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Abstract During an epidemic outbreak in a human population, susceptibility to infection

can be reduced by raising awareness of the disease. In this paper, we investigate the effects

of three forms of awareness (i.e., contact, local, and global) on the spread of a disease in

a random network. Connectivity-correlated transmission rates are assumed. By using the

mean-field theory and numerical simulation, we show that both local and contact awareness

can raise the epidemic thresholds while the global awareness cannot, which mirrors the

recent results of Wu et al. The obtained results point out that individual behaviors in the

presence of an infectious disease has a great influence on the epidemic dynamics. Our

method enriches mean-field analysis in epidemic models.

Keywords Epidemic spread · Complex network · Behavioral response ·
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1 Introduction

The effect of individual awareness (or risk perception) in the context of an infectious disease

outbreak in a human population has been under investigation for a few years [1, 2]. Human

responses to disease outbreaks are sometimes decisive factors. For example, when aware of

a disease in their vicinity, people can take precautionary measures such as wearing masks,

frequent hand washing, and evading contact with infected individuals to reduce the risk of

infection and lower the possibility of disease transmission [3–5]. The behavioral change

triggered in a population corresponds to the information obtained from the circumstances

[6]. The information taken from a social or spatial neighborhood is called local information,

while information that comes from the news media and public health authorities is called
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global information. Both sources of information have strong impacts on epidemic dynamics.

We refer the readers to [6, 7] for comprehensive surveys of related results.

To investigate the effect of behavioral response, two kinds of awareness, global

awareness, which increases with the overall disease prevalence, and local awareness,

which increases with the fraction of infected contacts, were studied in [1, 8]. Global

and local awareness were described by exponential functions of respective global and

local information. By using a mean-field approximation, it was shown that the network

topology, homogeneous random network or scale-free network, has an intrinsic impact on

the existence of a critical value (in terms of global and local awareness) that stops the

epidemics. In [9], a third kind of awareness, called contact awareness, which increases with

the individual contact number, was proposed. By using a linear formulation of awareness,

the authors showed that both the local and contact awareness can raise the epidemic

threshold (hence, inhibit the epidemic from spreading), while the global awareness cannot.

The precise functioning of awareness, nevertheless, is still not well understood. One of the

goals in this paper is to understand the role of the aforementioned three forms of awareness

by providing a more flexible yet analytically tractable framework.

In most of the existing relevant literature (including the work mentioned above), it is

assumed that the transmission rate is constant for all individuals. To describe the vast

spectrum of disease propagation strategies, the degree-correlated transmission rates were

examined in [10]. It was shown that the connectivity-dependent infection scheme can yield

threshold effects even in scale-free networks where they would otherwise be unexpected

(see e.g., [11, 12]). Therefore, for a more realistic epidemic model, the degree-correlated

transmission rates should be taken into account.

In view of the above considerations, in this paper we investigate the impact of global,

local, and contact awareness on epidemic spreading with degree-correlated transmission

rates. Our model is based on an SIS epidemiological process where, at a given time, each

individual can be susceptible (S) or infected (I). The contact network of the population is

modeled by a configuration model (described below) where nodes represent individuals

and edges indicate potential contacts between individuals. Building on a continuous mean-

field approach and the Lyapunov stability theory, we establish the epidemic dynamics and

derive the epidemic threshold. The function of awareness is expressed by a non-linear

function (the linear function used in [9, 13] can be viewed as a special case) that provides

additional flexibility in applications. Through numerical simulation on scale-free networks,

we confirm that both local and contact awareness can raise the epidemic threshold while

global awareness can only decrease the final epidemic size. However, the influence degree

of the awareness is shown to be closely related to the heterogeneous transmission rates.

The rest of the paper is organized as follows. We describe the model and establish

the epidemic dynamics by mean-field analysis in Section 2. We determine the epidemic

threshold in Section 3 and present numerical simulations in Section 4. Finally, we conclude

the paper in Section 5.

2 Model and mean-field analysis

We use a modified SIS (susceptible-infected-susceptible) model to study the epidemic

dynamics on a network consisting in n individuals. The contact network is defined as a

configuration model [12, 14], where only the network’s degree distribution (that is, the

distribution, pk, which governs the probability that a node will have degree k) is specified
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and the edges are made by random pairing. Configuration model networks are increasingly

used for infectious diseases in complex networks, which yield to analytical treatment and

allow for heterogeneous contact levels [15]. Data-driven studies reveal that the accuracy

of such models is mostly high; see, for example, [16, 17]. In the simplest SIS model, each

individual is either in a susceptible state or an infected state. A susceptible individual, say

node i, becomes infected upon contact with a single infected individual, say node j, at some

infection rate. The infection rate along the edge from j to i can be expressed as AiTj, where

Ai is the admission rate of node i describing the rate that susceptible node i would actually

admit an infection through an edge connected to an infected node and Tj is the transmission

rate of node j meaning the rate that infected node j would actually transmit an infection

through an edge connected to a susceptible node [10, 15]. Once infected, a node recovers

(i.e., returns to the susceptible state) at rate γ .

In case of no awareness, the admission rate Ai is usually assumed to be 1 and the

transmission rate Ti = β for all nodes i. As mentioned above, we will consider the degree-

correlated transmission rate βk [10], which is defined as the transmission rate of a node with

degree k. In addition, we modulate the admission rate Ai by some multiplicative factors.

First, let 0 ≤ ψk ≤ 1 be a decreasing function, which represents the contact awareness

of a node with degree k. Naturally, an individual having a larger contact number has a

higher risk of being infected [9]. This factor of contact awareness reflects an individual’s

risk perception based on the contact information. Second, let 0 ≤ φk ≤ 1 with φ0 = 1

being a decreasing function accommodating the local and global epidemic information.

Specifically, for a node, say i, with degree k, let kinf be the number of its infected neighbors.

The local awareness of node i is given by φl
k = 1 − α(kinf/k)

α1 for some precaution level,

0 ≤ a ≤ 1 and α1 is a positive integer reflecting the use of special prophylaxis [1]. The

quantity ρ is taken to be representative of the global infection density, that is, the fraction

of infected individuals over the whole population. The global awareness of a node with

degree k is supposed to be φ
g
k = 1 − bρα2 with 0 ≤ b ≤ 1 and α2 similarly being a k

positive integer. The parameters α1 and α2 embody the impact strength of the local and

global epidemic information on the admission rate. The role of them will be clear in the

following. For a susceptible node i with degree k and one of its infected neighbor j, the

modified infection rate along the edge from j to i can be written as

βkψkφ
l
kφ

g
k = βkψk

(
1 − a

(
kinf

k

)α1
)

(1 − bρα2) , (1)

where βk is the transmission rate of node i, and kinf is the number of node i’s infected

neighbors.

Note that both the infection density ρ and the number of infected neighbors kinf evolve

with respect to time t. We mention that the functions φl
x and φ

g
x can be viewed x as an

approximation of the exponential function φx = e−axα

analyzed in [1, 8]. Setting α1 = α2 =
1, we readily reproduce the linear functions used in the work [9].

At time t, let θ (t) be the probability that a randomly chosen edge points to an infected

individual. Let ρk(t) be the infection density among nodes having degree k. As in [18], we

obtain

ρ (t) =
∑

k

pkρk (t) , (2)
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and

θ (t) =
∑

k
kpkρk (t)∑

k kpk
=

∑
k

kpkρk (t)
〈k〉 , (3)

where 〈k〉 is the average degree of the network.

Denote by Xk a random variable counting the number of infected neighbors of a node

with degree k. Thus, Xk follows a binomial distribution Bin(k, θ (t)) with [19]

P (Xk = s) = (k
s
)
θ (t)s (1 − θ (t))k−s

(4)

for 0 ≤ s ≤ k. Given a susceptible individual with degree k, who has s infected neighbors,

the probability of infection is

1 −
(

1 − βkψk

(
1 − a

sα1

kα1

)
(1 − bρ (t)α2)

)s

(5)

by using (1). Thus, the probability that a susceptible node with degree k becomes infected

is shown to be given by

Ik = E

[
1 −

(
1 − βkψk

(
1 − a

Xα1

k
kα1

)
(1 − bρ (t)α2)

)Xk
]

= 1 −
k∑

s=0

P (Xk = s)
(

1 − βk	k

(
1 − α

sα1

kα1

)
(1 − bp(t)α2)

)s

.

(6)

Hence, the discrete-time epidemic dynamics can be described as

ρk (t + 1) = (1 − γ ) ρk (t) + (1 − ρk (t)) Ik. (7)

Considering an infinitesimal interval (t, t + h], similarly as in [9, 20], we can transform

(6) and (7) into

ρk (t + h) − ρk (t) = −γ hρk (t) + (1 − ρk (t))
[

1 −
k∑

s=0

P (Xk = s)

·
(

1 − βkhψk

(
1 − a

sα1

kα1

)
(1 − bρ (t)α2)

)s]
+ o (h) ,

(8)

where the probability P(Xk = s) is given by (4).

By employing L’Hôpital’s rule, we obtain

lim
h→0

1

h

[
1 −

k∑
s=0

P (Xk = s)
(

1 − βkhψk

(
1 − a

sα1

kα1

)
(1 − bρα2)

)s
]

= lim
h→0

k∑
s=0

sP (Xk =s)
(

1 − βkhψk

(
1 − a

sα1

kα1

)
(1 − bρα2)

)s−1

βkψ(k)
(

1−a
sα1

kα1

) (
1−bρα2

)

= βkψk
(
1 − bρα2

) k∑
s=0

sP (Xk = s)
(

1 − a
sα1

kα1

)

= βkψk
(
1 − bρα2

) (
EXk − a

kα1

E

(
Xα1+1

k

))
. (9)

The moment-generating function of Xk is defined for all 
 ∈ (−∞, ∞) by M (
) =
E

(
e
Xk

) = (
θe
 + 1 − θ

)k
. It is well known that by differentiation at 
 = 0,

M ′ (0) = EXk = kθ (10)
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and

M(α1+1) (0) = E
(

X α1+1

k

)
=

(
k
(
θe
 + 1 − θ

)k−1

θe

)(α1) |
=0 (11)

for any positive integer α1.

Dividing both sides of (8) by h and letting h → 0, we obtain

d

dt
ρk (t) = −γρk + βkψk (1 − bρα2) kθ (1 − ρk)

−βkψk (1 − bρα2)
a

kα1

(1 − ρk)
(

k
(
θe
 + 1 − θ

)k−1

θe

)(α1)

∣∣∣
=0 (12)

employing (9), (10) and (11), where ρ and θ are given by (2) and (3), respectively.

For α1 = α2 = 1 and βk ≡ β, (12) reduces to (9) obtained in [9]. The consistency

confirms that (12) is valid. Notice that the above system (12) (k = 1, · · · , n) is highly

involved. However, we will see in the next section that a neat formulation of the epidemic

threshold can be derived. Without loss of generality, we will set the recovery rate γ = 1 in

the following.

3 Epidemic threshold

In this section, we determine the epidemic threshold in terms of the connectivity-correlated

(i.e., k-dependent) transmission rates βk. In the simplest networked SIS model, the epidemic

threshold corresponds to a critical value of infection rate βc (or the reproductive ratio R0),

above which the disease in question spreads, while below it the disease dies out [21]. The

critical value has been shown to rely on the infection and recovery rates of a disease, as well

as the topology of the host population through which it spreads [22–26]. By studying the

local stability of the infection-free equilibrium, we will present the dependency of aware-

ness on the epidemic threshold. Our results also have implications for the dissemination

of a computer virus/worm across the Internet as well as opinions/rumors/news in social

networks.

To start with, we establish a linearization system of (12). On omitting higher powers of

ρk and noting that γ = 1, we obtain

d

dt
ρk(t) = −ρk + βkψkθ (1 − bρα2) (1 − ρk)

·
(

k − a
kα1−1

((
θe
 + 1 − θ

)k−1 e

)(α1)

∣∣∣
=0

)


 −ρk + βkψkθ

(
k − a

kα1−1

((
θe
 + 1 − θ

)k−1 e

)(α1)

∣∣∣
=0

)
. (13)

Notice that((
θe
 + 1 − θ

)k−1 e

)(α1)

∣∣∣
=0

=
(
(k − 1)

(
θe
 + 1 − θ

)k−2

θe2
 + (
θe
 + 1 − θ

)k−1 e

)(α1−1) ∣∣∣
=0

=
(
θ · ∗ + (

θe
 + 1 − θ
)k−1 e


) ∣∣∣
=0 , (14)
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where ∗ represents an unspecified or unknown quantity. Therefore, we have linear

differential equations for k = 1, · · · , n

d

dt
ρk (t) = −ρk + βk

(
k − a

k α1−1

)
ψkθ, (15)

which implies that the Jacobian matrix of (12) can be calculated as

J =

⎛
⎜⎜⎜⎜⎜⎝

f1g1 − 1 f1g2 f1g3 · · · f1gn
f2g1 f2g2 − 1 f2g3 · · · f2gn
f3g1 f3g2 f3g3 − 1 · · · f3gn
...

...
...

. . .
...

fng1 fng2 fng3 · · · fngn − 1

⎞
⎟⎟⎟⎟⎟⎠

, (16)

where fk = βk(k − a/k α1−1) ψk and gk = kpk/〈k〉 for k = 1, · · · , n.

By basic determinant transformations (see e.g., [9, Lemma 1]), we obtain the n eigen-

values of J from the characteristic equation det (J − λI) = 0 as λ1 = · · · = λn−1 = −1 and

λn = −1+
∑ n

k=1
fkgk. The trivial solution ρk ≡ 0 of system (12) (which is the infection-free

equilibrium) is locally stable if and only if λn< 0, which yields

n∑
k=1

βk

(
k − a

kα1−1

)
ψkk pk

〈k〉 < 1. (17)

Hence, if (17) holds, the disease dies out; otherwise, the disease spreads. This expression

shows that local and contact awareness play a pivotal role in determining whether an

epidemic spreads in a population, while the global awareness is independent of the epidemic

threshold. The same result was observed in [9].

In what follows, we study the epidemic threshold by instantiating the above general

correlated transmission rates in two special examples.

In the first example, we set βk ≡ β. This infection scheme implies that an infected

individual can transmit the infection from all of its edges with the same rate. This example

has been addressed in [9] and it has relevance for many of the respiratory infectious diseases

such as the 2003 severe acute respiratory syndrome (SARS) [27] and the 2009 influenza

A (H1N1) [28]. Introducing βk = β into (17), we obtain the threshold for containing the

disease as

β < βc = 〈k〉〈
k2ψk

〉 − a
〈
k2−α1ψk

〉 . (18)

If we set α1 = 1, the above threshold reduces to that deduced in [9, Eq. (11)].

Next, we consider a reciprocal infection scheme where βk = β ′/k. Here, the transmission

rate is connectivity correlated. This scheme reflects the infection dynamics of some

macroparasite diseases where infected agents have a limited pathogen reservoir and the

more the agent contacts the less would be the chance of transmission per contact (or per

capita) [10]. Substituting βk = β ′/k into (17) yields

β ′ < β ′
c = 〈k〉

〈kψk〉 − a
〈
k1−α1ψk

〉 . (19)
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We mention that this infection scheme also has implications in cyber security. In peer-to-

peer (P2P) file-sharing networks (e.g., Napster and Kazaa), every node has a limited upload

capacity. The larger the connectivity, the slower each one of its neighbors can download.

The probability of successful downloading would thus be inversely proportional to the

connectivity. Another plausible scenario is the denial of service (DoS) attacks, which flood

a target computer system with bogus requests, making it unable to provide normal services

to legitimate users.

The variance σ = 〈
k2

〉 − 〈k〉2
of the degree in a network is an indicator of the degree

of asymmetry [12]. Compared with regular graphs or classical random graphs, scale-free

networks have much larger σ and their degree distributions are asymmetric. To take a look

at the effect of σ on the epidemic threshold, for simplicity, we set ψk = 1 and α1 = 1.

From (18) and (19) we obtain

βc = 〈k〉
σ + 〈k〉2 − a 〈k〉 , (20)

and

β ′
c = 〈k〉

〈k〉 − a
. (21)

It is clear that the threshold βc decreases with respect to σ while β ′
c remains unchanged.

This suggests that, in our first infection scheme where βk = β, an epidemic is more inclined

to occur for asymmetric networks, and that in a reciprocal infection scheme the asymmetry

has no influence on the epidemic threshold. For scale-free networks, a similar result was

observed in [10] without considering awareness.

4 Simulation study

To complement the theoretical analysis carried out in the previous section, we now

investigate the impact of awareness on the epidemic thresholds (18) and (19) by numerical

simulations.

Fig. 1 The degree distribution of

a scale-free network with degree

distribution pk ∼ k−2.5
used in

the simulations. The slope of the

dotted line is −2.5

100

10–1

10–2

10–3

10–4

100 101 102 103
k 
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Simulations are performed on a scale-free network of n = 2,000 nodes with degree

distribution pk∼k−2.5
(see Fig. 1). The graph is generated by using the configuration_

model in NetworkX [29]. This degree exponent is a typical value for networks seen in

the real world [30]. Initially 1% of the nodes are infected. We iterate the SIS process until

convergence to a steady/equilibrium state. Following [9], we choose the contact awareness

as a power-law function ψk = k−μ
, where μ ≥ 0. Hence, it follows from (18) and (19) that

we obtain the thresholds

βc = 〈k〉〈
k2−μ

〉 − a
〈
k2−α1−μ

〉 , (22)

and

β ′
c = 〈k〉〈

k1−μ
〉 − a

〈
k1−α1−μ

〉 . (23)

First, we examine the dependence of βc and β ′
c on local and global awareness, namely

the parameters a, b, α1 and α2. We fix μ = 0.6. The epidemic threshold βc is measured

by calculating the final infected portion ρ for each β from 0 to 1 in steps of 0.01 and the

epidemic threshold β ′
c is measured by calculating ρ for each β ′

starting from 0 in steps of

0.1. If ρ > 0.0025, we accept the corresponding value of β (or β ′) as the threshold value.

To reduce the fluctuation, for each β (or β ′), we calculate the average of ρ over 10

simulation runs with different initial infected nodes.

In Fig. 2 we show the results of calculations of the epidemic thresholds βc and β ′
c

from the exact formulas (22) and (23), compared with explicit simulations of the model

with α1 = α2 = 1. We find that both βc and β ′
c are almost unchanged for different b,

while they increase with a. An intuitive interpretation is that a higher level of precaution

measures adopted by individuals (i.e., larger a) can decrease the likelihood of an epidemic

outbreak (i.e., larger βc and β ′
c). The simulated values are slightly larger than the theoretical

predictions, which is likely due to a finite-size effect [9, 10]. We illustrate the epidemic

8
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(a)   c versus a and bβ β(b)   'c versus a and b

β c β'
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β'c vs. a

β'c vs. b

Fig. 2 Epidemic thresholds as a function of a and b with ψk = k−0.6
, α1 = 1 and α2 = 1. (a) is for βc and

(b) is for β ′
c. When considering the thresholds versus a, we set b = 0.5; when considering the thresholds

versus b, we set a = 0.5. Solid and dotted lines are the exact solutions from (22) and (23)
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Fig. 3 Epidemic thresholds as a function of a and b with ψk = k−0.6
, α1 = 2 and α2 = 1. (a) is for βc and

(b) is for β ′
c. When considering the thresholds versus a, we set b = 0.5; when considering the thresholds

versus b, we set a = 0.5. Solid and dotted lines are the exact solutions from (22) and (23)

thresholds for α1 = 2, α2 = 1 in Fig. 3 and those for α1 = 1, α2 = 2 in Fig. 4. We find

similar behaviors as observed in Fig. 2. By comparing Fig. 2 with Fig. 3 and comparing

Fig. 2 with Fig. 4, we see that the epidemic thresholds βc and β ′
c decrease with α1,

while they are almost unchanged for different α2. (The dependency between βc(β
′
c) and

α1 is re-plotted in Fig. 5 for the sake of comparison). These observations agree well with

our analytical solutions. The decrease of epidemic thresholds with respect to α1 has an

important epidemiological implication. Nodes with exposure to many infectious contacts

(corresponding to a high value of kinf/k) in a network may fail to be infected due to their

increased perception of the risk or safety measures (here, smaller α1) and thus stopping

the epidemic spreading. In the real world, medical doctors and care/sex workers should

8
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Fig. 4 Epidemic thresholds as a function of a and b with ψk = k−0.6
, α1 = 1 and α2 = 2. (a) is for βc and

(b) is for β ′
c. When considering the thresholds versus a, we set b = 0.5; when considering the thresholds

versus b, we set a = 0.5. Solid and dotted lines are the exact solutions from (22) and (23)
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Fig. 5 Epidemic thresholds as a function of a with ψk = k−0.6
, α2 = 1 and b = 0.5. The data are copied

from Figs. 2 and 3

adopt strong safety measures, which may efficiently contain the disease transmission. A

similar phenomenon was observed in Bagnoli et al. [1] for a network with a power-law

in-degree distribution and an exponential out-degree distribution using degree-independent

transmission rates (corresponding to our Fig. 5a). The ineffectiveness of factor α2 as well

as b, nevertheless, indicates the incapability of altering an epidemic threshold for a global

influence over the population.

Next, we examine the dependence of βc and β ′
c on contact awareness, namely the

parameter μ. We show the changes of βc and β ′
c with respect to μ in Fig. 6. Simulated

solutions are slightly increased from the expected values, again due to a finite-size effect.

In Fig. 6a, the value of βc is absent when μ is close to 1. This is because βc = 〈k〉/(〈k〉 −
0.5) > 1 exceeding the range of β.
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5 Conclusions

This paper has addressed the impact of awareness on epidemic outbreaks by proposing

a mean-field approach accommodating heterogeneous transmission rates. Our analysis is

based on an SIS epidemiological process in random networks modeled by a configuration

model. Theoretical and numerical results show that both the contact and local awareness can

raise the epidemic threshold, while the global awareness cannot. Our results confirm and

further extend the previous observations in [1, 8, 10] to more general forms of awareness as

well as degree correlated transmission rates. We found that the non-linear effect encoded in

parameter α1 of local awareness implies that individuals who are exposed to many infectious

contacts can effectively contribute to disease control by increasing their awareness of risk.

In the present work, we implicitly assumed that the disease is visible at the same moment

it becomes infective. However, from a practical point of view, the information reaction

may experience time delay or retardation for an individual. Oscillatory behavior may be

displayed if we take delayed/periodic updating mechanisms into account [31]. Applications

of the techniques described here are also possible for other network structures, for example,

the dynamic contact networks [32], etc. Finally, we mention that a relevant issue we have not

addressed is the risk estimation. The form of risk functions in (1) might have implications

for disease control [33].

References

1. Bagnoli, F., Lió, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007)

2. Ferguson, N.: Capturing human behaviour. Nature 446, 733 (2007)

3. Blendon, R.J., Benson, J.M., DesRoches, C.M., Raleigh, E., Taylor-Clark, K.: The public’s response to

severe acute respiratory syndrome in Toronto and the United States. Clin. Infect. Dis. 38, 925–931 (2004)

4. Fenichel, E.P., Castillo-Chavez, C., Ceddia, M.G., Chowell, G., Parra, P.A.G., Hickling, J., Holloway,

G., Horan, R., Morin, B., Perrings, C., Springborn, M., Velazquez, L., Villalobos, C.: Adaptive human

behavior in epidemiological models. Proc. Natl. Acad. Sci. U. S. A. 108, 6306–6311 (2011)

5. Kiss, I.Z., Cassell, J., Recker, M., Simon, P.L.: The impact of information transmission on epidemic

outbreaks. Math. Biosci. 225, 1–10 (2010)

6. Funk, S., Salathé, M., Jansen, V.A.A.: Modelling the influence of human behaviour on the spread of

infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010)

7. Perra, N., Balcan, D., Gonçalves, B., Vespignani, A.: Towards a characterization of behavior-disease

models. PLoS ONE 6, e23084 (2011)

8. Kitchovitch, S., Liò, P.: Risk perception and disease spread on social networks. Procedia Comput. Sci.

1, 2339–2348 (2010)

9. Wu, Q., Fu, X., Small, M., Xu, X.-J.: The impact of awareness on epidemic spreading in networks. Chaos

22, 013101 (2012)

10. Olinky, R., Stone, L.: Unexpected epidemic thresholds in heterogeneous networks: the role of disease

transmission. Phys. Rev. E 70, 030902 (2004)

11. May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Phys. Rev. E 64, 066112 (2001)

12. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)

13. Shang, Y.: Discrete-time epidemic dynamics with awareness in random networks. Int. J. Biomath. 6,

1350007 (2013)

14. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct.

Algoritm. 6, 161–179 (1995)

15. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)

16. Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., Vespignani, A.: Modeling human mobility

responses to the large-scale spreading of infectious diseases. Sci. Rep. 1, Art. 62 (2011)



500 Y. Shang

17. Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M., Brunham, R.C.: Network theory

and SARS: predicting outbreak diversity. J. Theor. Biol. 232, 71–81 (2005)

18. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86,

3200–3203 (2001)

19. Nagy, V.: Mean-field theory of a recurrent epidemiological model. Phys. Rev. E 79, 066105 (2009)

20. Reed, W.J.: A stochastic model for the spread of a sexually transmitted disease which results in a scale-

free network. Math. Biosci. 201, 3–14 (2006)

21. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases. Cambridge

University Press (2000)

22. Moslonka-Lefebvre, M., Pautasso, M., Jeger, M.J.: Disease spread in small-size directed networks:

epidemic threshold, correlation between links to and from nodes, and clustering. J. Theor. Biol. 260,

402–411 (2009)

23. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys.

Rev. E 63, 066117 (2001)

24. A. Serrano, M., Boguñá, M.: Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett.

97, 088701 (2006)

25. Taylor, M., Taylor, T.J., Kiss, I.Z.: Epidemic threshold and control in a dynamic network. Phys. Rev. E

85, 016103 (2012)

26. Shang, Y.: Mixed SI(R) epidemic dynamics in random graphs with general degree distributions. Appl.

Math. Comput. 219, 5042–5048 (2013)

27. Smith, R.D.: Responding to global infectious disease outbreaks: lessons from SARS on the role of risk

perception, communication and management. Soc. Sci. Med. 63, 3113–3123 (2006)

28. LaRussa, P.: Pandemic novel 2009 H1N1 influenza: what have we learned? Semin. Respir. Crit. Care

Med. 32, 393–399 (2011)

29. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using

NetworkX. In: Proc. of the 7th Python in Science Conference, pp. 11–16 (2008)

30. Barabási, A.-L.: Scale-free networks: a decade and beyond. Science 325, 412–413 (2009)

31. Zhang, H., Zhang, W., Sun, G., Zhou, T., Wang, B.: Time-delayed information can induce the periodic

outbreaks of infectious diseases. Sci. Sin. Phys. Mech. Astron. 42, 631–638 (2012)

32. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious

disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)

33. Zhang, H., Zhang, J., Li, P., Small, M., Wang, B.: Risk estimation of infectious diseases determines the

effectiveness of the control strategy. Physica D 240, 943–948 (2011)


	Modeling epidemic spread with awareness and heterogeneous transmission rates in networks
	Abstract
	Introduction
	Model and mean-field analysis
	Epidemic threshold
	Simulation study
	Conclusions
	References


