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ABSTRACT
Xeno-miRNAs are microRNAs originating from exogenous species detected in host
biofluids. A growingnumber of studies have suggested thatmany of these xeno-miRNAs
may be involved in cross-species interactions and manipulations. To date, hundreds of
xeno-miRNAs have been reported in different hosts at various abundance levels. Based
on computational predictions, many more miRNAs could be potentially transferred
to human circulation system. There is a clear need for bioinformatics resources
and tools dedicated to xeno-miRNA annotations and their potential functions. To
address this need, we have systematically curated xeno-miRNAs frommultiple sources,
performed target predictions using well-established algorithms, and developed a
user-friendly web-based tool—Xeno-miRNet—to allow researchers to search and
explore xeno-miRNAs and their potential targets within different host species. Xeno-
miRNet currently contains 1,702 (including both detected and predicted) xeno-
miRNAs from 54 species and 98,053 potential gene targets in six hosts. The web
application is freely available at http://xeno.mirnet.ca.
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INTRODUCTION
MicroRNAs (miRNAs) are ∼22nt non-coding small RNAs mediating post-transcriptional
gene silencing by binding to their mRNA targets (Bartel, 2004). Since its discovery, miRNA
has been shown to be involved in many biological processes including cell proliferation,
cell differentiation, cell migration, disease initiation, and disease progression (Ma, Teruya-
Feldstein & Weinberg, 2007; Png et al., 2012; Tay et al., 2008). Recent years have witnessed
a growing interest in investigating the potential roles of xeno-miRNAs (miRNAs that have
been detected in host biofluids, but originating from different species) in cross-species
communications. For instance, studies on helminth infections have found that miRNAs
encapsulated in exosomes secreted by those parasites were able to modulate host imMune
responses (Buck et al., 2014; Zamanian et al., 2015). It has been shown that miRNAs
encoded by Epstein-Barr virus (EBV) could deliver immunomodulatory effect via targeted
suppression of key host genes (Xia et al., 2008). Identified in human sera, a plant miRNA
was shown to be able to suppress the proliferation of breast cancer cells (Chin et al., 2016).
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Moreover, a recent study showed that miRNAs secreted by host gut epithelial cells were
able to modulate the growth of gut microbiota (Liu et al., 2016). Despite the current
controversies regarding xeno-miRNAs from dietary intake (Bagci & Allmer, 2016; Chen,
Zen & Zhang, 2013; Dickinson et al., 2013; Kang et al., 2017; Tosar et al., 2014; Witwer &
Halushka, 2016), there have been increasing interests to understand the roles of these
xeno-miRNAs due to their potentials for translational applications.

Most of the current bioinformatics resources for miRNA studies were developed to help
understand functions of miRNAs within the same organisms (Fan et al., 2016; Kozomara
& Griffiths-Jones, 2014; Lu et al., 2012; Ru et al., 2014; Vlachos et al., 2015). Available tools
for cross-species interactions focused primarily on host-virus interactions (Elefant et al.,
2011; Hsu et al., 2007; Kim et al., 2012; Li, Shiau & Lin, 2008; Qureshi et al., 2014; Shao
et al., 2015; Veksler-Lublinsky et al., 2010), although the situation has started to change
very recently (Mal, Aftabuddin & Kundu, 2018; Zhang, Resende & Cui, 2017; Zheng et al.,
2017). Here we introduce Xeno-miRNet, a web-based database and analytics platform that
integrates multiple xeno-miRNA resources to support target search, visual exploration
and functional analysis. The key features of xeno-miRNet include: (1) a comprehensive
collection of experimentally detected and computationally predicted xeno-miRNAs; (2)
systematic target predictions integrating two well-established algorithms; and (3) a fully-
featured network visual analytics system that allows users to browse, search and visually
explore the results in an intuitive manner.

MATERIALS AND METHODS
Xeno-miRNA collection and curation
We performed a comprehensive literature review and manually collected xeno-miRNA
entries from these papers and resources (Bernal et al., 2014; Buck et al., 2014; Chen et al.,
2011; Cheng et al., 2013; Chin et al., 2016; Fromm et al., 2015; Gottwein, 2012; Guo et al.,
2017; Hao et al., 2010; Tritten et al., 2014; Zamanian et al., 2015; Zhang et al., 2012; Zheng
et al., 2017; Zhu et al., 2016a; Zhu et al., 2016b). Xeno-miRNet currently contains 453
xeno-miRNAs from 54 species, detected in six host organisms (H. sapiens, M. musculus, S.
scrofa, G. gallus, D. melanogaster, and C. elegans). Based on the pairing information on host
and xeno-species, additional 1,249 xeno-miRNAs were predicted to have high potential to
be transferred to human circulation according to a recent computational analysis (Shu et
al., 2015).

Xeno-miRNA target prediction
To identify the putative target genes of these miRNAs in the corresponding host organisms,
we first downloaded the 3′ UTR sequences of six host organisms from the Ensembl database
and the xeno-miRNA sequences from the miRBase (Kozomara & Griffiths-Jones, 2014).
We then evaluated the available algorithms including PicTar (Krek et al., 2005), TargetScan
(Grimson et al., 2007), miRanda (Betel et al., 2010), microT (Maragkakis et al., 2009), and
TarPmiR (Ding, Li & Hu, 2016). For large-scale miRNA target prediction across many
different species, the candidate algorithms must be available for local installation, high-
performance, and accepting inputs from different species. Using a powerful workstation
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Table 1 The summary statistics for the xeno-miRNet database.

Hosts Tissue/
sources

Xeno-species Xeno-miRNAs
(detected/ predicted)

Potential
targets

Human 18 40 296/625 20,791
Mouse 18 27 83/418 19,430
Pig 4 14 20/116 12,537
Chicken 2 15 23/10 16,459
Fruit fly 6 6 16/44 12,445
C. elegans 8 6 15/36 16,391
Total 49 54 (unique) 1702 98,053

(128GRAMand 32CPU cores), wewere able to installmiRanda andTarPmiR and complete
the tasks within a week. The following cutoff values are used: score ≥ 140 for miRanda
and probability ≥0.5 for TarPmiR. Genes in their overlap were selected as potential targets
for a given host. The miRNA-target interaction data was stored into an SQLite database
(version 3.0) for fast retrieval. Table 1 shows the summary of the xeno-miRNA database.

Xeno-miRNet implementation
The web framework was developed based on the JavaServer Faces (JSF) technology
using the PrimeFaces (https://www.primefaces.org) component library (version 6.2).
As one miRNA can target more than one mRNAs and one mRNA can be targeted by
multiple miRNAs, we employed a network visualization approach to allow users to
intuitively explore the ‘‘multiple-to-multiple’’ relationships between xeno-miRNAs and
their potential gene targets. The JavaScript library sigma.js (http://www.sigmajs.org) was
used for high-performance network visualization. The functional enrichment analysis was
implemented using the R programming language (R Core Team, 2018). The entire system
is deployed on a Google Cloud server with 30GB of RAM and eight virtual CPUs with 2.6
GHz each.

RESULTS
Xeno-miRNet has been developed as a database and web-based analytical platform to
allow users to query and explore xeno-miRNAs and their potential gene targets in multiple
hosts. The website contains a comprehensive list of frequently asked questions (FAQs)
and tutorials to help users to start using the tool. There are three major steps—(1) data
preparation, (2) target searching and network customization, and (3) network visualization
and functional analytics. Figure 1 shows the overall flowchart of Xeno-miRNet. For each
step, a variety of options and procedures are provided to help users complete their tasks.

Data browsing and searching
From the home page, users can start with Browse or Search by clicking the respective button.
To perform Browse, users should first specify the host organism. Next, users should select
a source and a known xeno-species. For human host, there are 12 different tissue sources
and more than 50 xeno-species. To perform Search, users should enter a list xeno-miRNAs
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Figure 1 The workflow of Xeno-miRNet. The workflow consists of three steps—data preparation, target
search and customization, and the network visual analytics.

Full-size DOI: 10.7717/peerj.5650/fig-1

(miRBase ID or accession number) or a list of host target genes (Ensembl ID, Entrez ID,
or official gene symbol). In both modes, the next step is to choose whether to include the
predicted xeno-miRNAs. It is important to note that including predicted data may return
a large interaction result. To demonstrate the Search function, we will use an built-in
example ‘‘miRNA list1’’ containing five highly expressed S. japonicum exosome miRNAs
(sja-miR-125b, sja-miR-2162-3p, sja-miR-2b-5p, sja-miR-61, and sja-miR-10-5p) (Hao et
al., 2010; Zhu et al., 2016a) and explore their potential functions in human host. This list
is available as the first example when user click the ‘‘Try Examples’’ when users enter the
Search page.
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Figure 2 Network customization and visualization. (A) The Data Filter dialog shows how to keep tar-
get genes with miRanda scores at least 150. (B) The Network Tools support network refinement. Users can
choose corresponding node types and input the cutoff to perform the filtering. (C) The Network Visual-
ization page contains comprehensive features for network analysis and visualization.

Full-size DOI: 10.7717/peerj.5650/fig-2

Interaction table refinement
In the returned interaction table, each row represents a pair of xeno-miRNA and predicted
gene target with hyperlinks to their corresponding databases. The table also provides
relevant evidence (RNAseq read counts, miRanda and TarPmiR prediction scores) to allow
users to assess the quality of the interactions. TheData Filter function allows users to refine
the results based on certain matching criteria. For example, users can keep the interactions
which miRanda scores higher than 150 by choosing the Target Column asmiRanda, typing
in 150 in the frame, and selecting Keep (Fig. 2A). Users can save the original interaction
result into a CSV file. The filtered result will be used for network construction in the
next step.

Network creation and customization
The network builder page shows a summary table of the generated xeno-miRNA-target
interaction network(s), with the number of nodes and edges displayed for each network. A
large network (i.e., over 2,000 nodes) often leads to a ‘‘hairball’’ effect in which edges are
too densely connected to show any pattern. To overcome this issue, we have implemented
the Network Tools to allow users to filter nodes according to their topological measures
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(degree, betweenness, and shortest path) to keep those major hubs while still maintain
major connection patterns. The degree of a node is the total number of connections it has
to other nodes, and nodes with high degrees are considered important ‘‘hubs’’ in a network.
The betweenness value measures the number of the shortest path going through a node,
and nodes with high betweenness values are important ‘‘connectors’’ in a network. The
shortest path option is for reducing the number of edges within the network by keeping
only one shortest path between the hub nodes (Fig. 2B). These functions can work with
the previous Data Filter to allow users to have fine control over the resulting network for
visualization in the next step.

Network visual exploration
The overview of the network display is shown in Fig. 2C. The network visualization page is
composed of four main components—(1) the top tool menu, (2) the Node Explorer panel,
(3) the central network display panel, and (4) the Function Explorer panel. The top tool
menu allows users to specify which sub-network to display and to control the overall style
of the network. The Network option provides a drop-down menu listing all networks that
are available to display. Users can specify the currently displayed network and the default
is the largest one (‘‘xeno-mirnet1’’ in Fig. 2C). The Background option can be used to
switch between black and white background. The Layout option allows users to arrange
the node positions of the network. The Scope option allows users to control the nodes
being affected when users manually drag or highlight a single or a group of nodes. The
View Options allow users to modify the styles for nodes, edges, and highlighting. The Node
Explorer displays all the nodes in the current network. Nodes are identified by their IDs or
names, together with degree and betweenness values. Users can sort the table by clicking a
column header. Clicking a node will highlight it within the current network. In addition,
user can select multiple miRNAs and then highlight the gene targets shared by them using
theHighlight function. The central display area is for visual exploration of the network with
a vertical toolbar on the left. The color palette located at the top of the toolbar allows users
to define the current highlighting color for nodes selection. Users can perform zooming,
highlighting, drag-and-drop, or extracting the highlighted nodes using a mouse movement
in combination with functions in the toolbar. The button with a dotted rectangle icon
allows users to manually select a group of nodes. After clicking this icon, users can use
mouse to select a group of nodes of interest for further functional analysis. The Function
Explorer allows users to perform enrichment analysis to identify important functions
defined by gene ontology (GO), KEGG or Reactome pathways. Two algorithms have been
implemented - the hypergeometric tests and the empirical sampling as recently proposed
by Bleazard, Lamb & Griffiths-Jones (2015) for more robust miRNA target enrichment
analysis. The result is a list of functions ranked by their p-value. Users can highlight the
nodes involving in the pathway by simply clicking on the function name. Figure 2C shows
the result after performing the KEGG pathway analysis to the targets from the S. japonicum
exosome miRNAs. The ‘‘Protein processing in endoplasmic reticulum’’ (highlighted in
blue) and ‘‘Endocytosis’’ (highlighted with purple) were identified as significant pathways.
When a network is too complex, users can extract a module or sub-network containing
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Table 2 Comparison with other tools available for xeno-miRNA analysis. The ‘‘+’’ and ‘‘−’’ are used
to indicate if features are present or not. More ‘‘+’’ indicate better support.

Tools Xeno-miRNet Exo-miRExplorer IIKmTA miRDis

Hosts # 6 13 116 6
Xeno-species # 54 64 109 8
xeno-miRNA sources
Experimental detected + + − +

Predicted + − + −

Input data
miRNAs + + + +

Targets + − − -
Expression data − − − +

Result presentation
Interaction table + − + −

Network visualization +++ − − −

Enrichment analysis
Hypergeometric tests + − − −

Empirical sampling + − − −

Notes.
Xeno-miRNet: http://xeno.mirnet.ca.
Exo-miRExplorer: http://rna.sysu.edu.cn/exomiRDB/.
IIKmTA: http://www.bioinformatics.org/iikmta/.
miRDis: http://sbbi.unl.edu/miRDis/index.php.

only the nodes of interest by using the Extract button on the central display toolbar (the
bottom one). The extracted module will be listed as ‘‘module1’’ in the Network option
on the top toolbar and the sub-network will be displayed in the center viewer. Users can
perform further customization for the sub-network.

DISCUSSION
To address the growing bioinformatics needs for xeno-miRNA research, several tools have
been developed recently. For instance, Exo-miRExplorer is a database curating exogenous
miRNAs detected from high-throughput small RNA sequencing experiments (Zheng et
al., 2017); miRDis is a web service that supports discovery and annotation of exogenous
miRNAs from small RNA sequencing data (Zhang, Resende & Cui, 2017); IIKmTA is a new
tool that aims to support both inter- and intra- kingdom miRNA-target analysis (Mal,
Aftabuddin & Kundu, 2018). Table 2 compares the key features between Xeno-miRNet and
these recent tools. Based on the comparison, it is evident that Xeno-miRNet complements
other tools by providing comprehensive support for functional analysis and network-based
visual exploration. It is important to note that Xeno-miRNet currently focuses on the six
model organisms with extensive literature support. We intend to gradually expand the
range of host organisms based on user feedback and available data.
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CONCLUSIONS
A growing number of studies have suggested xeno-miRNAs as an important means in
cross-species interactions and communications. In this manuscript, we introduced Xeno-
miRNet, a user-friendly web-based tool developed through comprehensive curation of
xeno-miRNAs and systematic predictions of their potential gene targets in multiple hosts.
Xeno-miRNet offers a platform to allow researchers to intuitively explore both detected and
potential xeno-miRNAs within the context of miRNA-target gene interaction networks
to obtain functional insights. It is expected that Xeno-miRNet will help researchers to
generate and to refine hypotheses for more targeted experimental studies to accelerate
scientific discoveries and their potential translations.
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