdU incorporation into nuclear DNA, a de-
naturation step was performed by incubating coverslips in
2N HCl for 10min. After extensive washing with PBS,
cells were subjected to BrdU immunostaining as described
above.

Analysis of poly(ADP-ribose) (PAR) synthesis

Cells seeded onto coverslips were mock treated or treated
with 40 mM DPQ for 1 h at 37�C, then 40 nM
Calicheamicin was added to the medium for 7min. Cells
were washed in PBS and fixed in 4% paraformaldehyde
for 20min at room temperature followed by a 5-min in-
cubation with 0.2% Triton X-100 in PBS. Cells were then
immunolabeled using anti-PAR antibodies (1:1000, 2 h,
RT) and Alexa-Fluor� 594-conjugated goat anti-mouse
secondary antibody. As a control, cells incubated in the
presence or absence of DPQ (40 mM, 1h) were treated with
1mM H2O2 for 15min at 37�C. Cells were washed in
PBS, fixed and permeabilized, then immunolabeled with
anti-PAR antibodies (1:1000) as described above.

RESULTS

Cell construction and characterization

Ku is essential in human cells (57,63). To get rid of Ku
binding at DSBs and allow access to candidate repair
proteins for alternative DSB repair pathways, we estab-
lished a human cell line in which Ku70 expression could be
conditionally knocked-down. Human fibrosarcoma
HT1080 cells were doubly transduced with lentiviral
vectors so as to express a shRNA against Ku70 under
the control of a tetracyclin repressor. Cell clones were
subsequently isolated and showed a very efficient
knock-down of Ku70 expression under the conditional
induction of anti-Ku70 shRNA with doxycyclin
(Figure 1A). As expected from the well-known reciprocal
stabilization of both Ku subunits, Ku80 degradation par-
alleled Ku70 fade-out (Figure 1A). After 8 days induction,
�95% reduction of Ku expression level was achieved
(Figure 1A and unpublished data). Conversely, all other
C-NHEJ components, as well as other DNA repair
proteins were not significantly affected by the decrease
of Ku70/Ku80 expression level. Consistent with the essen-
tial function of Ku in human somatic cells (57,63), cell
proliferation was progressively slowed down and
stopped under prolonged Ku reduction, and cells went
on to die after 12 days (unpublished data).

Then NHEJ competent extracts obtained from
Ku-proficient or deficient cells were assayed for their
end-joining capacity on linear plasmid (Figure 1B).
Notably, both extracts showed roughly identical activity.
However activity of Ku-proficient extract was sensitive to
a specific DNA-PK inhibitor while that of Ku-deficient
extract was partially resistant (�40% mean remaining
ligation activity in three experiments). In addition,
anti-XRCC4 antibodies completely inhibited end-joining
in Ku-proficient extracts but only partially in Ku-deficient
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extracts (data not shown). Together, these results indicate
a shift from C- to B-NHEJ upon Ku reduction in cells, as
we previously observed after Ku depletion from extracts
(26). Since co-depletion of some component in addition to
Ku could have occurred in cells, we added back purified
human Ku dimer to the extracts. Sensitivity to the
DNA-PK inhibitor was progressively restored upon
addition of increasing amount of Ku to extracts from
the Ku-depleted cells, indicating a reverse shift from B-
to C-NHEJ (Figure 1C, <6% remaining ligation activity
for the highest amount of Ku added). Therefore, Ku was a
major inhibitor of alternative end-joining assessed in cell
extracts.

Cell fractionation after DSB production in chromatin
under Ku deficiency

We have adapted a cellular fractionation procedure to
reveal chromatin association of repair proteins at early
time following DSB induction (10,61). Fractionation pro-
cedure is based on successive detergent extractions
(fraction I–IV, from cytoplasmic to chromatin fraction,
respectively, characterized in Supplementary Figure S1),
aimed at removing loosely bound proteins. This protocol
or a derivative from our laboratory has allowed visualiza-
tion of the association of repair or signaling proteins
with sites of DSB in chromatin (10,11,61,64,65).

Figure 1. Effect of Ku extinction on the expression and mobilization to damaged chromatin of representative repair proteins and on NHEJ activity
in vitro. (A) WCEs of HT1080 shKu70 cells treated with doxycyclin for the indicated time were denatured and separated on 10% SDS–PAGE gel
followed by electrotransfer on membrane. The membranes were blotted with the antibodies as indicated. (B) End-joining assay catalyzed under
standard reaction conditions with extracts from Ku proficient or deficient cells (treated with doxycylin for 7 days), in the presence or not of DNA-PK
specific inhibitor NU7026. DNA ligation products were separated by agarose gel electrophoresis followed by SYBR-Green staining. Ligation
efficiency (% of plasmid multimers versus monomer) was 12.4 and 15.1 for lanes 1 and 3 (without NU7026) and 0 and 5.5 for lanes 2 and 4
(with NU7026), respectively. (C) End-joining assay catalyzed under standard reaction conditions with extracts from Ku proficient or deficient cells
(treated with doxycylin for 7 days), in the presence or not of the indicated amount of purified Ku protein. DNA ligation products were separated by
agarose gel electrophoresis followed by SYBR-Green staining. Ligation efficiency (% of multimers versus monomer) was 13.7, 12.9, 16.6, 16.2 and
15.5 for lanes 1, 3, 5, 7 and 9 (without NU7026) and 0, 6.0, 2.6, 1.7 and 0.9 for lanes 2, 4, 6, 8 and 10 (with NU7026), respectively. (D) HT1080
shKu70 cells were treated (T) or not (NT) with calicheamicin (Cali), collected and fractionated as described in the ‘Materials and Methods’ section,
leading to fractions I to IV. Protein samples were denatured and separated on SDS–PAGE gels 10% for standard separation or 15% for gH2AX
isolation, followed by electrotransfer and blotting as indicated. (E) HT1080 shKu70 cells were grown for 12 days in the presence or not of
doxycyclin, then treated with Cali, fractionated and analyzed as in (D).
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For production of DSB, non-induced HT1080 shKu70
cells were treated with Calicheamicin-g1 (Cali), yielding
a 1:3 ratio of DNA DSB to single-strand breaks (SSBs)
in vivo, compared to a <1:20 ratio for ionizing radiation
(66). In addition, it has been estimated that under experi-
mental conditions similar to ours, Cali produced at least
400 DSBs/nM per cell (66). Then the mobilization of three
groups of proteins were compared following DSB produc-
tion; the C-NHEJ pathway (Ku70, DNA-PKcs, XRCC4,
LIG4); the BER pathway (PARP1, XRCC1, LIG3); or the
MRN complex (MRE11 and NBS1). The four fractions
obtained after extraction of equivalent number of cells
under each culture conditions were analyzed by
immunoblot following SDS–PAGE (Figure 1D). As
expected, the majority of C-NHEJ proteins were released
in the early extracted fractions (I and II) in non-treated
cells. In contrast, the C-NHEJ proteins mainly shifted to
the extraction-resistant fractions (III and IV) in cells
treated with Cali for 1 h prior fractionation; these frac-
tions also contained the phosphorylated form of H2AX
as DSB marker. In addition XRCC4 migrated as a
retarded band corresponding to DNA-PK-dependent
phosphorylation, as previously published (10). Although
PARP1 and XRCC1/LIG3 were also confined in the ex-
tractable fractions I and II in non-treated cells, they
behaved differently from C-NHEJ proteins in treated
cells, i.e. they mainly remained extractable and were
only partially recruited to chromatin (Figure 1D).
Although the Cali treatment results in a concomitant pro-
duction of base damage and SSBs, this low retention may
be explained non-exclusively by the essentially transient
attachment of PARP1 at the damage site (67) and/or
improper extraction conditions for SSB-binding proteins.
Finally, no mobilization of MRE11 and NBS1 to the
chromatin fraction was detected following Cali treatment
under these conditions (Figure 1D).
We then compared the distribution in the four fractions

of the three groups of proteins after Cali treatment of
HT1080 shKu70 under non-induced or induced conditions
for the expression of Ku70 shRNA (Figure 1E). Same
amount of phosphorylated H2AX was present in the in-
soluble fraction IV under both conditions (Figure 1E).
Upon shKu70 expression, the �5% remaining amount
of Ku was mostly present in fraction IV. Under normal
Ku expression, DNA-PKcs was present in fractions III
and IV while under limited Ku expression, it rather
shifted to the more soluble fractions I and II, indicating
a poorer retention in the damaged chromatin. Under
limited Ku expression, XRCC4 was still present in the
chromatin fraction IV and the LIG4 profile appeared un-
changed (Figure 1E). However, on Ku reduction, XRCC4
appeared broadly less phosphorylated over the four frac-
tions as compared with the exclusive hyper-
phosphorylated form observed under normal conditions
of Ku expression. Regarding PARP1 and MRN
proteins, a clear enrichment was observed in fractions
III and/or IV under limited Ku expression (Figure 1E),
as also found to a lesser extent for XRCC1/LIG3 proteins.
Hypo-phosphorylation of XRCC4 suggested a defect in

DNA-PKcs activity since under these conditions this
protein was essentially phosphorylated by DNA-PKcs

[(10) and Supplementary Figure S2]. Thus we checked
the phosphorylation of the p34 subunit of RPA, another
DNA-PKcs substrate after DSB production, as shown in
Supplementary Figure S2. Figure 1E shows a shift in the
distribution of RPAp34 forms to the less phosphorylated
ones upon limiting Ku expression, supporting the hypoth-
esis of a defect in DNA-PKcs activation.

To further test this hypothesis, we used another cellular
model of Ku deficiency. The system for conditional induc-
tion of Ku70 shRNA was introduced into MRC5 cells
(SV40 transformed human lung fibroblasts) and led to
very efficient knock-down of Ku70 expression after 8
days in the presence of doxycylin (Figure 2A and C).
Notably, after Cali treatment, Ku deficiency led to accu-
mulation of PARP1, XRCC1/LIG3 and proteins of the
MRN complex in the less extractable fractions III and
IV, while only minor change occurred in the XRCC4
and LIG4 profile, except a defect in XRCC4 phosphoryl-
ation along with a concomitant defect in RPAp34 phos-
phorylation (Figure 2B).

We then used another technique to validate these
results. After Cali treatment under conditions of Ku ex-
tinction in MRC5 cells (Figure 2C), immunofluorescence
detection revealed a strong reduction in the amount of Ku
present in the chromatin fraction compared to non-
depleted cells (Figure 2D). In contrast, and as observed
by western-blotting, PARP1 was much more detected in
the damaged chromatin of Ku-depleted cells after treat-
ment with Cali than in the damaged chromatin of
Ku-proficient cells (Figure 2E). Similarly, the damaged
chromatin was clearly enriched in Rad50 upon Ku reduc-
tion in cells (Figure 2F).

Ku is the main inhibitor of PARP1 and MRN
recruitment to chromatin containing DSBs

Ku deficiency increased recruitment of PARP1, MRN and
to a lesser extent XRCC1/LIG3 proteins to less soluble
fractions after Cali treatment. This result suggests the
release of a Ku-mediated impairment of the direct or
indirect binding of these proteins to DSBs. To address
this point, we compared protein mobilization under
normal or Ku-deficient conditions after cell treatment
with a high dose of MMS which produces SSBs as inter-
mediate lesions during BER repair of methylated DNA
bases. Without doxycyclin and as expected, this treatment
failed to recruit C-NHEJ proteins to insoluble fractions
(Supplementary Figure S3). We previously observed this
failure, unless un-repaired SSBs due to MMS treatment
were converted into DSBs by PARP inhibition (12).
Likewise, MRN proteins remained soluble after MMS
treatment. In contrast, there was a strong displacement
of PARP1, XRCC1 and LIG3 to fraction IV following
MMS treatment. However, no benefit of Ku reduction
was observed on the mobilization of BER or MRN
proteins to SSBs (Supplementary Figure S3), contrarily
to what was found after treatment with Calicheamicin
(Figures 1E, 2B, E and F). Hence, DSBs appear to be
mostly responsible for the mobilization of these proteins
to damaged chromatin upon Ku reduction.
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Figure 2. Effect of Ku extinction on the expression and mobilization to damaged chromatin of representative repair proteins. (A) WCEs of MRC5
shKu70 cells treated with doxycyclin for the indicated time were denatured and separated on 10% SDS–PAGE gel followed by electrotransfer on
membrane. The membranes were blotted with the antibodies as indicated. (B) MRC5 shKu70 cells were grown for 9 days in the presence or not of
doxycyclin, then treated with Cali, fractionated as described in the ‘Materials and Methods’ section, leading to fractions I–IV. Protein samples were
denatured and separated on SDS–PAGE gel, followed by electrotransfer and blotting as indicated. (C) MRC5 shKu70 incubated or not with
doxycyclin for 8 days were fixed, permeabilized and immunostained with anti-Ku70/Ku80 heterodimer antibodies followed by incubation with
Alexa-Fluor� 594-conjugated goat anti-mouse IgG. DNA was stained with DAPI. (D) MRC5 shKu70 incubated or not with doxycyclin for 8
days were mock-treated or treated with 10 nM Calicheamicin (Cali) for 45min at 37�C in medium. Cells were permeabilized in buffer containing
0.1% Triton X-100 prior to fixation and immunostaining with anti-Ku70/Ku80 heterodimer antibodies and Alexa-Fluor� 594-conjugated goat
anti-mouse antibodies. DNA was stained with DAPI. (E and F) MRC5 shKu70 incubated or not with doxycyclin for 8 days were mock-treated
or treated with 10 nM Cali for 45min at 37�C in medium. Cells were pre-extracted in buffer containing 0.1% Triton X-100 prior to fixation then
immunostained with anti-PARP1 antibodies (E) or anti-Rad50 antibodies (F) followed by incubation with Alexa-Fluor� 594-conjugated goat
anti-mouse antibodies. DNA was stained with DAPI.
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An important issue was to control that the doxycyclin
treatment per se had no side effect on the recruitment
of repair proteins. Therefore, HT1080 shKu70 cells were
complemented with a construction expressing a shRNA-
resistant FLAG-tagged Ku70 mutant. As expected, these
cells still expressed FLAG-Ku70 12 days after treatment
with doxycyclin whereas expression of the endogenous
protein was strongly decreased (Figure 3A) and this led

an efficient growth defect complementation (unpublished
results). Protein recruitment after Cali treatment was
then compared in these cells treated or not with doxycyclin
for 12 days (Figure 3B). Upon Cali treatment in
doxycyclin-treated cells, FLAG-Ku70 was present in frac-
tions III and IV in concentration well over the trace
amount of the remaining endogenous Ku70 protein re-
cruited. Although under these conditions, the total

Figure 2. Continued.
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amount of Ku in these fractions was lower than in the
damaged doxycyclin non-treated cells, recruitment and ac-
tivation of DNA-PKcs was sufficient to phosphorylate
XRCC4 as efficiently as in doxycyclin non-treated cells
(Figure 3B). Strikingly, a similar minor mobilization of
BER and MRN proteins to the insoluble fractions III
and IV was observed in the damaged cells treated or not
with doxycyclin. These results clearly rule out the hypoth-
esis that a secondary effect of doxycyclin might promote
the mobilization of these proteins to the damaged chro-
matin. In addition, the fact that the maintenance of Ku
expression prevented an enhanced recruitment of BER
and MRN proteins to chromatin damaged with DSB
suggests that Ku is a main inhibitor of the recruitment
of these proteins.

Ku binding to DNA-ends initiates the C-NHEJ
pathway which is thus strongly compromised in the
absence of the Ku heterodimer (7). The repair defect
could somehow mediate the change in the balance
between NHEJ and the other repair proteins in the
less extractable fractions after Cali treatment. To
address this hypothesis, the same extraction after DSB
infliction was performed under NHEJ deficiency
mediated by silencing the other NHEJ factor LIG4.
Stable expression of shLIG4 led to a strong reduction in
LIG4 expression as published (9) (Figure 3C). As shown
in Figure 3D, LIG4 failed to accumulate in fractions III

and IV in cells expressing shLIG4. LIG4 deficiency also
impaired XRCC4 accumulation in these fractions, as
expected from our published data (9,12). However, Ku
was present on chromatin in LIG4 proficient or deficient
cells and no extra accumulation of PARP1, LIG3, MRE11
or NBS1 proteins was noticed in fractions III and IV
under these LIG4 deficiency conditions (Figure 3B). This
implies that Ku decreased expression per se and not the
resulting NHEJ defect was responsible for the
extra-mobilization of PARP1 and MRN proteins to the
chromatin damaged with DSBs observed after Cali
treatment.
Since Ku is the regulatory subunit of the DNA-PK

complex, it was also possible that the kinase activity of
the complex be the main contributor of the exclusion of
BER and MRN proteins from DSBs.
To test this possibility, we first analyzed fractionation

after Cali treatment of the human DNA-PKcs-deficient
glioblastoma cell line (Fus9) compared to its DNA-
PKcs complemented counterpart (Fus1) (Figure 4A).
Calicheamicin induced a similar recruitment of Ku to
damaged chromatin in both DNA-PKcs proficient or de-
ficient cells. Although DNA-PKcs was not expressed in
FUS9 cells, PARP1 and NBS1 remained mostly soluble,
to the same extent as in FUS1 cells. Thus, this indicates
that the over-mobilization to damaged chromatin of
PARP1 and MRN proteins that was observed upon Ku

Figure 3. Effect of Ku restoration and LIG4-deficiency on the mobilization to damaged chromatin of representative repair proteins. (A) WCEs of
HT1080 shKu70/Ku70shR cells treated with doxycyclin for the indicated time were denatured and separated on 10% SDS–PAGE gel, followed by
electrotransfer and blotting as indicated. Asterisk indicates FLAG-Ku70. (B) HT1080 shKu70/Ku70shR cells were grown for 12 days in the presence
or not of doxycyclin, then treated with Cali, collected and fractionated as described in the ‘Materials and Methods’ section, leading to fractions I–IV.
Protein samples were denatured and separated on 10% SDS–PAGE gel, followed by electrotransfer and blotting as indicated. Asterisk indicates
FLAG-Ku70. (C) Western blotting on the WCEs of the MRC5 cells expressing or not shLIG4. (D) MRC5 cells expressing or not shLIG4 were
treated with Cali, fractionated and analyzed as in (B).
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under-expression was not associated with DNA-PKcs
inactivation.
To evaluate a possible contribution of DNA-PKcs that

could have escaped the previous analysis, we checked the
effect of the selective DNA-PKcs inhibitor NU7026 on
the recruitment of PARP1, LIG3 and MRN proteins to
the damaged chromatin (as a pool of fractions III and IV)
in doxycyclin-untreated cells as compared to the optimum
recruitment in doxycyclin-treated cells (Figure 4B).
Increasing doses of NU7026 progressively inhibited
DNA-PKcs activation as shown by the inhibition of
DNA-PKcs auto-phosphorylation on S2056 (68,69), as
well as by inhibition of phosphorylation of DNA-PKcs
substrates (Supplementary Figure S2). Interestingly, this
inhibition paralleled a progressive increase in the recovery
of PARP1, LIG3 and MRE11 in the damaged chromatin,
although the amount of Ku recruited remained constant.
However, for the highest dose of inhibitor, the concentra-
tion of these proteins in the chromatin fraction remained
far below that observed upon Ku reduction, although the
level of DNA-PKcs phosphorylation on S2056 was similar
under both conditions (Figure 4B). This indicates that
although Ku is the main inhibitor of PARP1, LIG3 and
MRN protein recruitment to DSB, DNA-PKcs activity
also contributes slightly to this inhibition.

Functional consequences of PARP and MRN
recruitment at DSBs

PARP1 is the major poly(ADP-ribose) (PAR) synthetizer
in cells in response to DNA SSBs (70). Indeed, a strong
PAR pan-nuclear signal was observed in MRC5 shortly
after treatment with H2O2 but was hardly detected when
cells were preincubated with the PARP inhibitor DPQ
(Figure 5A). Then, we checked PAR production after
treatment with Cali in Ku-proficient and -deficient cells.
Strikingly, Ku-deficient cells showed the strongest nuclear
PAR signal that was DPQ-sensitive (Figure 5B and
Supplementary Figure S4). In addition, we found that

PARP1 recruited to DSB upon Ku reduction impacted
in turn the residual DNA-PKcs activity: PARP inhibition
combined with Cali-treatment in cells under-expressing
Ku led to an increased phosphorylation of XRCC4 and
RPAp34 DNA-PKcs substrates (Supplementary Figure
S5).

Since the MRN complex comprising MRE11 nuclease
was over-recruited in damaged chromatin after DSBs pro-
duction in the absence of Ku, we aimed at estimating the
amount of ssDNA under these conditions. The thymidine
analog BrdU was incorporated into DNA during cell
growth, as detected after in situ DNA denaturation and
labeling with a specific antibody (Figure 5C). Given that
the anti-BrdU antibody only recognizes BrdU in ssDNA
and not in dsDNA, labeling without DNA denaturation
allows visualization of ssDNA fibers in cells (62).
Figure 5D and Supplementary Figure S6 clearly showed
an increase in BrdU staining in the nucleus of Ku-depleted
cells 2 h after DSBs production, suggesting an enhanced
ssDNA production at DSBs in the absence of Ku.

DISCUSSION

By controlling the level of expression of C-NHEJ compo-
nents, we have shown here that Ku counteracts mobiliza-
tion of PARP1 and the MRN complex to chromatin
damaged with DSBs in cells and limits PAR synthesis as
well as ssDNA production in response to these lesions.

The PARP1 mobilization to damaged chromatin under
Ku-deficiency that we report most likely relies on a direct
recruitment to DSBs since we found that it is accompanied
by PAR synthesis. PARP1 exhibits a high binding affinity
for and is activated by double-stranded DNA ends in vitro
(71,72) and in cells (73). In addition, biochemical experi-
ments with purified proteins provide evidence for a com-
petition between Ku complex and PARP1 for binding to
DNA ends (34). However, no experiments have previously
demonstrated biochemically competition between both

Figure 4. Effect of DNA-PKcs deficiency or inhibition of DNA-PK on the mobilization to damaged chromatin of representative repair proteins. (A)
DNA-PKcs deficient (Fus9) and DNA-PKcs complemented (Fus1) glioblastoma cell lines were treated with Cali. collected and fractionated as
described in the ‘Materials and Methods’ section, leading to fractions I to IV. Protein samples were denatured and separated on 10% SDS–PAGE
gel, followed by electrotransfer and blotting as indicated. (B) HT1080 shKu70 cells were grown for 12 days in the presence or not of doxycyclin, then
treated with Cali in the presence of increasing concentrations of the DNA-PKcs inhibitor NU7026 as indicated, fractionated and analyzed as in (A),
except that only pooled fractions III and IV were loaded.
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DNA-ends binding activities in the presence of chromo-
somal DSBs.

The competition between Ku and PARP1 mostly relies
on Ku as a DSB-binding complex per se and not on a
secondary repair function of Ku. This is shown by the
recovery of PARP1 in damaged chromatin, which was
stronger in the absence of Ku than in the absence of
DNA-PKcs or LIG4. As a result, it has been shown in
cells that the contribution of PARP1 to repair of chromo-
somal DSBs was very faint in LIG4�/� cells and undetect-
able in DNA-PKcs deficient cells, both conditions still
allowing Ku binding to DSBs (34). In contrast, a PARP
inhibitor strongly impacted DSB repair in Ku-defective
cells (34,52). A similar model of competition for access
to the double-stranded DNA ends has been proposed
earlier between Ku and Rad52 for initiation of homolo-
gous recombination (74). However, we cannot exclude
that Ku sequesters PARP1 from performing its function
at DSBs.

Although calicheamicin generated �70% non-DSB
lesions (66), we observed a much stronger mobilization
of PARP1 to damaged chromatin in the absence of Ku
than expected on �30% DNA damage (DSBs) that were
freed as additional binding sites upon Ku removal. This
could be explained by a higher affinity of PARP1 for DSB
than for SSB (71,72). Alternatively, a slower turnover of
PARP1 on DSB could explain this observation; this is
suggested by a bias towards trans-poly(ADP-ribosylation)
mediated by DSB in vitro, as opposed to auto-poly(ADP-
ribosylation) necessary for PARP1 detachment from
DNA (71). In addition to the Ku-mediated impairment
of PARP1 recruitment at DSBs that we show here, it
has been suggested that the frequent associated SSBs
after treatment with DNA-breaking agents could also
divert PARP1 from DSBs (34). This effect may be more
pronounced for DSB inducers like ionizing radiation
which generates a �20-fold ratio of SSBs to DSBs,
much higher than the �3-fold ratio measured for

Figure 5. Consequences of Ku deficiency on PAR synthesis and ssDNA production in damaged chromatin. (A) MRC5 shKu70 incubated or not
with doxycyclin for 8 days were mock-treated or treated with 40 mM DPQ for 1 h at 37�C, then 1mM H2O2 was added to the medium for 15min
Cells were then fixed, permeabilized and immunostained with anti-PAR antibodies followed by incubation with Alexa-Fluor� 594-conjugated goat
anti-mouse IgG. DNA was stained with DAPI. (B) MRC5 shKu70 incubated or not with doxycyclin for 8 days were mock-treated or treated with
40 mM DPQ for 1 h at 37�C, then 40 nM Cali was added to the medium for 7min Cells were fixed, permeabilized and immunostained with anti-PAR
antibodies followed by incubation with Alexa-Fluor� 594-conjugated goat anti-mouse IgG. DNA was stained with DAPI. (C and D) After incorp-
oration of 20 mM BrdU, MRC5 shKu70 incubated or not with doxycyclin for 8 days, mock-treated or treated with 10 nM Cali for 45min and
post-incubated for 2 h were subjected to immunofluorescence with anti-BrdU antibodies and Alexa-Fluor� 594-conjugated goat anti-mouse
antibodies. In C, a DNA denaturation step was included by incubation in 2N HCl for 10min prior to immunostaining with anti-BrdU antibodies.
DNA was stained with DAPI.
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calicheamicin (66).The recruitment of PARP1 to chroma-
tin containing DSBs that was observed in the absence of
Ku paralleled to some extent that of XRCC1/LIG3
proteins. In addition, LIG3 loading on damaged chroma-
tin relied on PARP1 activity since it was prevented by a
PARP inhibitor. Indeed, recruitment of the XRCC1/LIG3
complex onto damaged chromosomal DNA has been
reported to require PARP activity (67,75).
We report here that Ku counteracts access of the

nuclease MRE11 and its partners NBS1 and Rad50 to
chromatin damaged with DSBs. In Saccharomyces
cerevisiae, it has been suggested that Ku competes
with exonucleases at DNA ends (76–78) and in
Schizosaccharomyces pombe, the Ku heterodimer inhibits
nucleolytic processing of DSB ends (79). In mammalian
cells, the absence of Ku has been shown to increase
nucleolytic degradation of transfected DNA (39,80) or
intra-chromosomal substrate (42), although a role for
MRE11 nuclease has not precisely been assessed in these
studies. PARP1 exclusion by Ku most likely impacts nega-
tively MRE11 and NBS1 loading to damaged chromatin;
similarly to LIG3, we found that MRE11 recruitment was
reduced by PARP1 inhibition. Accordingly, laser-induced
mobilization of MRE11 and NBS1 to sites of DNA
damage relies on PARP1 (81).
When recruited to damaged chromatin under Ku

knock-down conditions, PARP1 partially inhibits the

remaining DNA-PK activity, as shown by stimulation of
RPAp34 and XRCC4 phosphorylation by treatment with
a PARP inhibitor. Conversely, we found a slight contri-
bution of DNA-PKcs activity to the impairment of
PARP1 recruitment to DSBs. Thus, this supports a
model in which the balance between DNA-PK and
PARP1 at DSB sites is regulated both by a Ku/PARP1
competition for access to the DNA-ends, and also by a
negative effect of each of the protein kinase or
ADP-ribosylase activities on the competing one: under
normal conditions, PARP1 binding to, and activation by
DSBs may be competed by Ku and further downregulated
by DNA-PK; conversely, DNA-PK activity may be
competed by PARP1 under limiting conditions for Ku
access to DSBs.

We found that Ku reduction in cells induces a shift from
C- to B-NHEJ as revealed in a plasmid end-joining assay
with cells extracts and that addition of purified Ku to
extracts from Ku-depleted cells reversed this shift. Also,
we have reported that LIG4 defective extracts do not show
plasmid end-joining unless Ku but not DNA-PKcs is
depleted from the extracts and that then, end-joining
relied on B-NHEJ (26). In agreement, specific loss of
Ku, among other C-NHEJ factors, has been reported to
allow the best rescue by alternative mechanisms of the
DSB repair defect. In plasmid-rejoining assays in human
HCT116 human cells, inactivation of DNA-PKcs,

Figure 5. Continued.
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Cernunnos-XLF or LIG4 yielded only 1–10% of the
repair events measured after Ku80 genetic ablation,
which reached levels even slightly higher than in
wild-type cells (39). In the same study, it was shown that
the strong repair defect in C-NHEJ mutants other than
Ku could be rescued by reducing the amount of Ku in
these cells (39). Similarly, joining efficiency of an
intra-chromosomal substrate in hamster cells was
strongly reduced in XRCC4-defective cells but close to
normal in Ku-deficient cells (37); in MEF cells, plasmid
end-joining in a transfection assay was compromised by
XRCC4 defect but not by lack of Ku (36). Also, deletion
of Ku70 was shown to rescue the sensibility to ionizing
radiation of LIG4-defective DT40 cells (82) and Ku
knock-out restored the viability of LIG4-null mice (83).
Together with findings presented here, these results em-
phasize the predominant role of Ku as compared to
other C-NHEJ proteins for counteracting access to
DSBs of non C-NHEJ activities.

In addition to the two well characterized mammalian
pathways for DSB repair, namely HR and C-NHEJ,
recent reports have revealed a robust alternative end-
joining or back-up mechanism (B-NHEJ) in
C-NHEJ-deficient cells, operating efficiently on linear
plasmid (84,85), intra-chromosomal substrates
(37,38,42,44,51), CSR-associated DSB (27,30,40,86) or
radiation-induced DSBs (33,87). Any alternative DSB
end-joining mechanism would be expected to require at
least DNA end-binding and bridging, ends-processing
and final ligation steps. Indeed, studies including our
own have reported that in the absence of Ku, PARP1
can achieve synapsis (52) and PARP1/XRCC1-LIG3 can
promote end-joining (34,44,52,53,55,56). In addition,
several recent studies have implicated the MRN complex
in B-NHEJ in mammalian cells, via end-tethering and/or
nuclease activities, possibly associated with DSB signaling
functions (88). We report here an excess of ssDNA pro-
duction in the presence of DSBs under conditions of Ku
deficiency but other experiments are needed to attribute
this production to resection or unwinding at DNA ends.
Nevertheless, given that Ku removal allows the best con-
ditions for alternative end-joining, the repair proteins
preferentially associated with damaged chromatin under
these conditions are good candidates for components of
these alternative repair routes. Thus our results strongly
support the involvement of PARP1, the MRN complex
and possibly XRCC1-LIG3 in B-NHEJ. In addition,
they favor a model of PARP1 as a scaffold for the recruit-
ment of both resection and ligation activities in alternative
end-joining of DSBs.

In conclusion, our results support a predominant role
for Ku among other C-NHEJ proteins as a competing
factor in cells against other DNA end-binding activities
and the involvement at least of PARP1 and MRN in
non C-NHEJ alternative end-joining routes. In the near
future, our cellular model for conditional induction of a
shRNA against Ku70 should allow us to characterize
other cellular factors recruited at sites of DSB in the
absence of Ku and to further establish players in the
B-NHEJ pathway for the repair of DNA DSBs.

ADDENDUM

The sequence of the shRNA targeting Ku70 mRNA
mentioned in the first paragraph of ‘Expression vectors,
cell transfection and transduction’ in the ‘Materials and
Methods’ section is from the reference: Biard,D.S. (2007)
Untangling the relationships between DNA repair
pathways by silencing more than 20 DNA repair genes
in human stable clones. Nucleic Acids Res., 35, 3535–3550.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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