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Abstract

Influenza pandemics can emerge unexpectedly and wreak global devastation. However,

each of the six pandemics since 1889 emerged in the Northern Hemisphere just after the flu

season, suggesting that pandemic timing may be predictable. Using a stochastic model fit to

seasonal flu surveillance data from the United States, we find that seasonal flu leaves a tran-

sient wake of heterosubtypic immunity that impedes the emergence of novel flu viruses.

This refractory period provides a simple explanation for not only the spring-summer timing

of historical pandemics, but also early increases in pandemic severity and multiple waves of

transmission. Thus, pandemic risk may be seasonal and predictable, with the accuracy of

pre-pandemic and real-time risk assessments hinging on reliable seasonal influenza surveil-

lance and precise estimates of the breadth and duration of heterosubtypic immunity.

Author summary

Influenza pandemics emerge via genomic reassortment between circulating human and

animal strains. The risk of pandemic emergence should therefore be high during the flu

season, when viruses are abundant and conditions favor transmission. However, the six

pandemics on record since 1889 all emerged in the Northern Hemisphere following the

flu season, suggesting that other forces may predictably constrain pandemic risk. We find

that seasonal influenza epidemics leave a wake of immunity that impedes pandemic emer-

gence. This transient refractory period is consistent with the spring-summer emergence,

multiple wave dynamics of recent pandemics, and may cause initial underestimation of

the viral transmission rate. These findings may improve pre-pandemic risk assessments

and real-time situational awareness, particularly as we gain greater insight into the extent

of immunity.

Introduction

Influenza pandemics have emerged regularly throughout the 20th and 21st centuries, resulting

in significant morbidity and mortality [1]. In preparation for future pandemics, public health
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agencies have enacted measures to expedite pandemic vaccine development [2]. However, the

manufacturing and distribution process is still expected to take several months, as occurred

following the initial identification of the 2009 H1N1 pandemic virus [2–6]. In the interim, the

primary pandemic control measures will include prophylaxis and treatment with antiviral

medications and social distancing measures [2, 7, 8]. Given the potential severity of disease

and rapid pace of emergence, advanced warning and early response are imperative. Thus, pub-

lic health agencies have established extensive surveillance networks in humans, livestock, and

wild bird populations [9–11]. While these systems are designed to identify potential pandemic

threats as infections arise, researchers have also conducted mutatagenesis experiments to iden-

tify upstream evolutionary risks, that is, potential pathways toward human infectivity and viru-

lence [12, 13]. However, the utility of such “gain-of-function” experiments has been disputed,

particularly given the risks associated with handling highly virulent influenza viruses [14].

While public health agencies cannot yet anticipate the timing and location of the next pan-

demic, past pandemics may provide insight into spatiotemporal trends in risk. All recent pan-

demics emerged in the Northern Hemisphere in the spring and summer months (Fig 1):

March (1918), April (1957, 2009), May (1889, 1977), and July (1968), though the 1977 pan-

demic virus was highly similar to a previously circulating virus, and thus thought to have

emerged via accidental release from a laboratory [15, 16]. The 1889, 1977 and 1968 pandemics

produced single epidemic waves, while the 1918, 1957, and 2009 pandemics spread in two

waves–a relatively short spring-summer wave followed by a more extensive fall wave [17–26].

These pandemics also varied in severity, as measured by case fatality rates, with 1918 far more

severe than the others [27, 28].

Fig 1. Historical pandemics emerged at the tail-end of flu seasons. Gray curves show the 1997-2015 flu seasons in the US, excluding the 2009

H1N1 pandemic, as estimated by the CDC’s ILINet surveillance system [29]. Vertical dashed lines indicate emergence week of historical pandemics in

their source populations, defined as the first reported outbreak of severe influenza preceding the initial pandemic wave. These estimates were

obtained from: 1889 [17], 1918 [18, 19], 1957 [20, 21], 1968 [22, 23], and 1977 [24]. To be consistent, we date the emergence of the 2009 pandemic

according to the first significant outbreak preceding the initial wave, rather than the earlier outbreaks in rural Mexico that were identified only in

retrospect [30].

https://doi.org/10.1371/journal.pcbi.1005749.g001
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The spring and summer emergence of the six recent pandemics seems more than just a

coincidence (Multinomial test; p< 0.05), but the sample is quite small and derived from

imperfect historical data. If, indeed, pandemic risk is seasonal, there are several plausible driv-

ers. Two factors might favor pandemic emergence during the typical flu season. First, the

socio-environmental conditions thought to promote seasonal influenza transmission (e.g.,
humidity and school calendar) might also favor pandemic transmission during the winter

months [31–33]. Second, pandemic emergence is often preceded by viral reassortment in

hosts co-infected by a seasonal influenza virus and a novel virus, which should become more

likely as the prevalence of seasonal flu increases [34–36]. On the other hand, transient cross-

immunity from seasonal influenza infections may impede infection by novel viruses during

the flu season. Together, these counterbalancing factors may produce a tight and predictable

window for pandemic emergence.

Viruses of a common subtype (e.g. H3N2) are known to compete via homosubtypic immu-

nity, producing stereotypical single branch influenza phylogenies [37–41]. However, the extent

and mechanisms of competition among viruses of differing subtypes (e.g. a resident seasonal

virus and a novel pandemic virus) via heterosubtypic immunity are not fully understood [34,

42–48]. A first childhood influenza infection may provide lifelong heterosubtypic immunity

against subtypes within the same phylogenetic group (Group 1 includes H1, H2, and H5;

Group 2 includes H3 and H7) [34, 37, 48–52]. In addition, any childhood or adulthood influ-

enza infection may provide temporary, generalized heterosubtypic protection against other

subtypes, lasting from a week to several months [44, 47, 53–56]. This is perhaps mediated by

cells surviving influenza infection that exhibit an increased antiviral response and naturally

turnover within a short period of time [53]. Immunity may not fully prevent infection, but

individuals infected within this period experience reduced viral shedding, disease severity, and

infection durations, likely reducing subsequent spread of the disease [45, 47, 55, 57].

Heterosubtypic immunity among influenza viruses would naturally lead to competition

between subtypes, with the strength of the competition determined by the magnitude and

duration of the immune response. Even if heterosubtypic immunity were short-lived, seasonal

influenza may temporarily impede the emergence novel influenza subtypes. If a pandemic

virus manages to emerge during this so-called refractory period, it would likely start slow and

accelerate as residual immunity wanes.

Here, we characterize the impact of seasonal influenza on both the likelihood and magni-

tude of pandemic emergence events, mediated by transient heterosubtypic immunity following

infection, and then integrate environmental constraints on flu transmission to estimate the

seasonality of pandemic emergence risk. We fit two mathematical models to historical influ-

enza data–one that assumes a homogeneous population and another that captures realistic het-

erogeneity in contact patterns–and simulate the introduction of novel influenza virus

throughout the influenza season. We focus our analysis on the 2008-2009 seasonal epidemic,

since it directly preceded the 2009 pandemic; for comparison, we also analyzed the larger

2003-2004 season (S4, S5 and S6 Figs). As expected, the risk of pandemic emergence declines

in the wake of seasonal influenza, as does the effective reproduction number (early transmis-

sion rate) of any emerging pandemic. The seasonality of pandemic risk depends critically on

the duration of immunity and the structure of the host population.

Materials and methods

We developed a stochastic two-strain influenza transmission model that incorporates contact

network structure, heterosubtypic immunity, and new estimates of the seasonal flu reproduc-

tion number to investigate the dynamics of pandemic emergence risk. We simulated

Seasonality in risk of pandemic influenza emergence
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thousands of novel pandemic virus introductions to estimate the changing probability of pan-

demic emergence and the Reff upon emergence, as the flu seasons unfold.

Two-strain influenza transmission model

We included short-term heterosubtypic immunity using a two-strain SEIPR (Susceptible-

Exposed-Infectious-Protected-Recovered) network model similar to [58] (S1 Fig). All individ-

uals are initially susceptible to both seasonal and pandemic influenza. Upon infection with one

strain, individuals progress through the Exposed and Infectious classes; upon recovery, they

enter a short period of complete protection from infection by the other strain, after which they

regain full susceptibility to that strain. Our modeling framework does not allow simultaneous

infection (co-infection) by both subtypes, as co-infection is thought to be relatively infrequent

during concurrent epidemics [59]. Close sequential infections can occur in the model, as some

individuals transition through the protected class almost immediately (S2 Fig). We modeled

single influenza seasons, and thus assumed that recovered individuals are fully and perma-

nently immune to their infecting strain, that there are no births or deaths, and that the network

structure does not change over the course of a single simulation.

Infectious nodes infect susceptible neighbors at a per contact rate of βi, where i 2 {seasonal,

pandemic} indicates strain. We estimate βseasonal by fitting a seasonal transmission model to

recent flu season data (see data and model fitting section), and consider three transmission

rate scenarios for the pandemic virus (1) equal transmissibility (βpandemic = βseasonal), (2) lower

transmissibility (βpandemic < βseasonal), and (3) higher transmissibility (βpandemic > βseasonal).

We assume that durations of the exposed, infectious, and recovered periods are exponen-

tially distributed. Upon infection by either strain, individuals instantaneously enter the

Exposed class, then become infectious stochastically, at rate Z ¼ 1

2:26
days� 1

, recover from infec-

tion at rate g ¼ 1

3:38
days� 1

, and leave the heterosubtypic immune period at rate a ¼ 1

42
days� 1

,

based on published estimates [53, 60]. We considered a range of heterosubtypic immune peri-

ods (S3 Fig), and herein report results based on a 42-day duration.

Adding seasonal forcing. We implemented seasonal forcing through a traditional humid-

ity-forced influenza model estimating R0 through time (R0(t)) [61]:

R0ðtÞ ¼ expð� 180qðtÞ þ lnðR0max � R0minÞÞ þ R0min

Where q(t) is the specific humidity at time t. We set R0min = 0.8, as it is the lower bound esti-

mate from [61], and solve for R0max through model fitting. We used eq 3 to convert between R0

and β, obtaining β(t) for model fitting and simulation purposes. We used the daily average spe-

cific humidity for the United States from 2000-2016 available from NOAA [62].

Simulation implementation

We simulated two-strain influenza epidemics using a stochastic Gillespie next-reaction algo-

rithm built from EpiFire, a C++ network epidemic simulation library [63, 64]. We generated

random contact networks with specified degree distributions using a configuration model

algorithm [64]. For purposes of comparison, we assume that the homogeneous and empirical

networks share the same mean degree of hki, with all nodes in the homogeneous network hav-

ing degree exactly equal to hki and the degrees in the empirical network randomly assigned

according to an exponential distribution with rate 1

hki. Based on published estimates for a large

urban network, we assume hki = 16 [65].

For each scenario—combination of contact network, pandemic introduction time,

βpandemic, and immune period α—we ran 5,000 simulations. Each was seeded by infecting five
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randomly chosen individuals with the seasonal virus; at the designated introduction time, a

single randomly chosen susceptible individual was infected by the pandemic virus. We termi-

nated the simulations once no individuals remained Exposed or Infectious. For each simula-

tion we tracked the number of nodes in each class (S1 Fig) and the average excess degree in the
susceptible portion of the network, which is defined as follows. Consider only nodes currently

susceptible to pandemic infection; call edges connecting such nodes susceptible edges and the

number of such edges emanating from a susceptible node, the susceptible degree of that node.

Imagine choosing a random susceptible edge and following it to one of its nodes. The average

excess degree is the expected number of susceptible edges emanating from that susceptible

node (other than the one along which we arrived), and is given by
hk2

susceptiblei� hksusceptiblei

hksusceptiblei
, where

hksusceptiblei and hk2
susceptiblei are the average susceptible degree and average squared susceptible

degree in the network. Simulation source code can be accessed at https://github.com/sjfox/

EpiFire.

Data and model fitting

To estimate the seasonal flu transmission rate, we fit a simple deterministic, network-based,

ordinary differential equation (ODE) SEIR model of seasonal flu transmission to national

influenza data from the United States. We chose 2008-2009 as it preceded the 2009 pandemic

and 2003-2004 as a representative large season [29], and specifically analyzed weeks 1-15 of

2009 and week 45 of 2003 through week 3 of 2004. We estimated seasonal influenza incidence

(denoted ILI+) throughout these periods by multiplying the CDC’s ILINet estimates of influ-

enza activity by WHO public health lab estimates of percent positive flu tests [29], as suggested

by [66].

We implemented the Volz-Miller edge-based compartmental ODE model [67–69], which is

given by following equations:

SðtÞ ¼ cðyðtÞÞ

EðtÞ ¼ 1 � SðtÞ � IðtÞ � RðtÞ

_IðtÞ ¼ ZEðtÞ � gIðtÞ

_RðtÞ ¼ gIðtÞ

_�I ¼ Z y � �Sð0Þ
c
0
ðyÞ

c
0
ð1Þ
�

gð1 � yÞ

b
� �Rð0Þ

� �

� ðgþ bþ ZÞ�I

_y ¼ � b�I

ð1Þ

The system can be understood by considering a test individual, u, which is a random indi-

vidual in the network chosen at time, t = 0. θ is the overall probability that a given contact of u
has not transmitted to u, and ϕS, ϕE, ϕI, and ϕR are the probabilities that the contact has not

transmitted to u and is currently susceptible, exposed, infectious, or recovered, respectively. S,

E, I, and R denote the proportion of the population in each state, and the parameters β, η, and

γ correspond to the per contact rate of transmission, the rate of becoming infectious upon

exposure, and the recovery rate, respectively. P(k) describes the degree distribution and tells us

the probability a random individual has degree k in the network. It follows that the average

degree is given by hki = ∑k kP(k). S(k, 0) is the probability a random individual of degree k is
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initially susceptible, which leads to the probability generating function describing the propor-

tion of susceptible individuals in the population (ψ) as, ψ(x) = ∑k S(k, 0)P(k)xk, where x is the

probability a given contact of u has not transmitted to u.

We match the parameters in this model to our stochastic two-strain model, including the

disease progression parameters (γ and η), network structures and the initial introduction of

five infections in a population of 10,000 (that is, Ið0Þ ¼ �Ið0Þ ¼
5

10000
, ϕS(0) = 1 − ϕI(0), R =

ϕR(0) = ϕE(0) = 0, θ(0) = 1, and ϕI = ϕI(0)). We solved the system of equations numerically

using the deSolve package in R [70, 71].

To estimate both the per contact transmission rate, βseasonal, and time of epidemic introduc-

tion for each network, we minimized the sum of the squared errors between the 2008-2009 ILI
+ data and the incidence predictions from the ODE model, using the optim function in R [71].

Given that different network structures lead to different rates of epidemic growth, the flexible

epidemic start time allows tighter fitting of the models to the seasonal flu incidence data. For

the 2008-2009 season, we estimated the epidemic start date to be November 15th and Decem-

ber 18th, 2008 for the homogeneous and empirical networks, respectively [71].

Analytic approximations of emergence probability and effective R0

We derive mean field approximations of the emergence probabilities and effective R0 using the

process outlined in [72], which we outline briefly here. The generating function for the num-

ber of infected nodes in the first generation of an outbreak is given by

f ðxÞ ¼ p0 þ p1x þ � � � þ pjxj þ � � �

where pj is the probability the index case infects j neighbors. More specifically,

pj ¼
X1

k¼j

PðkÞ
Z 1

0

Bi ðk; j;TÞPðTÞdT

with Bi(k, j, T) denoting the probability of j successful outcomes from k Bernoulli trials with

probability of success equal to the transmissibility, T, defined by the probability distribution P
(T). (The probability distribution for T is defined by the randomly drawn recovery and infec-

tious times in the Gillespie simulation.) A node of degree k that has just been infected has k − 1

possible neighbors to infect. The probability that this node infects j neighbors is given by

qj ¼
1

hki

X1

k¼jþ1

kPðkÞ
Z 1

0

Bi ðk � 1; j;TÞPðTÞdT

Similar to f(x), h(x) = ∑ qjxj is the generating function for the number of infections caused by a

non-index case, which leads to the equation

hðxÞ ¼
Z 1

0

PðTÞ
hki

X1

k¼1

½1þ Tðx � 1Þ�
k� 1kPðkÞdT

Ignoring finite size effects, the generating function for the number of infections g generations

after the initial infection is f(hg−1(x)) where hg−1(x) denotes composition of h with itself g − 1

times. The extinction probability is the probability that eventually there are 0 infections

limg!1 f(hg−1(0)). Setting x0 = limg!1 hg−1(0) we find that the emergence probability in a

naïve network is given by

P ¼ 1 � f ðx0Þ ð2Þ

Seasonality in risk of pandemic influenza emergence
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It also follows that the basic reproduction number (R0) is given by

R0 ¼ hTi
hk2i � hki
hki

ð3Þ

as originally shown in [73], where hTi is the average transmission probability. Under our con-

tinuous-time constant-rate assumptions, this is hTi ¼ b

bþg
.

Statistical analysis of simulated epidemics

For a given scenario, we restricted our analyses to simulations in which a seasonal epidemic

actually occurred (defined as outbreaks with cumulative incidence reaching at least 5% of the

population). We then estimated the pandemic emergence probability as the number of pan-

demic introductions that progressed into sustained outbreaks (infecting at least 5% of the pop-

ulation) divided by the number of simulations with seasonal epidemics of that scenario. We

approximated the emergence timing of the pandemic as the first day in which the daily inci-

dence was�5 individuals, as this was a good indicator for the beginning of the exponential

growth phase.

Each time a pandemic successfully emerged, we estimated its Reff by fitting the correspond-

ing (empirical or homogeneous) single strain ODE network model (defined by equations in 1)

to the simulated pandemic time series. The procedure is as described in the Data and model

fitting section, with two alterations: (1) we fix the introduction time to that specified by the

simulation scenario and only estimate the transmission rate, and (2) we fit the model to the

cumulative incidence of the pandemic virus. To then obtain an R0 estimate, we plugged the esti-

mated pandemic transmission rate and full degree distribution into eq 3.

During the refractory period, immunity in the population increases the transmissibility nec-

essary for a pandemic to invade the population. We use eq 3 to estimate this changing invasion

threshold; we let hk2i and hki reflect the current susceptible portion of the network, set R0 = 1,

and solve for T. For a given time point t and scenario, we calculated T for a single, prototypical

simulation and divided it by the comparable threshold in a completely susceptible population.

Importantly, this analysis assumes that the network susceptibility is frozen in time at the intro-

duction time, and does not take into account subsequent epidemic and pandemic dynamics.

Results

We fit two network models—an empirical model and a homogeneous model (roughly equiva-

lent to a simple mass action model)—to influenza data from the 2008-2009 season in the US

(Fig 2A), and estimated reproduction numbers (R0) of 1.8 and 1.4, respectively (Analogous

results for the larger 2003-2004 flu season are presented in Supplementary Material). Both esti-

mates are consistent with prior studies [26, 74], and their discrepancy highlights a potential

pitfall of simple epidemiological models. Given the observed heterogeneity in human social

behavior [65], the mass action models, which assume that all individuals have identical contact

rates, may underestimate epidemic potential. Using these estimates of R0, we simulate typical

seasonal influenza epidemics and estimate the evolving probability of pandemic emergence.

We assume an average 42-day period of complete heterosubtypic immunity upon recovery

from a seasonal flu infection (S2 Fig), which corresponds to the waning of generalized immu-

nity in a human club cell-like line [53] and lies in between other estimates [44, 47]. We provide

a sensitivity analysis with respect to the duration of immunity in the supplementary informa-

tion (S3 Fig).

Seasonality in risk of pandemic influenza emergence
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Fig 2. Seasonal epidemics produce a pandemic refractory period. A: Actual 2008-2009 epidemic curve (solid black line) and 200

stochastic simulations of seasonal epidemics for each network (green for empirical; purple for homogeneous), assuming transmission

parameters estimated from 2008-2009 data. B: The probability of pandemic emergence upon the introduction of a single infected

individual, assuming that the pandemic virus has the same transmission rate as the seasonal virus. Probability is estimated as the

proportion of introductions that subsequently infected at least 5% of the overall population out of the 5,000 simulations. Horizontal

dashed lines indicate the emergence probabilities in a completely susceptible population calculated with Eq 2. The pandemic

refractory periods (shaded regions) are expected to occur during and immediately following the seasonal epidemic peak. C:

Underestimation of pandemic R0. Assuming that the emerging pandemic has an R0 = 2.5 in a naïve population (dashed horizontal

line), we plot the median (points) and interquartile range of the measured Reff, for each introduction time and each network. For

example, if a pandemic with R0 = 2.5 emerged in March of 2009 and we did not account for population immunity, we would interpret the

Reff as the R0 and considerably underestimate the true transmission rate (R0� 2), regardless of our contact network assumptions.

https://doi.org/10.1371/journal.pcbi.1005749.g002
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Pandemic refractory period

Heterosubtypic immunity is expected to reduce pandemic emergence during the seasonal epi-

demic, with pandemic emergence probability reaching a minimum just after the epidemic

peak of the flu season and then quickly rebounding (Fig 2B). The length and intensity of this

pandemic refractory period should increase with the duration of heterosubtypic immunity,

with prolonged immunity leading to complete pandemic exclusion (S3 Fig).

The refractory period also depends on the transmissibility of the pandemic virus: the

greater the transmission rate, the more readily a pandemic will emerge with or without immu-

nological interference; the opposite is true for less transmissible viruses (S9 Fig). The refractory

effect is greater in the empirical (network) model than in the homogeneous model, suggesting

that mass action assumptions may lead to underestimation of viral interference and overesti-

mation of pandemic risk. Assuming that the pandemic virus has the same intrinsic transmis-

sion rate as the seasonal virus, the probability of pandemic emergence is reduced by 73% and

62% in the empirical and homogeneous models, respectively, at the base of the refractory

period, relative to comparable introductions in a completely susceptible population. Higher

transmission rates lead to smaller reductions (56% and 19% respectively), while less transmis-

sible viruses can be almost fully excluded (99% and 84% reductions respectively) (S9 Fig). The

2008-2009 influenza season was relatively mild; larger seasonal flu epidemics produce deeper

refractory periods, as illustrated for the 2003-2004 influenza season (S4, S5 and S6 Figs).

Underestimation of pandemic R0

For each simulated pandemic that successfully emerges, we estimate the effective R0 (Reff) of

the virus, the reproduction number of the disease in a population that is not fully susceptible.

Its magnitude depends on the extent of immunological interference by seasonal flu. Generally,

the Reff of the emerging pandemic virus decreases as the seasonal epidemic progresses towards

its peak, bottoming out slightly before the emergence probability reaches its minimum. How-

ever, this occurs slightly earlier and more precipitously in the empirical model than in the

homogeneous model (Fig 2C).

Whether or not a virus emerges depends on its intrinsic infectiousness and structure of the

susceptible portion of the population. During the refractory period, the susceptible population

is diminished, both in number and connectivity. At the peak of the refractory period in the

empirical network, we estimate that a introduced virus must be 1.16 times more infectious

(transmissible) to emerge, relative to one entering a completely susceptible population. If the

seasonal epidemics preceding the 1918 and 2009 pandemics were similar in timing and magni-

tude to our simulated epidemics, then we estimate that their intrinsic R0’s would have been

1.08–1.20 and 1.05–1.13 times larger, respectively, than their Reff’s as the first waves emerged.

Contact networks determine pandemic vulnerability

The different levels of pandemic risk observed in our two models stem from their underlying

contact networks. To illustrate this, we use nodes and edges to represent individuals and con-

tacts between individuals, respectively. The degree of a node is defined as the number of edges

connecting it to other nodes. The homogeneous model assumes that all individuals have the

same number of contacts; the empirical model assumes realistic variation in degree [65]. We

constrained the two models to have the same total number of nodes and empirically-derived

mean degree, and, consequently, the same total number of edges.

The susceptible portion of a network is the subset of individuals that are currently suscepti-

ble to pandemic infection and any connections among them (Fig 3, orange circles and lines).

(This is also known as the residual network [75].) The susceptible degree of a susceptible node is
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the number of contacts it has with other susceptibles. Upon infection by seasonal flu, individu-

als and their coincident edges leave the susceptible network, returning only when their hetero-

specific influenza immunity wanes. This dynamic wake of immunity depends on the

underlying network structure and, importantly, determines the population’s vulnerability to

pandemic emergence (Fig 3, grey nodes and edges).

As a disease spreads, the chance of a node becoming infected will depend on its degree. The

more contacts a node has, the higher its exposure risk. In a homogeneous network, chains of

transmission progress randomly; in a heterogeneous network, outbreaks hit the most con-

nected nodes earliest and hardest. Consider two emerging outbreaks–one in the empirical net-

work and another in the homogeneous network–that have reached the same cumulative

incidence. Although the susceptible networks will have identical numbers of susceptible nodes,

the empirical susceptible network will be much sparser (fewer edges) than the homogeneous

counterpart, and will thus be more refractory to pandemic invasion (Fig 3, middle panels).

In a randomly selected pair of simulations, the homogeneous network decays to an suscep-

tible network consisting of 71% of its original nodes and 43% of its original edges, before

rebounding (Fig 4A). In contrast, the empirical network maintains more nodes (78%) and

fewer edges (36%) at its most refractory moment, with the high degree nodes bearing the

brunt of the seasonal epidemic (Fig 4B and 4C).

Seasonal pandemic emergence timing

The above analyses assume that pandemic emergence is constrained solely by heterosubtypic

immunity, and do not consider the socio-environmental factors that shape seasonal flu

Fig 3. The evolving structure of the susceptible population as the flu season unfolds. For purposes of illustration, we present

caricatures of each model through time, assuming that the average degree is hki = 6 and that we repeatedly observe the same subset of

each population. Orange represents individuals susceptible to infection by the pandemic virus and the contacts between them; gray indicates

individuals who are currently or recently infected by the seasonal virus, and thus immune to pandemic infection. The empirical (top) and

homogeneous (bottom) networks experience different structural changes in pandemic susceptibility throughout the flu season. In January,

prior to the onset of flu season, both networks are fully susceptible. Just following the seasonal epidemic peak (March), both networks are at

the base of their refractory period, with many nodes resistant to the pandemic virus. Even with the same number of susceptible nodes, the

empirical network is more disrupted than the homogeneous network. Highly connected (hub) nodes are more vulnerable to seasonal

infection than less connected nodes and, once removed by immunity, critically disconnect the susceptible portion of network. After the

seasonal epidemic has subsided (June), short-term immunity has largely waned in both models, leaving them vulnerable to pandemic

invasion.

https://doi.org/10.1371/journal.pcbi.1005749.g003
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dynamics. When we incorporate humidity-forced seasonality into the model, we find that pan-

demics are most likely to emerge soon after the seasonal epidemic peak (Fig 5), with the timing

more constrained to the spring and early summer in the empirical network than in the homo-

geneous network. For both models, the most probable week of emergence falls within one

week of the actual 2009 pandemic emergence event. To assess the consistency of our models

with observed pandemics (five emerged in the spring and one emerged in the summer), we

conduct multinomial tests of the model-derived probabilities of emergence across each of the

four seasons. While the empirical and homogeneous models are consistent with recent history

(multinomial exact test p = 0.53 and p = 0.35, respectively), the simple null model in which

emergence risk is assumed to be constant throughout the year is not (p< 0.05). Although all

historic pandemics seem consistent with the model, we note that these estimates are based on

the 2008-2009 flu season and thus strictly pertain only to the 2009 pandemic. We speculate

that projections from the seasons preceding each of the other historical pandemics would be

similar and perhaps even better aligned with the emergence of the corresponding pandemic.

Earlier seasonal epidemics give rise to earlier risks of pandemic emergence (S6 Fig), and

extending the period of pandemic introduction from just the flu season to the entire year

Fig 4. Seasonal flu disconnects the susceptible portion of a population. A: For a single (typical) seasonal epidemic simulation, the number of

individuals susceptible to infection by a pandemic virus and the number of edges connecting two such individuals are plotted for each network (green for

empirical; purple for homogeneous), with each point representing a single time point over the course of the epidemic. Arrows indicate temporal

progression. For any given number of remaining susceptible individuals, the empirical model is always sparser than the homogeneous model (that is, it

has fewer contacts remaining between susceptibles). B: The distribution of degrees (number of contacts) assumed for the empirical model. The

homogeneous model assumes that all individuals have 16 contacts. C Snapshot of the susceptible portion of the empirical network at the base of the

refractory period (at the time point indicated in panel A by the box labeled ‘C’). Points indicate the percent of the nodes that are immune to pandemic

infection, across different levels of connectivity. (We bin degrees by 10; for example, the lowest bin includes individuals with 1 to 10 contacts). For

comparison, the horizontal dashed line indicates the overall proportion of individuals immunized in the network at the base of the refractory period. In

comparison to an individual with an average number of contacts, a highly connected individual will be more vulnerable to seasonal flu infection, and, once

infected and immunized, cause greater epidemiological disruption.

https://doi.org/10.1371/journal.pcbi.1005749.g004
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reduces the spring/summer emergence probability and renders the model predictions incon-

sistent with historic pandemic timing (S7 Fig (p< 0.05) and S8 Fig (p< 0.05)).

Discussion

The coincidental timing of recent pandemics may reflect multiple constraints, including envi-

ronmental and behavioral factors that shape influenza’s transmissibility (e.g. humidity, school

calendar, etc.), reassortment events mediated by co-infection, and immune-mediated competi-

tion between pandemic and established viruses [31–33, 44, 76]. On the one hand, we would

expect pandemics to emerge during the flu season, when socio-environmental conditions are

conducive to influenza transmission and co-infections are likely; on the other hand, those

would be the months of greatest competitive interference. These competing effects suggest that

the risk of pandemic emergence may be greatest at the tail of the flu season, when conditions

are still favorable and co-infections are possible, but competition is waning. Consider the fol-

lowing scenario. A novel virus is produced by co-infection mediated reassortment during the

heart of the influenza season. It initially stutters, hindered by widespread heterosubtypic

immunity, but does not completely disappear. With each new infection, emergence is possible

and increasingly probable, as heterosubtypic immunity dissipates. This is consistent with the

timing of all recent pandemics (Fig 1), most of which (all but 1977) were caused by livestock-

human reassortment viruses [34, 35, 76–78].

Pandemic emergence requires both the evolution of novel pandemic subtypes capable of

human-to-human transmission and the ability of such new viruses to spread once they have

appeared in humans. Our study focuses exclusively on the latter process, the success of new

human-transmissible influenza viruses facing dynamic short-term heterosubtypic immunity

resulting from seasonal influenza. Specifically, we have modeled a scenario in which

Fig 5. Seasonality further constrains pandemic emergence timing. Probability density for pandemic emergence timing for

pandemics that emerge during the seasonal influenza epidemic for the homogeneous (purple) and empirical (green) networks.

Pandemic emergence timing, the time in which the simulated pandemic begins rapid spread, is defined as the day the pandemic strain

incidence reaches five or more cases. Results are for a pandemic emerging during the 2008-2009 flu season with the same

transmission rate as the seasonal epidemic. Vertical lines indicate the timing of historic pandemics, with the solid line indicating the

timing of the 2009 pandemic and dashed lines indicating timing of others.

https://doi.org/10.1371/journal.pcbi.1005749.g005
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potentially pandemic viruses appear (starting with a single infection) with constant probability

during or following a typical Northern Hemisphere flu season. Individuals infected by seasonal

flu are assumed to enjoy a short period of immunity towards other influenza subtypes, includ-

ing the novel pandemic virus. Under reasonable assumptions regarding the duration of hetero-

subtypic immunity and human contact patterns, we characterize the changing risk of

pandemic emergence throughout the flu season and find a considerable refractory period that

is consistent with historical pandemic emergence events in the spring and summer months.

The rate of pandemic spread will depend on the time of emergence. Pandemics emerging

during the seasonal refractory period will initially grow slowly and accelerate as residual

immunity dissipates. Thus, the threat and pace of global expansion may far exceed projections

based on early estimates of the viral reproduction number (R0). In our model based on the

2008-2009 flu season, we estimate that, at the peak of the refractory period, naturally occurring

immunity will reduce the probability of pandemic emergence 73% and reduce the reproduc-

tion number of a successfully emerging virus by 30%. We assumed that all recovered individu-

als experience full protection during their short period of heterosubtypic immunity. If, for

example, heterosubtypic immunity is incomplete or fails to prevent subsequent spread, the

refractory effect may be diminished. Nonetheless, the qualitative results, including the timing

of the refractory period and differences between the two network models should still hold.

Our comparison between homogeneous and empirical contact networks suggests that,

while the refractory effect is robust, estimation of pandemic risk prior to and during emer-

gence events will be highly sensitive to statistical assumptions regarding population structure.

Several other studies have examined the impact of network structure on herd immunity fol-

lowing an epidemic or vaccination campaign, and similarly found that contact heterogeneity

amplifies the refractory effect [75, 79–81]. Conventional models, that ignore social heterogene-

ity, are likely to overestimate both the emergence risk during the refractory period and the

early transmission rate (R0) of an emerging pandemic virus. Given the simplicity and growing

flexibility of network methods, this further supports their scientific and public health utility

[67, 82, 83].

Pandemics often emerge in multiple waves [84], including a herald wave in the spring or

summer and a secondary wave the following fall or winter. These wave patterns are well docu-

mented for the 1918, 1957, and 2009 pandemics [25, 85–91]. Our results provide potential

insight into this phenomenon. The asynchronous forces of heterosubtypic herd immunity and

suppressive off-season conditions may constrain pandemic emergence to the immediate wake

of the flu season, exactly when lingering population-wide immunity is expected to dampen the

initial wave of pandemic transmission. In the months following, the limited herald wave runs

its course, residual seasonal immunity continues to decline, and socio-environmental condi-

tions slowly become more conducive to flu transmission, thereby setting the stage for a major

winter pandemic wave. Early estimates of pandemic R0 that do not properly account for under-

lying population immunity may substantially underestimate the magnitude of the second (fall

or winter) pandemic wave, as the Reff at the time of emergence may be considerably lower than

R0 in a fully susceptible population. Our analysis suggests that a pandemic emerging between

March and June may produce a secondary wave with an Reff that is 4–28% larger than the initial

Reff, depending on the duration of heterosubtypic immunity, the timing of emergence, and the

baseline transmissibility of the virus. Recent analyses of the 1918 and 2009 pandemic waves

found that the initial waves were 3.6% and 6.5% less transmissible than the secondary wave,

supporting our conclusions [61, 92]. This finding is broadly consistent with published estimates

for the reproduction numbers of primary and secondary pandemic waves, with the exception

of the 1918 pandemic in Denmark [26, 85]. This discrepancy may be attributable to poor data

or stem from local differences in the preceding flu season or population structure.
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Most historic pandemic viruses were likely created by recent livestock-human reassortment

events [34–36], with two possible exceptions. The 1977 pandemic was caused by a lab escapee,

and the 2009 pandemic evolved from a human-derived variant that circulated in swine for

years before the precipitating reassortment event, which may have occurred in livestock several

months or years prior to its 2009 emergence [35]. We have assumed that pandemic introduc-

tions will be constrained to the flu season for two reasons (Fig 5). First, the chance of a live-

stock-human reassortment event will depend on the prevalence of flu in both humans and

livestock, and thus increase as seasonal flu gains momentum. Second, flu prevalence in live-

stock is thought to mirror seasonal flu in humans [93, 94]. Thus, even viruses emerging

directly from livestock, without a precipitating human reassortment event, may be constrained

to the same months.

When we remove this assumption and introduce pandemic viruses throughout the year,

the plausible emergence times start earlier in the fall, before the seasonal flu epidemic takes

hold (S7 and S8 Figs). This broader emergence scenario is inconsistent with historical pan-

demics, given that none emerged in the fall just prior to a seasonal epidemic. While this does

not prove our seasonality assumptions, it suggests that there may be factors restricting emer-

gence events in the fall, such as the ones we have hypothesized, or that fall emergence simply

has not occurred, by chance alone, across the limited number of recent pandemics. Our study

was not designed to detect such seasonal constraints on pandemic emergence (rather we

assume them and analyze the consequences), but leaves this as an interesting open question

for future work. Interestingly, the broader emergence scenario may apply to the 1977 pan-

demic, which, unlike the other recent pandemics, did not emerge directly from influenza cir-

culating in livestocks or humans, as well as to risks associated with future gain-of-function

avian influenza experiments.

This approach can be readily applied to other retrospective or predictive global risk assess-

ments, using seasonal flu surveillance data at the relevant geographic and temporal scale [95,

96]. Our results suggest that Southern hemisphere pandemic risk will be greatest in September

and October following their respective flu season [97]. Tropical and subtropical regions, which

have low levels of sporadic flu transmission, seasonal patterns, or bimodal seasonality should

experience refractory periods in the wakes of their respective epidemics [98–102]. Estimating

spatiotemporal emergence risks will require data-driven models that consider local flu season-

ality and contact networks, both of which can vary greatly with climatic zone and human

developmental index. Such analyses can support pandemic planning, including the targeting

of surveillance systems for detecting emergence events around the globe [10, 103].

Our model makes several assumptions about the transmissibility of both seasonal and pan-

demic influenza viruses. We assume that the intrinsic transmission rates depend on humidity

(Fig 5), and do not explicitly consider other environmental and sociological factors that may

be important (e.g., school calendar) [33, 104]. Since we estimated pandemic emergence loca-

tions and dates based on reports of major outbreaks, our estimates may be biased towards

regions with high reporting rates or population densities. Our study is further limited by the

small number of pandemic emergence event; with five natural pandemics emerging in sub-

tropical and temperate climates, we lack the power to fit high resolution predictive model.

Instead, we used the North American 2008-2009 influenza season as a prototypical flu season

for exploring seasonal and immunological drivers of pandemic risk. The flu seasons preceding

the other 20th century pandemics likely varied in both timing and magnitude. Additional his-

torical data from those pandemics and their preceding seasons might enable more reliable spa-

tiotemporal estimates of pandemic emergence risk and the duration of cross-immunity.

Recent pandemics exhibited similar timing and geographic origins, having all emerged in

the Northern Hemisphere. Why this is so, and whether it suggests higher risk of future
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pandemic emergence in the Northern Hemisphere is yet unknown. Molecular analyses suggest

that seasonal flu diversity is seeded in the Northern Hemisphere (Southeast Asia) [41]. Fur-

thermore, human and livestock populations tend to have higher densities in the Northern

Hemisphere than the Southern Hemisphere [105, 106]. These two factors could suggest that

the Northern Hemisphere may be a likely source for future pandemics. If influenza refractory

periods are estimated for other climatic zones, as we have done here for the Northern Hemi-

sphere, we may better understand the common origins of past pandemics and gain actionable

insights into global dynamics of pandemic risk.

We also focus exclusively on transient heterosubtypic immunity immediately following sea-

sonal flu infection, which is only one of many forms of immunological heterogeneity that may

constrain pandemic emergence. For example, the age-specific rate of severe and deadly infec-

tions of novel H7N9 and H5N1 in China reflect long-lasting heterosubtypic immunity stem-

ming from early childhood influenza infections [48]. Our model does not consider such long-

term heterogeneity in susceptibility, nor does it consider intrinsic heterogeneity in heterosub-

typic immunity following infection (e.g., variation in severity, transmissibility, or infectious

period) [45, 57]. Incorporating historically-acquired immunity, individual heterogeneity, and

future advances in our understanding of transient heterosubtypic immunity should improve

pandemic risk assessments.

Our study is intended as a proof of concept. Using simple, conservative models of influenza

transmission, cross-immunity, and seasonality, we lend support to a parsimonious explanation

for the historical spring-summer timing of pandemic emergence and demonstrate that pan-

demic risk may be both seasonal and predictable. However, there is much we still cannot pre-

dict, such as when and where reassorted viruses capable of human-to-human transmission will

arise. Recent human outbreaks of H7N9 and H5N1 influenza during the winter and spring

months suggest that other factors may inhibit spread, such as intrinsic transmissibility and the

underlying immunological landscape [48, 107, 108]. Although we do not address the biogeo-

graphic risks of novel viruses first arising through reassortment events in humans or livestock,

laboratory experimentation, or other mechanisms, our study provides insight into the subse-

quent risk of emergence and a method for estimating such risk from seasonal flu surveillance

data. As we gain a better understanding of breadth and duration of heterosubtypic immunity,

both in general and between specific combinations of influenza viruses, our insights and meth-

odology can be applied to improve global surveillance, detection, planning and intervention

efforts for pandemic influenza.

Supporting information

S1 Fig. Two-strain model diagram. Short-term heterosubtypic immunity model description

for a single individual (node) in the network. Solid arrows indicate the individual’s transitions

through epidemiological states, and dashed arrows indicate neighbor influence on the individ-

ual’s transitions, with nIXY indicating the number of the individual’s neighbors who are cur-

rently in state IXY. Symbols labeling arrows indicate the transition rates between states (solid

arrows), or the rate at which individuals transmit to susceptible individuals (dashed arrows).

For example, an individual in state S21 has been infected and recovered from disease 2 and is

currently susceptible to disease 1, so this individual will become exposed to disease 1 at rate

(nI01
+ nI21

)β1, where β1 is the per contact rate of transmission for disease 1, and nI01
+ nI21

is the

number of its neighbors who are currently infected with disease 1.

(PDF)

S2 Fig. Probability distribution for immune duration. We model the immune duration as

an exponentially distributed random variable with rate = 1/42, meaning the most likely
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immune duration is nearly zero days of immunity, but on average individuals will spend 42

days in the immune state. As the influenza epidemics we model last 100 days or more, the

immune duration allows for an individual to experience serial infections of the seasonal and

pandemic strain.

(PDF)

S3 Fig. The extent and magnitude of the pandemic refractory period depends on the dura-

tion of cross-immunity. Columns represent the duration of cross-immunity (α), and the rows

represent the two networks considered. Lines represent the emergence probability of pandem-

ics across the 2008-2009 seasonal influenza epidemic for a variety of pandemic R0s (colors).

(PDF)

S4 Fig. Larger seasonal epidemics produce larger pandemic refractory periods. A: Actual

2003-2004 epidemic curve (solid black line) and 200 stochastic simulations of seasonal epi-

demics for each network (green for empirical; purple for homogeneous), assuming transmis-

sion parameters estimated from 2003-2004 data. B: The probability of pandemic emergence

upon the introduction of a single infected individual, assuming that the pandemic virus has

the same transmission rate as the seasonal virus. Probability is estimated as the proportion of

introductions that subsequently infected at least 5% of the overall population out of the 5,000

simulations. Horizontal dashed lines indicate the emergence probabilities in a completely sus-

ceptible population calculated with Eq 2 from the manuscript. The pandemic refractory peri-

ods (shaded regions) are expected to occur during and immediately following the seasonal

epidemic peak. C: Underestimation of pandemic R0. Assuming that the emerging pandemic

has an R0 = 3 in a naïve population (dashed horizontal line), we plot the median (points) and

interquartile range of the measured Reff, for each introduction time and each network. For

example, if a pandemic with R0 = 3 emerged in January of 2003 and we did not account for

population immunity, we would interpret the Reff as the R0 and considerably underestimate

the true transmission rate (R0� 2), regardless of our contact network assumptions.

(PDF)

S5 Fig. Seasonal flu disconnects the susceptible portion of a population (Large seasonal

epidemic). A: For a single (typical) 2003-2004 seasonal epidemic simulation, the number of

individuals susceptible to infection by a pandemic virus and the number of edges connecting

two such individuals are plotted for each network (green for empirical; purple for homoge-

neous), with each point representing a single time point over the course of the epidemic.

Arrows indicate temporal progression. For any given number of remaining susceptible indi-

viduals, the empirical model is always sparser than the homogeneous model (that is, it has

fewer contacts remaining between susceptibles). B: The distribution of degrees (number of

contacts) assumed for the empirical model. The homogeneous model assumes that all individ-

uals have 16 contacts. C Snapshot of the susceptible portion of the empirical network at the

base of the refractory period (at the time point indicated in panel A by the box labeled ‘C’).

Points indicate the percent of the nodes that are immune to pandemic infection, across differ-

ent levels of connectivity. (We bin degrees by 10; for example, the lowest bin includes individu-

als with 1 to 10 contacts). For comparison, the horizontal dashed line indicates the overall

proportion of individuals immunized in the network at the base of the refractory period. In

comparison to an individual with an average number of contacts, a highly connected individ-

ual will be more vulnerable to seasonal flu infection, and, once infected and immunized, cause

greater epidemiological disruption.

(PDF)
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S6 Fig. Seasonality constrains pandemic emergence timing for the 2003-2004 season. Prob-

ability density for pandemic emergence timing for pandemics that emerge during the seasonal

influenza epidemic for the homogeneous (purple) and empirical (green) networks. Pandemic

emergence timing, the time in which the simulated pandemic begins rapid spread, is defined

as the day the pandemic strain incidence reaches five or more cases. Results are for a pandemic

emerging during the 2003-2004 flu season with the same transmission rate as the seasonal epi-

demic. Vertical dashed lines indicate the timing of historic pandemics.

(PDF)

S7 Fig. Pandemic emergence timing if pandemics introduced throughout the year (2008-

2009). Probability density for pandemic emergence timing for pandemics that emerge across

the whole year during and following the seasonal epidemic for the homogeneous (purple) and

empirical (green) networks. Pandemic emergence timing, the time in which the simulated

pandemic begins rapid spread, is defined as the day the pandemic strain incidence reaches five

or more cases. Results are for the 2008-2009 flu season with the same transmission rate as the

seasonal epidemic. Vertical lines indicate the timing of historic pandemics, with the solid line

indicating the timing of the 2009 pandemic and dashed lines indicating timing of others.

(PDF)

S8 Fig. Pandemic emergence if pandemics introduced throughout the year (2003-2004).

Probability density for pandemic emergence timing for pandemics that emerge across the

whole year during and following the seasonal epidemic for the homogeneous (purple) and

empirical (green) networks. Pandemic emergence timing, the time in which the simulated

pandemic begins rapid spread, is defined as the day the pandemic strain incidence reaches five

or more cases. Results are for the 2003-2004 flu season with the same transmission rate as the

seasonal epidemic. Vertical dashed lines indicate the timing of historic pandemics.

(PDF)

S9 Fig. Pandemic refractory period reduces as transmissibility increases. Pandemic emer-

gence probabilities plotted for the 2008-2009 seasonal simulation for a pandemic that is less

transmissible than the seasonal strain (Top) and one that is more transmissible than the sea-

sonal strain (Bottom) on the two analyzed networks (fill colors). Probability is estimated as the

proportion of introductions that subsequently infected at least 5% of the overall population

out of the 5,000 simulations. Horizontal dashed lines indicate the emergence probabilities in a

completely susceptible population calculated with Eq 2. The pandemic refractory periods

(shaded regions) are plotted the same as in the manuscript. Refractory period is deeper and

wider for the less transmissible strain, and nearly disappears if the pandemic transmissibility is

high enough.

(PDF)
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