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Abstract: In this paper, we propose a novel Deep Reinforcement Learning (DRL) algorithm which can
navigate non-holonomic robots with continuous control in an unknown dynamic environment with
moving obstacles. We call the approach MK-A3C (Memory and Knowledge-based Asynchronous
Advantage Actor-Critic) for short. As its first component, MK-A3C builds a GRU-based memory
neural network to enhance the robot’s capability for temporal reasoning. Robots without it tend to
suffer from a lack of rationality in face of incomplete and noisy estimations for complex environments.
Additionally, robots with certain memory ability endowed by MK-A3C can avoid local minima traps
by estimating the environmental model. Secondly, MK-A3C combines the domain knowledge-based
reward function and the transfer learning-based training task architecture, which can solve the
non-convergence policies problems caused by sparse reward. These improvements of MK-A3C
can efficiently navigate robots in unknown dynamic environments, and satisfy kinetic constraints
while handling moving objects. Simulation experiments show that compared with existing methods,
MK-A3C can realize successful robotic navigation in unknown and challenging environments by
outputting continuous acceleration commands.

Keywords: autonomous navigation; unknown environments; deep reinforcement learning;
continuous control

1. Introduction

Autonomous navigation plays an important role in the fields of video games [1] and robotics [2],
to generate reasonable trajectories for Non-Player Characters (NPCs) and meet the fundamental needs
of mobility for real-life robots. This paper focuses on the navigation problem of non-holonomic robots
with continuous motion control in unknown dynamic environments.

Existing approaches [3] can be divided into two categories: (1) those based on global environmental
data; (2) those using only local environmental information. Algorithms from the first category usually
conduct efficient path search in a heuristic or non-heuristic manner knowing precise environmental
states. They include Simple Subgoal Graph (SSG) [4] and its variants [5], sampling-based path planning
algorithms (such as Probabilistic RoadMaps (PRM) [6], Rapidly exploring Random Trees (RRT) [7]),
etc. The sampling-based algorithms commonly used in robotics are complete and efficient. However,
these methods need a model of the entire map often represented by grids or topology maps.

Methods in the second category use local environment data detected by sensors to plan motions
for robots, which can avoid first-move lags [8] and have the potential to realize real-time planning.
These algorithms are classified into non-learning-based and learning-based methods. Typical
non-learning-based algorithms, such as Artificial Potential Fields (APF) [9] and Velocity Obstacle
(VO) [10], calculate motion behaviors at every time step following preset rules. Their generated reactive
strategies usually lead to bad performance in local minima areas. Besides, some key parameters
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of the algorithms are difficult to be manually adjusted, and the algorithms require some overly
strict assumptions.

Local learning-based navigation algorithms include Deep Learning (DL) and Deep Reinforcement
Learning (DRL). Methods based on DL [11] use deep neural networks to extract patterns of reasonable
navigation behavior from a large number of labelled expert data. However, it is time-consuming and
energy-consuming to collect labelled samples for navigation in unknown environments, which prevents
DL-based methods from being widely applied to solve the proposed problem. In contrast, DRL cannot
learn from labelled data but experience generated from interactions between the agent and the
environment [12]. Generally, they can be divided into two sorts, namely value-based and policy-based
DRL. Compared with value-based DRL methods, the latter methods are more competent to deal
with continuous action spaces. Among them, Asynchronous Advantage Actor-Critic (A3C) [13]
is well-received in the field of computer games [14,15] and robotics [16,17] owing to its high
training efficiency. Nonetheless, applying A3C to solve the navigation problem in unknown dynamic
environments is still facing the following challenges.

First, in an unknown environment the robot can only collect incomplete and noisy environmental
data within a certain range through its own sensors, which make the robot controlled by A3C fall
into traps of local minima at areas of concave canyon, long corridors and other challenging terrains.
Other DRL algorithms are also difficult to avoid local minima. Second, for in most cases there is only
one goal location, the rewards are sparsely distributed in the environment, which empirically greatly
slows down the learning efficiency and even leads to non-convergence.

To solve the above problems, this paper proposes MK-A3C, a novel DRL algorithm that improves
on the A3C algorithm by using memory mechanism, domain knowledge and transfer learning.
MK-A3C constructs a Gated Recurrent Unit (GRU)-based network [18] architecture to store abstract
historical information in the internal state of the GRU layer. In addition, MK-A3C introduces domain
knowledge by reward shaping [19] and transfer learning to increase learning efficiencies and enhance
generality. To deal with incomplete states, MK-A3C constructs the belief state by combining the
abstracted historical trajectories with the current observation. Then, to overcome the challenge of sparse
reward, MK-A3C builds a domain knowledge-based reward function and a transfer learning-based
training task framework [20], which can increase the density of reward signals and meanwhile realize
the migration of knowledge from simple tasks to complex tasks.

The rest of this paper is organized as follows: Section 2 discusses some related work about
non-learning-based navigation methods, DL, and DRL. Section 3 presents our navigation approach
in detail. In Section 4, the performance of the proposed method is evaluated through simulation
experiments. Finally, Section 5 gives our conclusions.

2. Related Work

This section introduces related works in terms of navigation approaches including
non-learning-based methods, DL and DRL. Generally, APF and velocity-based methods are typical
non-learning-based navigation methods that are not suitable to deal with changes in unknown
environments. Learning-based methods such as DL and DRL can enhance the adaptability of mobile
robots in unknown environments by accumulating navigation experience. While DL requires large-scale
labelled data that are difficult to collect, DRL merely needs data from interactions between agents
and environments.

2.1. Non-Learning-Based Methods

It is difficult for non-learning-based methods to deal with navigation in unknown dynamic
environments, since these methods cannot address unpredictable situations and is not adaptive to
environmental changes. This subsection focuses on two typical methods, VO and APF. VO [10] can
generate reachable trajectories by computing a velocity space of a robot. However, it is inefficient for
real-time applications to compute maneuvers via the velocity space. Comparatively, APF [9] employs
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time-varying potential field functions as a low-cost navigation technique in dynamic environments,
which uses only local information near the agent as input. Unfortunately, potential field functions,
key to APF, are subject to several parameters, such as the relative strength between the repulsive and
attractive potentials, which are generally determined by experience and easily incur local minima
issues. In addition, non-learning-based methods generally make plans by current observations, thereby
only finding reactive policies with poor adaptability to unknown and dynamic environments.

2.2. Deep Learning

DL is essentially a collection of models for non-linear function approximations through abstracting
features hidden in inputs by deep neural networks and presently is widely used in robotic applications,
such as robot manipulation, indoor navigation and so on [21–23]. Generally, navigation methods based
on DL are included in two genres, i.e., data-driven control methods and Model-Predictive Control
(MPC) methods. The first kind directly maps raw sensory inputs to control commands by large-scale
supervised learning. For example, Xu et al. [21] developed an end-to-end trainable architecture to
learn a generic vehicle motion model based on a large set of crowd-sourced video data. Tai et al. [22]
adopted a convolutional neural network (CNN) to learn indoor navigation policies by self-constructed
indoor depth data sets. The second kind of approach uses deep neural networks to learn dynamics of
controlled agents, and then calculates optimal control input based on the predicted future outputs.
For instance, Agrawal et al. [23] took raw sensory images as input to predict the dynamic model of
robotic arms for manipulation by deep neural networks. However, it is difficult to collect a large set of
labelled data for training deep neural networks in the scenario of navigation in unknown environments.

2.3. Deep Reinforcement Learning

In contrast to DL-based methods, DRL can learn navigation policies by samples collected from
interactions between the agent and the environment. Therefore, DRL can avoid collecting large-scale
labelled data. In addition, unlike DL which extracts existing navigation patterns from data sets, DRL
can explore unseen policies by actively interacting with the environment, which brings about further
breakthroughs in autonomous navigation. Currently, much research is devoted to solving problems of
navigation in static unknown environments. For example, Tai et al. [24] proposed asynchronous deep
deterministic policy gradients to learn navigation policies under simple static unknown environments.
Wang et al. [25] proposed a fast-recurrent deterministic policy gradient algorithm (fast-RDPG) to
accomplish unmanned aerial vehicles’ navigation tasks in more complex environments. Zhelo et al. [26]
proposed curiosity-driven exploration strategies to argument robots’ abilities to explore complex
unknown environments. However, these works mainly focus on navigation in static environments,
which are unpractical for most realistic applications since various kinds of moving objects are required
to be taken into consideration.

Compared with the above methods, MK-A3C can solve the navigation problem in unknown
dynamic environments with moving obstacles by introducing memory mechanism and domain
knowledge into its DRL framework.

3. The Methodology

In this section, we first introduce the navigation problem and related backgrounds, and then build
a model for the crawler robot. Then, we illustrate the architecture of the proposed algorithm. Finally,
the motion planner based on MK-A3C is described in detail.

3.1. Problem Description

The targeted navigation problem in this paper can be described as follows: In an initially unknown
environment where terrains like dead corners and long corridors are widely distributed, a mobile robot
only equipped with sparse local distance sensors is required to move safely to a given destination
controlled by continuous control commands. Since the environment is initially unknown, the robot
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can only build its own environmental model through exploration. Meanwhile, the environment with
moving obstacles is dynamic and uncertain, which greatly increases the complexity. As proved in
reference [27], navigation in dynamic environments is a non-deterministic polynomial-hard problem.

In this paper, we adopt a Cartesian coordinate system. The model of the mobile robot is illustrated
in Figure 1 and its dynamics are given in Equations (1) and (2). We use a tuple (xrob, yrob,θrob) to denote
the position information of the mobile robot, where xrob and yrob are the robot’s global horizontal and
vertical coordinate respectively, and θrob is the angle between the orientation of the robot and the
positive abscissa. To decrease the hardware requirements and take moving obstacles into consideration,
the range sensor equipped with the robot has a 360-degree detection angle range, and the detected
angular interval is 15 degrees, which means that 24-dimensional local obstacle distance information
can be obtained. Its maximum detection distance of the sensor is 7 m. The mobile robot is a crawler
robot that can be controlled by the left and right tracks. To achieve meticulous manipulations and meet
kinetic constraints, continuous angular acceleration is used as control commands. The kinetic equation
is described as follows: 
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where R is the radius of the driving wheel; ωl and ωr denote the angular velocities of the left and right
driving wheels respectively (rad·s−1);
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Figure 1. Schematic diagram of the crawler robot.

3.2. The Architecture of the Proposed Algorithm

In this paper, the proposed MK-A3C algorithm makes improvements on the original A3C algorithm
by adding the memory mechanism and domain knowledge. In addition, MK-A3C can avoid the local
minima trap caused by partial observability and the sparse reward challenge in unknown environments.
Figure 2 shows the architecture of the proposed algorithm.
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As shown in Figure 2, in the offline phase of the motion planner, the main task is to learn
navigation policies in unknown dynamic environments. First, key information about the robot and the
environment is extracted to construct a Partially Observable Markov Decision Process (POMDP) model,
since in unknown environments the robot cannot directly obtain the complete environmental state
to construct a general Markov Decision Process (MDP) model. Then, a neural network architecture
with a memory mechanism is built to solve the POMDP model, which integrates historical data with
the current observations to construct the robot’s own belief state as its cognition about environments.
Next, to overcome the challenge of sparse reward, a reward function based on domain knowledge
is constructed by reward shaping, which can increase the density of reward signals and accelerate
the convergence of the training process. To further improve learning efficiencies, the architecture of
training tasks is constructed by transfer learning. Finally, MK-A3C is used to learn the navigation
policy. In the online phase, navigation policy learned in the offline phase takes the environmental
information detected by the sensor and internal states of the robot as its input, and output continuous
control commands to navigate the robot to a given goal location.

MK-A3C can learn near-optimal policies to navigate robots in complex unknown environments and
satisfy kinetics and task-specific constraints. The algorithm embraces two main features. The first is that
it builds a novel DRL framework to address partial observable problems. Specifically, the memory-based
neural network integrates historical information and current observations to solve the POMDP that
formally describes the targeted navigation problem, which equips the robot with temporal reasoning
ability. Additionally, the neural network based on GRU contains the robot’s cognition of the environment
and can be used to avoid being trapped in local minima.
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Second, an innovative reward function and the novel architecture of training tasks are constructed
to training the memory network. Specifically, we introduce domain knowledge into the reward
function by reward shaping to solve the problem of sparse rewards. The shaped reward function
can increase the destiny of reward signals to accelerate the training process. Besides, inspired by
reference [17], an architecture of training tasks is built by transfer learning, which can improve training
efficiencies by effectively using accumulated knowledge from the previous learning task. In conclusion,
improvements to reward function and training architecture are helpful to collect effective training
samples in unknown environments, thereby relieving the method from the problem of sparse reward.
In addition, due to the generalization of MK-A3C, the motion planner can quickly adapt to new
environments without retraining.

3.3. Motion Planner Based on MK-A3C

This section introduces the motion planner based on MK-A3C in the following four parts:
(1) backgrounds and concepts of POMDP; (2) description of the proposed POMDP; (3) basic concepts
of policy-based DRL methods and A3C algorithm; and (4) a description of the MK-A3C algorithm.

3.3.1. Backgrounds and Concepts of POMDP

Policy-based DRL algorithms, such as the Deep Deterministic Policy Gradient (DDPG) [28], A3C,
and Distribute Proximal Policy Optimization (DPPO) [29,30], are powerful tools for solving MDP
models. However, navigation in unknown environments cannot be formalized as an MDP model
since the robot cannot obtain the complete state st. Specifically, the sensor mounted on the robot
can only obtain distance information of nearby obstacles, and even cannot directly know velocities
of moving obstacle and the global terrain. POMDPs, as an extension from the MDP models can
describe uncertain interactions between robots and environments where only a limited range of area
can be obtained. Therefore, we model the process of robots’ safe navigation in unknown dynamic
environments as POMDPs, which can better capture the hidden state in the environment through the
analysis of environmental observations.

Due to the terminal conditions in the proposed navigation problem, we use a finite POMDP that
can be formally described as a 6-tuple (S, A, P, R, O, Ω). Among the elements, S is a finite set of states,
A is a finite set of actions, O is a finite set of observations and P denotes a state transition function
being part of the environment model. P(s, a, s′) = P[st+1 = s′

∣∣∣st = s, at = a] , denotes the probability
of transferring to the next state s′ when the action a is executed under the current state s. Besides,
R(s, a, s′) = f (st = s, at = a, st+1 = s′) is a reward function to quantify the immediate feedback from
the environment when the agent takes action a in the current state s, indicating an evaluation of
the agent’s behavior at the current step [31]. Ω(o′, s, a) = P[ot+1 = o′

∣∣∣st = s, at = a] , an observation
function, denotes the probability of receiving to the next observation o′ for the agent when the action a
is executed in the current state s.

Although in unknown environments the robot cannot directly obtain the complete environmental
state, in the POMDP model, the robot’s inner representation of the environment can be constructed
through historical data, i.e., the belief state Bs. Due to the powerful feature extraction capability of
the neural network, we choose the recurrent neural network unit GRU to construct the belief state.
GRU takes the last belief state Bsa

t−1, the current observation ot and last action at−1 as its input to
estimate hidden environment states.

3.3.2. Description of Navigation POMDP

It is difficult to construct models for unknown dynamic environments, which means that the state
transition function P and the observation function Ω are unknown. The constructed POMDP model is
presented in detail, including the observation space O, the action space A and the reward function R.

O = (S1, S2, . . . , S24, dtar, atar,θ,ωl,ωr) (3)
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The observation space O consists of sensor data, the relative position between the target and the
robot, and the internal state of the robot. The sensor data includes 24 dimensions distance information
of nearby obstacles which cover 360-degree detection range at intervals of 15 degrees. To be specific, Si
(i ∈ (1, 2, 3 . . . , 24)) refers to the distance to the nearest obstacle located in the range from (i− 1) ∗ 15 to
i ∗ 15 degrees. If no obstacle is detected, the value of Si is the maximum detection distance. The value
range of Si is [0,7], whose unit is meter. Since the environment is dynamic, we abandon the mobile
robot’s absolute position (xrob, yrob,θrob), and use the relative position to describe the relationship
between the target and the robot. The relative position (dtar, atar) includes the distance and orientation
information between the target and the robot. dtar refers to the Euclidean distance between the robot
and the destination and atar represents to the angle between the robot’s orientation and the line
connecting the robot and the target. If the target is on the left hand side of the robot, the value of atar is
set positive, otherwise negative. Its value ranges from [−π, π]. The internal information of the robot
includes its orientation, angular velocities of its left and right driving wheels. θ refers to the orientation
of the robot, and its value ranges from [0, 2π]. ωl and ωr refer to the angular velocity of the left and
right driving wheels, ranging from [−0.5, 0.5] in rad·s−1.

A =
( .
ωl,

.
ωr

)
(4)

The action space A includes the angular accelerations of left and right driving wheels in tracks,
.
ωl and

.
ωr. Range of their value is [−0.5, 0.5], and their unit is rad·s−2. In the problem of robot

navigation, the output action is generally represented in the following two ways: (1) discrete actions,
such as forward, left turn and right turn; (2) continuous velocities, such as linear velocity and steering
velocity. To achieve more realistic and precise control, we take the continuous angular acceleration of
the driving wheels as output.

The reward function R is an instant evaluation of the executed action’s effects in the current state.
For a fully observable MDP model, the reward function can be generally set as obtaining 1 if realizing
the goal and obtaining 0 if not. However, in the proposed partially observable problem, adopting
the simple reward function definitely leads to sparse reward. Specifically, since the initial policy is
randomly generated, the probability that the robot reaches the destination in an unknown dynamic
environment with long corridors and dead corners is close to zero, which means that it is hard to
collect effective samples. Reward shaping [19], as a way to solve sparse rewards, can provide early
rewards for agents to accelerate the convergence of training policies while ensuring policy invariance.

We use reward shaping to embed the domain knowledge into the reward function. The shaped
reward function is divided into two parts, i.e., non-terminal rewards and terminal rewards, respectively.
Terminal rewards include rewards of reaching target and collision penalties. The first part of terminal
rewards is described as follows:

rarr = 10; i f dt < dtol (5)

where dtol refers to the tolerance distance to the target.
The equation of collision penalties is as follows:

rcol = −5; i f Smin < dsa f (6)

where Smin refers to the minimum obstacle distance; dsa f refers to the safety distance between the robot
and the obstacle. The idea behind the collision penalty, essentially a negative reward, is that when the
distance between the robot and the obstacle is less than the safe distance, the robot will be at the risk of
colliding with another object and failing in the task.
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Non-terminal rewards include rewards for safe orientation and closer distance to the target and
penalties for collision danger and time consumption. Their equations are as follows:

rsori = 0.002
rstep = 0.001

rdang = η ∗ 2ζdmin

rd_gol = λ(dtart−1 − dtart)

 (7)

Rewards for safe orientation denote that a smaller reward is gained when the minimum obstacle
distance in the forward direction of the robot is greater than a given value. The design of this reward
not only further ensures the safety of the navigation process, but also helps the robot to escape from
the local minima trap. Rewards for closer distance to the target denote that when the robot gets closer
to the target, it obtains a positive reward, otherwise obtains a negative reward. λ is a parameter used
to control the strength of this reward.

Additionally, when the robot is closer to the obstacle, it will get more negative rewards, known as
danger penalties. The reward signal can provide the robot with strong safety awareness. Time penalty
denotes that during the training process, the robot receives a smaller negative reward at every step.
This reward can encourage the robot to reach the destination in less time. In addition, hyper-parameters
of reward function slightly change as the difficulty of the training task increases.

3.3.3. A3C Method

In DRL, V(s) refers to the long-term expected cumulative reward starting from the state s, which is
usually used to evaluate the state s. Q(s, a) denotes the long-term expected cumulative reward starting
from executing action a in state s. Π(s, a) refers to the probability of executing action a under state
s [31].

In this paper, we improve A3C algorithm to solve the proposed navigation problem for two
reasons: (1) compared with value-based DRL methods such as Deep Q-Network (DQN) [32] and its
various improved versions [33,34], A3C can deal with continuous action space and generate excellent
policies; (2) compared with other policy-based DRL methods such as DDPG and Trust Region Policy
Optimization (TRPO) [35], A3C consumes less GPU computation resources and training time. Besides,
it is convenient to debug and optimize A3C method thanks to its clear and elegant structure.

Before proposing A3C, experience replay [32] was used to solve the non-convergence problem
of combining deep neural network with traditional off-policy Reinforcement Learning (RL) methods.
The experience replay method stores samples collected from interactions between the agent and the
environment in the experience memory unit, and then randomly sample training data. However,
this method is not suitable for on-policy RL methods, because samples used to train policies must
be generated by this policy in this kind of methods. To combine on-policy RL methods with deep
neural networks, Mnih et al. [13] proposed a simple lightweight framework that uses asynchronous
gradient descent to optimize neural network controllers. The framework can be applied to the
traditional on-policy Reinforcement Learning (RL) algorithm, actor-critic, known as A3C for short.
In contrast to the experience replay method, the asynchronous framework reduces the correlation
between training samples by asynchronously executing multiple agents simultaneously in multiple
instances of the environment.

As shown in Figure 3, the core idea of A3C algorithm is to asynchronously execute multiple replicas
of the agent in multiple environmental instances. During the training process, each of them interacts
with its own environmental instance, collects different training samples, calculates the network’s
gradient, uploads the gradient to update the global network, and finally downloads the latest network
to the local. Please note that the master agent’s global network cannot be updated by multiple agent
replicas’ uploaded gradients at the same time.
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Consistent with the network design of the AC algorithm, A3C uses the actor network and the critic
network to parameterize the policy function Π(at

∣∣∣st;θp) and the value function V(st;θv), respectively.
Each agent replica calculates gradients of actor and critic networks in every fixed step or at the end of
the episode, and then uploads gradients asynchronously to update the global network. The gradient
calculation formula of the critic network is as follows:

dθv = ∂(A(st;θv))
2/∂θv (8)

where A(st;θv) denotes an estimate of the advantage function given by:

A(st;θv) =
∑k−1

i=0
γirt+i + γkV(st+k;θv) −V(st;θv) (9)

where γ is the discount factor and k is the difference between the length of the sample sequence and
the index of the current sample (coded from zero).

The gradient calculation equation of the actor network is as follows:

dθp = ∇θp logΠ
(
at
∣∣∣st;θp

)
A(st;θv) + β∇θpH

(
Π

(
st;θp

))
(10)

where H is the entropy of the policy Π. The hyper-parameter β controls the strength of the entropy
regularization term. Adding entropy to the process of updating the policy function’s gradient can
improve the agent’s exploration capability and prevent policies from converging to the local optimal
solution [13].

3.3.4. MK-A3C Method

Directly applying A3C to solve navigation problems in unknown dynamic environments faces
challenges of sparse rewards and incomplete states. In Section 3.3.1, to solve the problem of
non-convergence policies caused by sparse reward, we use reward shaping to construct reward
functions with domain knowledge. In this section, to further overcome above challenges, improvements
are made on A3C algorithm to: (1) construct a memory network architecture based on GRU; (2) and
build a training task architecture based on transfer learning.

Firstly, the GRU-based memory network architecture can avoid being trapped in local minima
caused by partial observability of environments. A3C is used to solve MDPs, but MDPs can only describe
fully observable problems such as Go, Chess, etc. Therefore, a POMDP model is built to formally
describe the proposed problem. To solve the POMDP, this paper constructs a GRU-based memory
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network architecture. The recurrent neural network unit GRU is used as a function approximator of
the belief state Bs(ot), which takes abstract historical data, the current observation and last action as
input. As shown in Figure 4, the observation ot first is passed through two layers of Fully Connected
(FC) layers, and the numbers of their hidden units are 256 and 64, respectively. Then, the GRU layer
takes them as input that are extracted from 64 dimensions of observation features, the 32 dimensions
of the last hidden state of the GRU and the two dimensions of the last action. The number of hidden
units of the GRU layer is 32. The output layer is divided into two streams. One stream uses a FC
layer to output the expectation of the Gaussian distribution of the action space, and the other stream
outputs the variance. Instead of directly outputting actions, constructing the action distribution can
improve the randomness of the action selection in the training process and increase explorations in
unknown environments.Sensors 2019, 19, x FOR PEER REVIEW 10 of 17 
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Figure 4. The structure of actor network in MK-A3C. Ot denotes the current observation. Ht−1 is the
last hidden states of GRU layer. At−1 denotes last action. µ denotes expectation of the output action
probability distribution, and σ denotes variance. The structure of critic network is similar to that of
actor network, but replaces two streams of the output layer of the actor network with one stream and
no activation function.

In the proposed network, the first two FC layers are used to extract features from the current
observation. The GRU layer with recurrent mechanism is used to approximate the belief state by
integrating features of the current observation with abstract historical trajectories. Finally, a FC
layer is used to output the action distribution. The key to realizing memory and inference is to
use the last hidden state of GRU layer as part of the current input of GRU layer, which means
that GRU layer can use the historical trajectory as input to infer the current complete state (i.e.,
inputt

gru = outputt−1
gru + at−1 + outputt

f c_2, or inputt
gru = f (ot, at−1, ot−1, . . . , o0)).

Secondly, although reward shaping is used to introduce domain knowledge into the reward
function, it is still difficult for the randomly initialized policy to collect valid samples in complex
navigation tasks. To solve this problem, a training task architecture is constructed by transfer learning
which can realize the migration of knowledge between different learning tasks. Specifically, this paper
uses the curriculum learning method to build the architecture of training tasks whose complexity
gradually increases. Curriculum learning [36] is a method that gradually increases the complexity of
training samples to accelerate the training process. Although the method was originally proposed
to solve problems of supervised learning, this method can also be applied to solve the challenge of
sparse reward encountered by RL approaches. Since the network structure contains the recurrent
network unit GRU, it is not appropriate to directly use the original curriculum learning. Inspired by
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reference [37], we propose an improved curriculum learning method to train GRU-based memory
network architecture, which divides the whole learning task into two parts. The complexity of the first
part increases with training episodes, while the complexity of the second part is randomly determined,
but the minimum value of its complexity is greater than the complexity of the first part. In this paper,
two indicators, i.e., the number of moving obstacles and the initial Euclidean distance between the
robot and the destination, are used to quantify the complexity of the learning task. Key parameters of
the first part of learning tasks are presented in Table 1.

Table 1. The first part of learning task based on transfer learning.

Training Episodes Distance Number of Obstacles

3000 3 1
4000 5 2
5000 9 2
3000 13 2

In conclusion, MK-A3C solves problems of incomplete states and sparse reward by memory
mechanism and domain knowledge, which can navigate the non-holonomic robots in unknown
dynamic environments.

4. Experiments and Results

To verify the effectiveness of the MK-A3C algorithm, we implement mentioned improved
components including the GRU-based memory network architecture, the shaped reward function
with domain knowledge and the transfer learning-based training task architecture. To evaluate
the performance of MK-A3C, we test it in unknown dynamic environments with moving obstacles.
The motion pattern of the moving obstacles is the uniform linear motion, imitating common human
movement behaviors.

In the simulation environment, numerical methods are used to calculate trajectories of the robot
by kinetic equations. Due to limitations of the hardware platform, the step of simulation time is set as
0.1 s by considering both efficiencies of calculation and accuracies of results.

The hyper-parameters of MK-A3C are described as follows: the learning rates of actor network
and critic network are 0.00003 and 0.0003, respectively. The unrolling step is 10. The discount factor
γ is 0.99. The goal tolerance distance is 0.7. In the training phase, the action selection interval is 2 s,
while in the test phase, it is 1 s.

Experiments are carried out on a machine with 3.4-GHz Intel Core i7-6700 CPU and 16 GB of RAM.

4.1. Training Environment Settings

As shown in Figure 5, the training environment is a complex environment filled with long corridors
and dead corners, the size of which is 20 by 20. In each episode, the starting point is randomly sampled
from the lower-left corner of the map, and the goal point is randomly initialized within a certain range
from the starting point. The initial motion states of moving obstacles are also randomly initialized in
each episode. The range of velocities of moving obstacles is [0.06, 0.08]. To increase the difficultly of
navigation problem, the initial directions of moving obstacles are roughly toward the robot. If moving
obstacles reach the border of the map or collide with static obstacles, they will be initialized again.
When the robot reaches the goal or collides with obstacles, the current episode ends and the new
episode begins.
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4.2. Evaluation of MK-A3C

To verify the effectiveness of the GRU-based memory network, we compare MK-A3C with A3C-R.
A3C-R replaces the GRU layer in MK-A3C with a FC layer and removes the input of last action and
abstract history data. The reward function and the training task architecture of A3C-R are consistent
with MK-A3C. The value function V(s) refers to the total long-term expected discount rewards starting
from state s, which can be used to reflect the performance of the learned policy. The success rate
denotes the probability that the robot safely reaches the goal point in the nearest 1000 episodes.

As shown in Figure 6a, when the number of episodes is less than 3000, the performance of
A3C-R is slightly better than that of MK-A3C. It shows that the A3C-R can handle simple navigation
tasks well, and the learning efficiency of GRU-based memory network is lower than that of FC-based
networks. When they collect experience from more episodes, until 12,000, the performance of MK-A3C
is slightly better than that of A3C-R, and trends showed by the two curves are similar. When the
number of episode is greater than 12,000, MK-A3C can have more successful navigation instances
than its counterpart. This proves that the reactive navigation policies generated by A3C-R cannot deal
with complex navigation tasks by only considering the current observation, while MK-A3C estimates
hidden environmental states by combining historical trajectories and the current observation and is
capable of finding more reasonable navigation policies. In addition, the training task architecture based
on transfer learning is also more suitable to train the GRU-based network. In Figure 6b, their trends of
V-value data in the training process are the same as that of success rate curves, which further proves
the previous conclusions.

To evaluate the validity of the domain knowledge-based reward function constructed by reward
shaping, we remove the non-terminal rewards from MK-A3C’s reward function. However, MK-A3C
without non-terminal rewards cannot converge. MK-A3C without the proposed training architecture
cannot converge to useful policies, which demonstrates that the transfer learning-based training task
architecture is necessary for MK-A3C to solve navigation in unknown environments. In conclusion,
experiments on the reward function and the training task architecture show that improvements to
these two components can solve the problem of sparse reward by increasing the density of reward
signals and improving learning efficiencies.
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Figure 6. The performance of our method MK-A3C and A3C-R in the training phase. (a) The orange
and black lines denote success rates of A3C-R and MK-A3C, respectively; (b) The light orange and gray
lines represent data of V-value, and the overstriking orange and black lines denote the mean V-value
of the last 1000 episodes.

4.3. Performance on Unknown Dynamic Environments

In this section, to fully evaluate performance of the proposed method, we design more dynamic
testing environments than that used for training, and their topologies are also very different. Specifically,
the distributions of traversable areas are different among testing environments. The shapes and positions
of static obstacles are randomly chosen. Besides, starting points are randomly sampled from the
lower-left corner of the environment, and goal points are randomly distributed in the environment.

To increase dynamics of testing environments, we add disturbance in the positions, orientations
and velocities of moving obstacles. The moving obstacles are randomly distributed in environments
and their orientations are randomly selected from 0 to 360 degrees. The velocities are randomly chosen
from 0.06 to 0.08. The uniform linear motion is the motion pattern of moving obstacles. There are five
moving obstacles in the testing environments, which is more than that in the training phase.

The performance of the MK-A3C is evaluated on tasks of navigation in unknown dynamic
environments. As shown in Figure 7, the MK-A3Cbased motion controller is capable of implementing
efficient and safe navigation in unknown challenging environments with moving obstacles. Besides,
navigation policies generated by MK-A3C have powerful generalization capabilities, and can adapt to
new unknown environments without retraining. Since A3C-R cannot complete all difficult examples
in Figure 7, we do not present paths generated by A3C-R.
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Figure 7. Examples of the robot completing one navigation tasks in the training and testing environments.
The light purple circle denotes the starting point and the red pentagram denotes the goal point. The
dark green lines are the trajectories generated by MK-A3C. For clear presentation, we do not show
trajectories of moving obstacles. (a) Training Environment; (b) Testing Environment 1; (c) Testing
Environment 2; (d) Testing Environment 3.

As shown in Figure 8a, MK-A3C achieves success rates of over 62.4% in all testing environments,
whose highest success rate is 65.6% in testing environment 2. However, the success rates of A3C-R
are lower than MK-A3C in all environments, especially in testing environment 1 only reaching
35.4%. Given that A3C-R plans motion behaviors only based on the current observation and ignores
hidden states of the environment, it is difficult for A3C-R to deal with complex terrains and moving
obstacles. Comparatively, MK-A3C integrates historical trajectories within a certain length with the
current observation to estimate the complete environmental state by the GRU-based memory network,
which can avoid local minima areas and handle moving obstacles. In Figure 8b,c, compared with
A3C-R, navigation policies generated by MK-A3C require longer path lengths and more time to
complete navigation tasks, which shows that the robot controlled by MK-A3C are more cautious about
unknown environments.
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Figure 8. 1000 navigation tasks are generated in each testing environments. (a) Success rate denotes the
probability of successfully arriving at the destination; (b) Average path length denotes the mean path
lengths for all successful navigation; (c) Average execution time denotes the average value of execution
time for all successful navigation.

5. Conclusions

In this paper, we propose a novel DRL algorithm called MK-A3C, which can navigate the
non-holonomic robot in unknown and complex environments with moving obstacles. To solve
challenges of partially observable states and sparse reward, MK-A3C makes improvements to the
original A3C with memory mechanism, domain knowledge and transfer learning. Firstly, MK-A3C
takes the time dimension into consideration, and constructs a GRU-based memory network architecture
to strength the temporal reasoning ability of the robot. Additionally, robots with certain memory ability
endowed by MK-A3C can avoid local minima traps by estimating the environmental model. Secondly,
MK-A3C combines the domain knowledge-based reward function and the transfer learning-based
training task architecture, which can solve non-convergence problem for policies caused by sparse
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reward. These improvements of MK-A3C enable controlled robots to efficiently navigate in unknown
complex environments, meanwhile satisfying kinetic constraints and dealing with moving obstacles.

In the simulation experiment, first, the effectiveness of improved components of MK-A3C is
verified by ablation study. These experimental results show that the GRU-based memory network
can improve the performance in complex navigation tasks. The domain knowledge-based reward
function and the transfer learning-based learning task architecture are essential to train useful policies.
Second, the performance of MK-A3C is evaluated in unknown challenging environments with moving
obstacles. Compared with A3C-R which has no memory mechanism with the same other components
as MK-A3C, our method can navigate the robot in new unknown environments with high success rates.

In future work, we will consider more complex environments. Specifically, delayed actions,
irregular moving obstacles and the like can be added into existing environments, which can realistically
simulate a real world. In addition, this paper uses the domain knowledge-based reward function
to overcome negative effects of sparse rewards, but it is time-consuming to adjust parameters of the
reward function and the design of this kind reward function depends on subjective experience. It is
promising to use hierarchical reinforcement learning [38], auxiliary tasks [14] and intrinsic rewards [26]
to replace domain knowledge-based reward functions, which can avoid heavy work of designing
reward function and further improve the training efficiency.
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