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For efficient utilization of operating rooms (ORs), accurate schedules of assigned block 
time and sequences of patient cases need to be made. The quality of these planning 
tools is dependent on the accurate prediction of total procedure time (TPT) per case. 
In this paper, we attempt to improve the accuracy of TPT predictions by using linear 
regression models based on estimated surgeon-controlled time (eSCT) and other vari-
ables relevant to TPT. We extracted data from a Dutch benchmarking database of all 
surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. 
The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. 
Potential predictors of TPT that were included in the subsequent analysis were eSCT, 
patient age, type of operation, American Society of Anesthesiologists (ASA) physical 
status classification, and type of anesthesia used. First, we computed the predicted TPT 
based on a previously described fixed ratio model for each record, multiplying eSCT by 
1.33. This number is based on the research performed by van Veen-Berkx et al., which 
showed that 33% of SCT is generally a good approximation of anesthesia-controlled time 
(ACT). We then systematically tested all possible linear regression models to predict TPT 
using eSCT in combination with the other available independent variables. In addition, all 
regression models were again tested without eSCT as a predictor to predict ACT sepa-
rately (which leads to TPT by adding SCT). TPT was most accurately predicted using a 
linear regression model based on the independent variables eSCT, type of operation, ASA 
classification, and type of anesthesia. This model performed significantly better than the 
fixed ratio model and the method of predicting ACT separately. Making use of these more 
accurate predictions in planning and sequencing algorithms may enable an increase in 
utilization of ORs, leading to significant financial and productivity related benefits.

Keywords: operating room utilization, procedure time, regression, prediction, anesthesia time, surgeon time, 
surgical time

inTrODUcTiOn

Operating rooms (ORs) are some of the most valuable hospital assets there are, generating a large 
part of hospital revenue. Revenue per OR hour varies per procedure, but is estimated to be between 
$1,000 and $2,000 on average, before subtracting the variable costs of personnel and supplies related 
to hospitalization (1). This makes efficient utilization of ORs paramount. Every minute wasted may 
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Table 2 | Distribution of characteristics in the dataset.

Variablea Percentage  
of dataset

Patient age 1–9b 9.1
10–19 7.3
20–29 7.6
30–39 8.3
40–49 12.3
50–59 16.7
60–69 20.5
70–79 13.8
80–89 4.2
90–99 0.3

100–103 <0.0

American Society 
of Anesthesiologists 
classification

1 32.9
2 45.2
3 20.4
4 1.4
5 <0.0

Main specialism Ophthalmology 15.8
Ear, nose, and throat 11.6

Cardiothoracic surgery 10.6
Orthopedic surgery 8.8

Neurosurgery 8.4
Plastic surgery 6.8

Oral and maxillofacial surgery 4.5
Obstetrics and gynecology 4.3

Abdominal surgery 4.3
Urology 4.0

Surgical oncology 4.0
Traumatology 3.5

Obstetric and gynecological oncology 3.1
Miscellaneous 2.7

Pediatric surgery 2.1
Vascular surgery 2.0

Hepatobiliary surgery 1.4
Transplant surgery 0.9

Anesthesiology 0.8
Pediatric gastroenterology 0.1

Percentages are rounded to one decimal place.
aSee Table 1 for the meaning of the abbreviations.
bRecords describing patients with age 0 were omitted, because their number was so 
high that we suspected that users had entered 0 to indicate missing data.

Table 1 | Descriptions of abbreviations used.

ACT Anesthesia-controlled time in minutes, as observed
Age Patient age in years
ASA American Society of Anesthesiologists physical status  

classification of the patient
eSCT Surgeon-controlled time in minutes, as estimated prior  

to the operation
SCT Surgeon-controlled time in minutes, as observed
TPT Total procedure time in minutes, as observed
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cause a significant loss of revenue. For efficient utilization of 
ORs, accurate schedules of assigned block time and sequences of 
patient cases need to be made.

The quality of these planning tools is dependent on the 
accurate prediction of total procedure time (TPT; abbreviations 
are described in Table 1) per case. TPT consists of anesthesia-
controlled time (ACT, itself consisting of the induction and 
emergence phases) and surgeon-controlled time (SCT, being the 
duration of the actual operation, including patient positioning 
and draping). ACT is included because in Dutch academic hos-
pitals, the induction and emergence phases always take place in 
the OR, making them relevant to OR utilization.

Predicted TPTs are used to plan up to a desired level of 
utilization of the OR complex. Sequencing patient cases based 
on predicted TPT can help minimize the probability of underu-
tilization of the OR and cancelation of procedures. Previous 
research has shown that using a fixed ratio to calculate TPT from 
SCT as estimated prior to an operation [estimated surgeon-
controlled time (eSCT)] provides more accurate estimates than 
adding a fixed duration for ACT to eSCT to compute TPT (2). In  
this paper, we attempt to improve the accuracy of TPT predic-
tions further by including patient and surgery characteristics 
relevant to TPT.

MaTerials anD MeThODs

We extracted data from a Dutch benchmarking database of 
all surgeries performed in all eight academic hospitals in The 
Netherlands from 2012 till 2016. Written informed consent from 
the patients was not required, because no individual patient data 
were included. The data contributed by two of these hospitals 
were excluded, because they only contained observed and sub-
sequently recorded SCT instead of the initially estimated SCT. 
The other records also did not contain eSCT, but did describe 
estimated TPT. We used this to approximate eSCT by subtract-
ing 20 min, which is the default time allocated to ACT in many 
Dutch hospitals. Unfortunately, it was not feasible to accurately 
discover the exact time attributed to anesthesia for each opera-
tion in each hospital. Subtracting 20 min gives us approximate 
eSCTs that are sufficient for testing the methods described in 
this paper.

Potential predictors of TPT that were included in the subse-
quent analysis were eSCT, patient age, type of operation (identi-
fied by unique codes as registered by the hospitals), American 
Society of Anesthesiologists (ASA) physical status classifica-
tion, and type of anesthesia used (again identified by hospital 

supplied codes). Other database fields described observed TPT, 
anesthesia induction time, and anesthesia emergence time. 
Observed ACT was calculated by adding up induction and emer-
gence durations. Only records describing elective surgery were  
included, because emergency surgery does not receive an esti-
mated TPT/SCT.

Data analysis and statistical calculations were performed in 
R version 3.3.1. Implausible or impossible data values, such as a  
0 for observed TPT, were marked as missing data. As we sus-
pected missing data in the database to have occurred completely 
at random, we omitted incomplete records from the analysis. The 
final dataset consisted of 79,983 records, describing 199,772 h of 
total OR time. The distribution of the characteristics within this 
dataset is shown in Tables  2 and 3. The data were split into a 
training set with records from the years 2012 till 2015 and a test 
set from 2016.
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Table 3 | Miscellaneous descriptive statistics about the dataset used.

Number of types of anesthesia describeda 32
Number of types of surgery describedb 4,458

Mean estimated total procedure time (TPT) 126 min
Median estimated TPT 90 min

Mean observed TPT 150 min
Median observed TPT 109 min

Mean observed anesthesia induction time 27 min
Median observed anesthesia induction time 23 min

Mean observed anesthesia emergence time 13 min
Median observed anesthesia emergence time 11 min

Times are rounded to whole minutes.
aType of anesthesia was based on the hospitals’ internal anesthesia codes. Examples 
of code meanings are “general,” “arterial line,” “epidural,” “spinal,” “local,” etc.
bType of surgery was based on the hospitals’ procedure codes and descriptions. These 
precisely record the surgical procedures performed. As an example of the level of 
detail: there are different verification codes and descriptions for cataract surgery using 
different types of implanted lenses.

Table 4 | Goodness-of-fit of the linear regression models for predicting total 
procedure time ranked by best adjusted R-squared value.

independent variable(s)a adjusted 
R-squared

estimated 
surgeon-
controlled 
time

Type of  
anesthesia

american 
society of 

anesthesiologists

age Type of  
operation

+ + + + + 0.8499
+ + + + 0.8498
+ + + + 0.8491
+ + + 0.8491
+ + + + 0.8491
+ + + 0.8490
+ + + 0.8483
+ + 0.8483
+ + + + 0.7853
+ + + 0.7852
+ + + 0.7846
+ + 0.7843
+ + 0.7763
+ + + 0.7763
+ + 0.7757
+ 0.7756

Models were based on the 2012–2015 data. Adjusted R-squared values are rounded 
to four decimal places.
aSee Table 1 for the meaning of the abbreviations.
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resUlTs

Using the fixed ratio model, the MAE of the 2012–2015 predic-
tions was 39.5  min with a MSE of 3,859.6  min. For the 2016 
predictions, the MAE was 38.5 min with a MSE of 3,275.9 min.

All variables of the linear regression models were highly 
significant predictors (p < 0.01), in part, due to the size of the 
dataset, except some of the levels of the factor variables for type 
of anesthesia and type of operation. These variables were retained 
in the model though, since the overall effect of the factor vari-
ables was significant. Ultimately, the best model was identified by 
examining when the adjusted R-squared showed only mini mal 
improvement after adding additional predictors.

Of all models tested, TPT is most accurately predicted using a 
linear regression model based on all available independent vari-
ables. However, as can be seen in Tables 4 and 5, including patient 
age in the model did not significantly improve the goodness- 
of-fit, so we only retained the variables eSCT, type of operation, 
ASA classification, and type of anesthesia. Using this best model, 
the MAE of the 2012–2015 predictions was 29.2 min with a MSE 
of 2,320.7 min. For the 2016 predictions, the MAE was 31.3 min 
with a MSE of 2,366.9 min. The adjusted R-squared of this model 
was 0.8498.

Similarly, ACT was most accurately predicted by all independ-
ent variables, but with very little improvement by adding patient 
age. The final model, based on the type of operation, ASA clas-
sification, and type of anesthesia, did not perform better than the 
direct prediction of TPT, with a MAE of the 2012–2015 predic-
tions of 34.7 with a MSE of 3,269.7 min and a MAE of the 2016 
predictions of 34.2 min with a MSE of 2,878.7 min. The adjusted 
R-squared was 0.6314.

An often used rule-of-thumb states the need for at least 10 
records for each potential predictor of TPT to be included in 
the model. Recent research suggests the actual number may be 
even lower (3). Considering that the dataset used for our analysis 
contained nearly 80,000 records, we had ample precision to test 
all potential predictors and interactions.

First, we computed for each record the predicted TPT based 
on the fixed ratio model described by van Veen-Berkx et al. (2) 
For each patient, the eSCT was multiplied by 1.33. This number 
is based on the research performed by van Veen-Berkx et al., 
which showed that 33% of SCT is generally a good approxi-
mation of ACT. Using both predicted and observed TPT, we 
computed the mean absolute error (MAE), the mean squared 
error (MSE), and model fit expressed as the adjusted R-squared 
of the model. The adjusted R-squared can be interpreted as the 
proportion of variance in TPT that can be explained by param-
eters in the model.

All linear regression models were created using the 2012–2015 
data and then validated on both this set and the 2016 set. This 
enabled us to separately measure the performance of the models 
on new data and compare this to their performance on the train-
ing data.

We used the p-value of each variable and the adjusted R-squared 
values to test all possible linear regression models to predict TPT 
using eSCT in combination with the other available indepen-
dent variables.

As an additional alternative, all regression models were 
again tested without eSCT as a predictor to predict ACT sepa-
rately (which leads to TPT by adding SCT). This allowed us to 
compare our findings with various previous attempts to predict  
ACT (4, 5).

Finally, to test for any possible influence, the omission of the 
incomplete records might have had on our results, we reran the 
analyses after imputation of the missing data. Linear regression 
was used to impute the numeric variables and a proportional 
odds model for the ordered variable describing ASA clas-
sification. The type of anesthesia used and the type of surgery 
performed could not be imputed, due to the large number of 
categories.
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Table 6 | Performance of fixed ratio model and best performing linear 
regression models.

2012–2015 2016

Mean absolute 
error (Mae)

Mean squared 
error (Mse)

Mae Mse

Fixed ratio model 39.5 3,859.6 38.5 3,275.9
Most accurate model  
for predicting total  
procedure time (TPT)a

29.2 2,320.7 31.3 2,366.9

Most accurate model  
for predicting  
anesthesia-controlled  
time (ACT)b

34.7 3,269.7 34.2 2,878.7

Errors are the difference between predicted TPT and observed TPT in minutes and are 
rounded to one decimal place.
aLinear regression model based on the independent variables estimated surgeon-
controlled time (eSCT), type of operation, American Society of Anesthesiologists (ASA) 
classification, and type of anesthesia.
bLinear regression model based on the independent variables type of operation, ASA 
classification, and type of anesthesia. TPT was predicted by adding predicted ACT to 
eSCT.

Table 5 | Goodness-of-fit of the linear regression models for predicting 
anesthesia-controlled time (ACT), ranked by best adjusted R-squared value.

independent variable(s)a adjusted R-squared

Type of 
anesthesia

american 
society of 

anesthesiologists

age Type of 
operation

+ + + + 0.6316
+ + + 0.6314
+ + + 0.6256
+ + 0.6246

+ + + 0.5991
+ + 0.5988

+ 0.5925
+ + 0.5925

+ + + 0.3801
+ + 0.3677
+ + 0.3067
+ 0.2561

+ + 0.1346
+ 0.1346

+ 0.0162

Models were based on the 2012–2015 data. Adjusted R-squared values are rounded 
to four decimal places.
aSee Table 1 for the meaning of the abbreviations.
Models for predicting total procedure time included estimated surgeon-controlled time 
as independent variable, models for predicting ACT did not.
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These main outcomes are summarized in Table 6. Figure 1 
displays plots of the predicted versus the actual TPTs for these 
three models.

After imputation of missing data in the initial dataset instead 
of elimination of incomplete records, all results were practically 
the same.

DiscUssiOn

The improvement in TPT prediction of the best performing linear 
regression model versus the fixed ratio model was convincing. 
On the training data, the MSE was reduced by a quarter of the 
original value. This indicates that the variation in prediction 
errors was substantially reduced. As is to be expected, this effect 
was somewhat less pronounced on the 2016 testing data, but still 
very useful.

Making use of these more accurate predictions may help 
prevent the typical consequences of under- and overestimation. 
Underestimation can lead to costly overtime or even the cancela-
tion of operations, while overestimation can lead to downtime 
of both the operating theater and its staff. For the hospital with 
the highest number of complete records in our dataset, totaling 
all the under- and overestimation of the included operations 
from 2016 results in a total overestimation of 3,118 h. Had they 
made use of a model as described in this paper (based on their 
own data), the total result would have been an overestimation of 
only 179 h. Depending on the way these hours would have been 
distributed in the scheduling, they may have led to additional 
operations being performed.

The accuracy of predicted durations of surgery also directly 
influences the confidence with which planners might increase the 

level of utilization of ORs. Planning for higher utilization is only 
possible with more certainty about case duration, but can offer 
significant financial and productivity related benefits.

A second important finding is that separate ACT prediction 
(using the same available variables but without eSCT) yields 
worse results than direct TPT prediction.

The fact that TPT is the result of ACT and SCT is demonstrated 
by the best performing model. This model is based on eSCT, 
type of operation, and the two most important anesthesiologic 
variables: ASA classification and type of anesthesia used. This 
means predictions are possible using a limited number of easily 
obtainable values. Even though our model is intended for use by 
a computer system, keeping the model simple by requiring fewer 
inputs improves its usability, understandability, and speed.

The fact that the regression models were calculated and tested 
using surgeons’ actual pre-surgery estimations of SCT instead 
of recorded, historical SCTs lends additional credibility to our 
results. In actual planning practice, predictions will similarly 
need to be based on estimated SCT. Therefore, the performance 
of the models as described in our results should match real-world 
performance, as opposed to a likely positive bias when based on 
historical data. This is especially true for the performance on the 
2016 data, which the model was not trained on. While performing 
our research, it became apparent that the predictions of the 2016 
TPTs became increasingly accurate as our collection of train-
ing data grew. This suggests that the method described in this 
paper holds potential for improved performance when applied 
to even larger datasets, as are becoming increasingly available to 
health-care data analysts. Additionally, further improvement may 
be achieved by tailoring the analyses to local circumstances. It 
is possible to prepare custom models for the level of individual 
hospitals, departments, types of operations, or even surgeons.

Summarizing the above, we encourage hospital data ana-
lysts and surgical managers to create similar models to those 
described in this paper using as much of their own historical data 
as possible. The method described is relatively straightforward 
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FigUre 1 | Plots of the predicted versus the actual total procedure time (TPTs) for the fixed ratio model and the two best linear regression models for predicting 
TPT and anesthesia-controlled time (ACT).
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and might provide them with more accurate procedure time 
predictions than current practices.

A limitation of this study was that the data used were recorded 
in academic centers only. The applicability to typical OR sched-
ules in regional hospitals has not been studied. In addition, we 
have averaged all suitable data available from these academic 
centers under the assumption that there were no major differ-
ences between these centers that might significantly alter the TPT.

The manual registration of the timestamps and semi-manual 
process of aggregating the other data has two important weak-
nesses. First, it most probably resulted in inaccuracies of the 
data, possibly leaning toward late recording of the key moments 
during the operations. Second, there was a surprising amount of 
missing data at analysis. Of the records we started with, only ca. 
21% contained complete and plausible data in all required fields, 
making the rest unsuitable for analysis. The fact that the results 
after imputation of the missing data were very similar to those 
of our initial analyses indicates that eliminating the incomplete 
records had limited influence on the outcomes as described.

Both issues underline the importance of the implementation 
of automatic registration systems that integrate into the work 
processes in the OR to collect more and better data. Only then 
will the results of analysis of this data be taken to a higher level, 
allowing for robust conclusions with operational consequences.

A final important remark is that, despite the new model 
generally performing well over the long-term, a relatively high 
interindividual variability still exists. This could limit the useful-
ness of its predictions in day to day planning.

cOnclUsiOn

A linear regression model to predict TPT based on eSCT, type 
of operation, patient ASA classification, and anesthesia type out-
performs the current practices of using a standard duration for 
ACT or a fixed ratio between eSCT and TPT. A second conclusion 
is that predicting TPT through the separate prediction of ACT 
yields less accurate results than direct prediction of TPT.
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