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Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their

anatomical proximity to lymphatic vessels and their ability to synthesize, store and release

a large array of inflammatory and vasoactive mediators emphasize their significance

in the regulation of the lymphatic vascular functions. As a major secretory cell of the

innate immune system, MCs maintain their steady-state granule release under normal

physiological conditions; however, the inflammatory response potentiates their ability to

synthesize and secrete these mediators. Activation of MCs in response to inflammatory

signals can trigger adaptive immune responses by dendritic cell-directed T cell activation.

In addition, through the secretion of various mediators, cytokines and growth factors,

MCs not only facilitate interaction and migration of immune cells, but also influence

lymphatic permeability, contractility, and vascular remodeling as well as immune cell

trafficking through the lymphatic vessels. In summary, the consequences of these events

directly affect the lymphatic niche, influencing inflammation at multiple levels. In this

review, we have summarized the recent advancements in our understanding of the MC

biology in the context of the lymphatic vascular system. We have further highlighted the

MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.

Keywords: mast cells, lymphatic vessels, lymphatic system, immune response, cancer

INTRODUCTION

Since their first description by Paul Ehrlich in 1878 as “mastzellen,” mast cells (MCs) have been
mostly viewed as effectors of allergy (1). Investigations from the recent past have shown that nearly
all vascularized organs (including heart (2), lungs (3), kidneys (4), intestine (5, 6), and liver (7)),
the brain side (8, 9) of the blood-brain barrier, as well as the interfaces of host and the external
environment, such as skin (10), have a prevalence of MCs. However, it has only been in the last two
decades that MCs have gained significant attention for their involvement in several physiological
and pathological processes (11, 12).

MAST CELL SUBSETS AND TISSUE SPECIFICITY

MCs are hematopoietic in origin. Following egress from the bone marrow, MC progenitors
circulate in the blood, enter various tissues and develop into mature MCs under the influence of
local growth factors, such as stem cell factor (SCF) and interleukin 3 (IL3) (13). The hematopoietic
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development of MC is unique as their early lineage progenitors,
known as MC progenitors, leave the bone marrow before they
are detectable by any MC lineage-specific histochemical marker
and undergo transendothelial migration. ThenMCs according to
tissue environment differentiate into two major subclasses: (1)
connective tissue MCs, located by nerve endings and alongside
the blood and lymphatic vasculature, and (2) mucosal MCs,
located on mucosal surfaces such as gut and respiratory mucosa.
The secretory elements and granule releasing potential of these
MC phenotypes are mainly driven by the local factors in
these tissue niches (14). In addition, the subpopulations of
human mast cells from skin and lungs were initially classified
as MCTC (mast cell tryptase and chymase) and MCT (mast
cell tryptase) types. They were recognized on the basis of the
protease composition of their secretory granules, with tryptase,
chymase, carboxypeptidase A3, and cathepsin G in the former
and only tryptase in the latter (15, 16). MCTC contribute to tissue
remodeling and angiogenesis, whereas MCT have been shown to
be associated with host defense and immune functions. Both of
these two subtypes express FcεR1 (the high-affinity receptor for
the Fc region of immunoglobulin E), enabling them to contribute
to allergic and hypersensitivity reactions (17).

The density of MCs in tissues varies depending upon the
species and the location. For example, in human skin MC density
is 7,000–12,000, 20,000 per mm3 in the intestine and 500–4,000
per mm3 in the lungs (18). In addition, while MCs are prevalent
in lymph nodes, their number is greatly increased in response
to inflammation (19), where they actively contribute to the
recruitment of immune cells to lymph nodes through secretion
of cytokines and chemokines (20, 21).

OVERVIEW OF MECHANISMS OF MAST
CELL ACTIVATION

The cytoplasm of MCs carries secretory granules containing
inflammatory mediators (such as histamine), heparin, and a
number of cytokines among other mediators (Figures 1A,B).
Upon activation, MCs release the contents of these pre-stored
granules into their residing tissue microenvironment, initiating
multiple physiological responses that are not limited to allergy,
but are also involved in control of vascular tone and permeability,
neovascularization, and defense against pathogen exposure (22–
25) as well as influencing the trafficking of immune cells from
the adjacent tissue niche. Interestingly, the recent findings of
the close localization and high density of MCs near lymphatic
vessels (LVs) and their regulated release of pre-stored as well as de
novo synthesized vasoactive compounds has expanded the scope
of MC biology in the context of lymphatic biology (6, 12, 26–
28). Furthermore, recent studies also suggest MCs are immune
sentinels, as they are able to present antigens via the expression
of major histocompatibility complex II (MHC II) molecules
and can regulate the function of innate and adaptive immune
cells, including dendritic cells (DCs), macrophages, eosinophils,
lymphocytes (T and B cells), and fibroblasts (23, 29–31).

As innate immune cells, MCs are equipped for early and
rapid sensing of invading microorganisms such as bacteria,

parasites, fungi, and viruses. The magnitude and nature of MC
responses to different stimuli can be influenced by intrinsic
as well as micro-environmental factors that can modulate the
expression and functionality of MC surface receptors and/or
signaling molecules contributing to these responses (31, 32).
These pathogens display conserved molecular structures
called pathogen-associated molecular patterns (PAMPs) that are
recognized by pattern recognition receptors (PRRs), such as Toll-
like receptors (TLRs), on the MC surface. MCs express TLRs 1 to
7 and 9, NOD-like receptors (NLRs), and retinoic acid-inducible
gene-I (RIG-I). Signaling through TLRs on the MC surface
activates myeloid differentiation primary response protein 88
(MyD88) and MyD88 adapter like protein/Toll/Interleukin-1
Receptor Domain-Containing Adapter Protein (MAL/TIRAP),
which induces nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) translocation to the nucleus
resulting in the transcriptional initiation of several cytokines.
MC-derived histamine is a necessary mediator involved in
lipopolysaccharide- (LPS-) induced phosphorylation of NF-κB
(33). TLR4 can be activated by LPS, subsequently stimulating
MC/histamine/NF-κB-dependent production and release of
multiple cytokines by MCs and surrounding tissues (33) as
well as the release of preformed granules, whereas activation
of TLR2 by peptidoglycan results in extensive degranulation
(34, 35). Recent findings demonstrate that histamine, released
by MCs, is able to bind to histamine receptors 1 and 2 on
MCs and, as such, maintains or re-initiates further MC
degranulation (12).

The most extensively investigated pathway for MC
activation (schematically presented in Figure 1C) is mediated
through antigen/IgE/FcǫRI cross-linking. The high affinity
immunoglobulin E (IgE) receptor, FcǫRI, consists of an α-chain
that binds to IgE, a β-chain that spans the cell membrane,
and two γ chains. Tyrosine-protein kinase Lyn (Lyn) interacts
and phosphorylates tyrosine in its immunoreceptor tyrosine-
based activation motifs (ITAMs) on the β and γ chains of
the FcǫRI, which further activates Syk tyrosine kinases that
phosphorylate LAT1 and LAT2 (linkers for activation of T cells).
Furthermore, downstream phosphorylated phospholipase Cγ1
(PLCγ1) hydrolyzes phosphatidylinositol-4,5-bisphosphate
(PIP2) to make inositol-1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG), causing calcium (Ca2+) mobilization
from the endoplasmic reticulum. The release of Ca2+ from the
endoplasmic reticulum leads to stromal interaction molecule 1-
(STIM1) mediated opening of the store-operated Ca2+ channel
Orai1, leading to the influx of extracellular Ca2+. The influx
of Ca2+ is accompanied by an additional mechanism that is
mediated by transient receptor potential channel 1 (TRPC1).
The increase in intracellular Ca2+ levels and the activation of
PKC triggers the degranulation machinery. Calcium release also
activates NF-κB translocation to the nucleus, which results in
transcriptional initiation of several cytokines, such as IL6, tumor
necrosis factor alpha (TNFα), and IL13. However, activation of
FcǫRI also activates Fyn (Src kinase), complementary to the Lyn
signaling pathway, which can also modulate MC degranulation.
Fyn activates Syk which in a downstream cascade activates
mammalian target of rapamycin (mTOR) in an Akt-dependent
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FIGURE 1 | Overview of MC activation and degranulation mechanisms. (A) A transmission electron microscope image of an activated MC showing multiple secretory

granules inside the cell. Adapted from Grujic et al. (25) and reproduced with written permission from the publisher. Copyright 2013, the American Association of

Immunologists, Inc. (B) A schematic of a MC showing Immunoglobulin E (IgE)-mediated interaction with allergen and secretion of different inflammatory mediators.

(C). Aggregation of the IgE Receptor (FcεRI) by multivalent antigen induces activation of tyrosine-protein kinase Lyn (Lyn), the Src kinase that phosphorylates

immunoreceptor tyrosine-based activation motifs (ITAMs) of FcεRI β and γ subunits, followed by the association of the tyrosine-protein kinase Syk with the FcεRI via

Syk-Src Homology domain 2 (SH2) within phosphorylated ITAMs. This clustering leads to activation of tyrosine-protein kinase Fyn that phosphorylates the adaptor

growth factor receptor-bound protein 2 (Grb2). Activation of phospholipase C gamma 1 (PLC-γ1) results in the hydrolysis of phosphatidylinositol-4,5-bisphosphate

(PIP2) into inositol 1, 4, 5-triphosphate (IP3) and diacylglycerol (DAG). IP3 production leads to increased intracellular free calcium (Ca2+) concentration, whereas DAG

can activate both protein kinase C-θ (PKC-θ) and Ras. Tyrosine phosphorylated SLP76 also associates with the Rho-family guanine nucleotide exchange factor (GEF)

Vav1 and the adaptor protein, Nck. Vav1 activates Rac and cell division control protein 42 (Cdc42), which initiate actin cytoskeletal rearrangement via activation of

Wiskott-Aldrich syndrome protein (WASP). Cytoskeletal rearrangement is required for cell migration and microtubule-dependent degranulation of MCs.
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manner, and this can also induce MC chemotaxis and granule
release (25, 36–39).

In addition to these mechanisms, MCs can be activated
by a wide range of stimuli such as neuropeptides, cytokines,
growth factors, vasoactive mediators such as non-MC-derived
lymphatic-derived (40, 41) histamine, leukotrienes, toxins,
certain lectins, basic compounds, complement proteins,
immune complexes, certain drugs, as well as physical or
mechanical stress and stretch. Recent investigations have
shown that receptors for adenosine, complement C3A,
chemokines, sphingosine-1-phosphate, substance P and
SCF are also involved in MC activation (42–45). Activation
of these receptors can also potentiate FcεRI-mediated
activation (42–45).

An important aspect of the regulation of MC granule release
is MC sensitization. When the host is exposed to pathogens,
antigen-presenting cells are engaged. Subsequent activation of
Th2 cells along with interleukin production causes B cells to
undergo class-switching to form IgE antibody secreting plasma
cells. IgE directly binds to the high affinity receptor FcεR1
expressed on MCs. In the process of B cell differentiation
to IgE-secreting plasma cells, the MCs secrete interleukins-
4,−5, and−10, all of which are crucial for this process.
Thus, a MC-dependent MC sensitization loop can aggravate
inflammatory pathophysiology. The precise mechanism by which
this MC feedback regulation can be disrupted without inducing
pathological outcomes is still not clearly understood, however
repeated exposure to increasing doses of antigen or oral immune
therapy (46) can potentially ameliorate or reduce the degree of
MC sensitization (47) and thereby associated pathology.

MAST CELLS AS EFFECTOR CELLS AT
THE INTERFACE OF THE LYMPHATIC AND
IMMUNE SYSTEMS

Beyond the role of MCs in hypersensitivity reactions, as an
immune sentinel MCs respond to a variety of pathogenic
(and non-pathogenic) stimuli by releasing a host of vasoactive
mediators, cytokines, growth factors, proteases, biogenic amines
and interferon pre-stored within MC granules (see Table 1) (85).
Release of granules can be broadly divided into two types: (1)
degranulation, characterized by rapid release of pre-synthesized
granules [often seen in allergic reactions], and (2) de novo
mediator release, a comparatively slow process contributing to
chronic responses in tissue remodeling, pathogen clearance and
often involving engagement of innate as well as adaptive immune
cells. MCs, as innate immune sentinels, preferentially reside in
the interface of the host and its external environment (36, 86).
Exposure of MCs to Gram-negative bacteria induces release
of inflammatory mediators such as TNFα, IL6, and IL1β, and
chemotactic migration of natural killer cells, eosinophils, and
neutrophils, as well as upregulation of adhesion molecules and
chemokine ligands in blood and lymphatic vasculatures (26).
Activation of MCs also modulates both adaptive and innate
immune responses (85, 87). For example, release of histamine
by MCs has been shown to regulate T helper type 1 (Th1)
and Th2 responses by inducing Th1-specific (IL4, IL10, IL13)

and Th2-specific (IFNγ, IL2) (88) cytokines through differential
activation of histamine receptors 1 and 2 (61). A recent study
by Kambayashi et al. demonstrated that in certain inflammatory
conditions MCs may express MHC II molecules and present
antigens to CD4+ T cells and preferentially expand T regulatory
cells (89). Furthermore, studies on the formation of MC-DC (12,
90) or MC-T cell (91) immune synapses reinforce the possibility
of intercellular crosstalk and ability of MCs to recruit DCs or
T cells to the site of inflammation, infection or injury. As such,
MCs are endowed with the ability to not only modulate innate
but also adaptive immune responses (28, 92). In addition, recent
evidence suggests that MCs can increase their IL10 secretion in a
T regulatory cell-dependent manner. This, in turn, contributes
to the maintenance of graft tolerance (93). Therefore, while
T cells require MHC-bound antigens on antigen-presenting
cells to trigger T cell secretory pathways (94), MCs do not
require any MHC-bound antigen to initiate the degranulation
process. However, aberrant activation of MCs can cause MC
degranulation, which can suppress T regulatory cell function,
which essentially breaks down peripheral tolerance (95).

MCs are the major innate effector cell type localized close to
LVs (6, 12, 26, 28) (Figure 2) and are able to release numerous
inflammatory and vasoactive mediators (Tables 1, 2). These
unique features make MCs a relevant and key player in the
regulation of lymphatic immuno-physiology. The functional
implication of such a lymphatic-oriented localization pattern of
MCs is not completely understood. However, we believe that
it is reasonable to speculate that as the major sensory arm of
the innate immune response, activated and degranulated MCs
can release a wide array of vascular and inflammatory mediators
(135) that are able to diffuse to the adjacent LVs due to their
proximity (see Table 2). These mediators can instantaneously
interact with the lymphatic endothelium and promote expression
of adhesion molecules, such as integrins, that promote the
recruitment of circulating leukocytes as well as affecting the
permeability of LVs (discussed in details in (33)). Furthermore,
chemotactic migration of leukocytes from the tissue parenchyma
facilitates LV-directed immune cell trafficking, advancing the
resolution of a local inflammatory event (12, 28). MC mediators
also influence lymphatic pumping by affecting lymphatic muscle
cell contractility (33, 96), thus accelerating or slowing down
delivery of pathogens and immune cells to draining lymph
nodes. Many of these events are dysregulated due to age-related
alterations in LVs and signaling pathways that lead to MC
degranulation. In brief, aging alters structure (by increasing
the size of zones with low muscle cell investiture) (136),
ultrastructure (through loss of the glycocalyx), and proteome
composition with a concomitant increase in permeability of
aged lymphatic vessels (137). The contractile function of aged
LVs is depleted (138–140) with the abolished role of nitric
oxide and an increased role of lymphatic-born histamine in
flow-dependent regulation of lymphatic phasic contractions
and tone (40, 41). In addition, aging induces oxidative stress
in LVs (141) and facilitates the spread of pathogens from
these vessels into perilymphatic tissues (137). Aging causes the
basal activation of perilymphatic MCs, which, in turn, restricts
recruitment/activation of immune cells in perilymphatic tissues
(6, 28). This aging-associated basal activation of MCs limits
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TABLE 1 | MC-secreted major mediators in immune regulation.

Mediators Types of immune cell involved Functions References

TNF-alpha Naive T cells Effector T cells

Macrophages

Activation and proliferation of naive and effector T cells and

suppression of T regulatory cell (Treg) activation, activation of

macrophages

(48, 49)

Leukotrienes (LTB4, LTC4) Neutrophils

DCs

Recruitment and chemotaxis (50–52)

IL12 Th1 cells Initiation of a Th1 type response (53, 54)

IL6 Neutrophils

MCs

Macrophages

T helper cells

Regulation of inflammatory reactions, chemotaxis,

macrophage M2 polarization, T helper cell polarization

(55–57)

CCL20 DCs Recruitment to inflammatory site (58, 59)

IFN Gamma Th1 cells Th1 response, migration and proliferation (60)

Histamine Th1 cells

DCs

Cellular differentiation, chemotaxis (61, 62)

Serotonin T cells

Monocytes Macrophages

Chemotaxis, proliferation, cytokine secretion (63–65)

IL5 B cells Terminal differentiation of activated B cells (66, 67)

IL13 Fibroblasts Facilitation of a Th2 type response (67)

IL16 CD4+ T cells T cell growth and chemotaxis (68)

IL8 (CXCL8) Neutrophils Chemotaxis (69)

IL1-beta DCs and MCs T cell-independent DC activation

IL8 synthesis

(70–72)

MCP-1 (CCL2) DCs, memory T lymphocytes,

macrophages

Recruitment (73, 74)

MC chymase Neutrophils Recruitment (75)

RANTES/CCL5 Th2 cells Polarization toward Th2 phenotype (76)

MC tryptase Neutrophils Recruitment (77)

IL4 Th2 cells

B cells

Differentiation of naïve T cells to Th2 cells, migration of T

cells and B cells

B cell maturation, B cell survival signal

(67, 78, 79)

TGF beta iTregs, Th2 cells,

B cells

Development of T regulatory cells (Tregs),

B cell apoptosis and maturation

(80, 81)

IL2 Th1 cells

Tregs

Th1 and 2 differentiation, Treg survival and development (82, 83)

IL10 T follicular helper cells Downregulation of Th1 cytokines (84)

proper functioning of the MC/histamine/NF-κB axis that is
essential for the regulation of LV transport and barrier functions
as well as for both the interaction and trafficking of immune cells
near and within lymphatic collecting vessels (33). Cumulatively,
these aging-associated changes in MCs play important roles in
the pathogenesis of alterations in inflammation and immunity
associated with aging (33, 142, 143).

ROLE OF LYMPHATIC
VASCULATURE-ASSOCIATED MAST
CELLS IN THE REGULATION OF THE
INFLAMMATORY RESPONSE

Local inflammation causes pathological outcome such as
swelling, where chemotactic migration of leukocytes into the
affected area is accompanied by the rapid influx of interstitial
fluid. Such pathophysiological change increases the overall

tissue interstitial pressure gradient. This pulls on the anchoring
filaments attached to lymphatic capillaries (initial lymphatics),
opening primary lymphatic valves and helping various immune
cells to enter lymphatic network, to clear accumulated antigens
and noxious tissue debris from the inflamed site (144–147).
The phasic contractions of lymphangions in LVs support long-
distance flow of lymph and immune cells and direct the immune
cell trafficking from the affected site to the draining lymph nodes
(146, 147). Furthermore, lymph nodes, as secondary lymphoid
organs, are continuously perfused and presented with soluble
foreign antigens by the lymph transported through afferent
LVs. Continuous screening of lymph in the node is necessary
for activation of node-resident naïve antigen-presenting cells
and priming of naïve T and B cells in response to any given
inflammatory stimuli.

In addition, novel studies suggest that inflammation-induced
changes to the microenvironment can upregulate the expression
of adhesion molecules such as ICAM-1 and VCAM-1, as well
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FIGURE 2 | Lymphatic system architecture along with the lymphatic tissue niche. (1) Initial lymphatics (lymphatic capillaries) (2) Pre-collector LVs; (3) Perilymphatic

antigen-presenting cells; (4) Perilymphatic MCs; (5) Collecting LVs; (6) Lymphatic valve in collecting LVs; (7) Degranulating MCs in response to inflammation; (8)

Increased permeability of LVs in response to inflammation; (9) LECs; (10) Lymphatic muscle cells; and (11) Inflammation-induced MC-DC immune synapse formation

in perilymphatic tissues. dLN, Draining lymph node.

as chemokines such as CCL21 and CX3CL1 in lymphatic
endothelial cells (LECs) (148, 149). This upregulation can
enhance trafficking of antigen-presenting cells, such as DCs
and macrophages, from the affected tissues through the walls
of collecting LVs toward the draining lymph node, thus
contributing to the resolution of tissue inflammation (145, 146,
150). In addition, molecules such as the chemokine scavenging
receptor D6 expressed by LECs can selectively regulate the
interaction between mature and immature DCs, which helps in
the cellular trafficking and removal of inflammatory chemokines.
At the same time, the expression of D6 is dependent on
molecules such as IL6 and interferon gamma secreted by the
MCs and present in the inflammatory microenvironment (151).
In addition, inflammation can induce expansion of the lymphatic
network through initiation of lymphangiogenic programs, driven
by vascular endothelial growth factor-C (VEGF-C-) and VEGF-
D-related signaling pathways. Their activation depends on
molecules such as TNFα, fibroblast growth factor (FGF), platelet-
derived growth factor (PDGF) and IL6 secreted by immune cells
closely associated with LVs, such as perilymphaticMCs (Table 2),
as well as tissue-resident or migratory macrophages. Although
considerable progress has been made in understanding the basic
mechanisms of lymphangiogenic programs, the question on
how these regulatory factors induce inflammation-associated
lymphangiogenesis warrants further investigation (152).

It has been suggested that lymphangiogenesis contributes to
chronic inflammation-associated pathology or to the resolution
and repair of damaged tissue. However, a chronic inflammatory
environment can also influence not only lymphatic muscle and
endothelial cells but also activate regulated release of granules
by MCs. Overall, an inflammation-induced, MC-dependent
dysfunction of LVs (33) may cause significant local stasis of
lymph as well as diminished trafficking of lymphocytes to the
draining lymph node causing overall immune suppression. The
resultant altered tissue environment is manifested clinically, e.g.,
as lymphedema, local fibrosis, and secondary bacterial infections.
These pathologies are strongly associated with diseases such as
secondary lymphedema, often occurring following the surgical
removal of lymph nodes to limit cancer progression or in cases
of lymphatic filariasis or lipedema (153).

ROLES OF MAST CELLS IN THE
MODULATION OF LYMPHATIC
IMMUNO-PHYSIOLOGY IN CANCER

Genetic and epigenetic alteration of healthy as well as tumor-
associated cells play a pivotal role in the development of tumor
microenvironment and progression of tumor pathology. The
presence of MCs in human tumors was known for more than
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TABLE 2 | MC-derived Mediators that Regulate the Lymphatic Vasculature.

MC mediators Affected lymphatic functions Other major effects/targeted

signaling mechanisms

References

Histamine Lymphatic contractility, lymphatic

permeability, immune cell recruitment to LVs

PKC/ROCK/NO

HR/NF-κB

ROCK, cAMP

(12, 28, 96–110)

Leukotrienes (LTB4,

LTC4)

Lymphatic permeability, immune cell

recruitment to LVs

P-Selectin (98, 111)

Serotonin Lymphatic contractility cAMP/cGMP (112)

TNF-alpha Expression of adhesion molecules in

lymphatic endothelial cells (LECs),

lymphangiogenesis, lymphatic pumping

Endothelial leukocyte adhesion

molecule-1, intercellular adhesion

molecule-1, vascular cell adhesion

molecule

NF-κB, iNOS

(113–116)

IL6 Inflammation-induced lymphangiogenesis Src-MAPK-VEGF-c in LECs, upregulation

of adhesion molecules in LECs

(117)

VEGF Lymphangiogenesis, lymphatic permeability PI3K-HIF-VEGF (26, 118, 119)

Bradykinin Lymphatic contractility, lymphatic

permeability

Kinin B2 receptor j-dependent manner (120, 121)

IL8 LEC proliferation, immune cell recruitment

to LVs

Adhesion molecule expression on LECs (122, 123)

MC tryptase Immune cell recruitment to LVs, matrix

degradation

CCL2, IL8 expression on LECs (26, 124, 125)

MC chymase Matrix remodeling, neutrophil recruitment Conversion of Ang I to Ang II, activation

of pro-MMP 9

(124, 126)

Prostaglandin E2 Lymphatic contractility PKA-dependent actions (103, 127)

PDGF Lymphatic contractility, lymphangiogenesis NO-mediated MAPK activation (128–130)

FGF Lymphangiogenesis Activation of VEGF-C and VEGF-D (131, 132)

IFN gamma Lymphatic permeability, lymphocyte binding

with LECs

Endothelin-1 and VE-Cadherin (133, 134)

a century (154), however their specific roles in cancer have
just begun to be explored in recent decades. Several studies
have shown an increased number of MCs in tumors, such as
squamous cell carcinoma of the esophagus (155), pancreatic
adenocarcinomas (156–158), prostate cancer (159), breast cancer
(160, 161), and many hematological carcinomas (162–164). The
studies on MCs in tumor sites suggest a potential role of MCs
in tumor progression (165, 166). However, whether MCs play an
anti-tumorigenic or pro-tumorigenic role remains controversial
(165, 167) and has become an active area of research.

The cross-talk between MCs and other cells such as
cancer-associated fibroblasts (CAFs), tumor cells, myeloid-
derived suppressor cells, and immune cells in the tumor
microenvironment is being explored by many research groups.
MCs secrete several cytokines, depending on their activation
status, which directly and indirectly impact the behavior of cancer
cells and other components of the tumor microenvironment
(Figure 3A). TNFα released by MCs helps DCs to mature
and express more MHC Class I molecules and co-stimulatory
receptors on MCs that activate CD8+ T cells in the tumor-
draining lymph node (168, 169). Since activated CD8+ T cells
play a critical role in eliminating cancerous cells from the body,
it is important to explore to what extent MC-mediated activation
of T cells contributes to cancer immunity (170). In one study,
MCs were shown to be present in metastatic lymph nodes

of cancer patients (171), suggesting a connection between the
immune and lymphatic system in cancer. Interestingly, Stelekati
et al. showed that MCs are capable of presenting antigens in
the context of MHC class I and II molecules (168). In this
latter study, MC-mediated antigen presentation was found to
regulate cytotoxic T lymphocyte effector function. Another study
by Nakae et al. reported that MCs express several co-stimulatory
molecules and can activate T cells in a TNFα-dependent manner
(169). MCs were also reported to release several cytokines that
direct the functions of a subset of T cells (82). Thus, like other
professional antigen presenting cells, MCs are also capable of
providing signals to T cells: antigen presentation, expression
of co-stimulatory molecules, and release of cytokines. However,
these events happen in different contexts and in a poorly
coordinated manner, and are not necessarily related to cancers.
Antigen presentation by MCs has also been reported in the
case of bacterial infections (172). Taken together, these findings
broaden our understanding of the capabilities of MCs to serve as
non-professional antigen presenting cells.

SCF is among the many inflammatory mediators produced
and secreted by tumor cells in the tumor microenvironment.
SCF is known to bind the c-kit receptor on the surface of
MCs (43, 173). Activation of this signaling cascade is necessary
for maturation, migration, and survival of MCs, which could
explain why an increased accumulation of MCs is observed in
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FIGURE 3 | Mast cells in the tumor microenvironment. (A) MCs secrete different cytokines/inflammatory mediators into the tumor microenvironment. These

cytokines/inflammatory mediators modulate cellular and acellular components of the tumor. The cellular components include cancer cells, cancer-associated

fibroblasts, and different types of immune cells, while the acellular component is mainly the extracellular matrix (ECM). (B) MCs also modulate angiogenesis and

lymphangiogenesis in the tumor. Tumor necrosis factor-alpha (TNFα) released by MCs induces migration of DCs into the draining lymph nodes where T cell activation

takes place. MC-derived proteases induce modification of the ECM, which alters the microarchitecture leading to metastasis.

the tumor microenvironment of many cancers. A study led by
Zhang et al. (174) provided direct evidence that SCF released by
tumor cells modulates tumor angiogenesis by regulating MCs. In
this study, the researchers used sense or antisense SCF cDNA to

overexpress or deplete SCF expression in rat mammary tumor
cells. Depletion of SCF significantly decreased MC infiltration
and vascularization in the tumor whereas the opposite effects
were observed in SCF-overexpressing tumors. Thus, SCF should
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be considered as a therapeutic target to inhibit the progression
of certain types of tumors. A later study by Huang et al. (175)
suggested a role for SCF-activated MCs in remodeling of the
tumor microenvironment and subsequent immunosuppression.
The activated MCs were shown to release adenosine, which in
turn increased T regulatory cell infiltration into the tumors.

Angiogenesis and lymphangiogenesis are very critical steps in
the development of a tumor since their induction is necessary for
the nourishment of growing tumors (176, 177). In addition, the
tumor-associated lymphatic network also plays a pivotal role in
the process of metastasis (178). Studies have shown that cancer
cells leave their site of origin and migrate to tumor-draining
lymph nodes (179). The presence of cancer cells in tumor-
draining lymph nodes serves as a major prognostic indicator
in many cancers, including breast, skin, and colon cancers.
Thus, the lymphatic network within and around a solid tumor
serves as a route for dissemination and metastasis of cancer
cells (Figure 3B).

The evidence that MCs are involved in lymphangiogenesis
comes from multiples studies. In a report by Raica et al. (180),
MCs were identified as the key player in the development of
tumor LVs in a certain subtype of breast cancer. The study was
conducted by analyzing histopathological samples from human
patients that showed a positive correlation between peritumoral
MC density and lymphatic microvessel density. In contrast,
Utrera-Barillas et al. (181) reported a direct correlation between
MC density and blood vasculature, whereas macrophage density
was directly correlated with lymphatic vasculature in certain
stages of cervical carcinoma, suggesting tumor type-specific roles
for MCs in neovascularization.

Poor prognosis, invasion, and metastasis of cancer are often
associated with increased LV density and secretion of VEGF-C
(182–184), a pro-lymphangiogenic cytokine known to be secreted
by many cancer cells (182, 185, 186) as well as MCs (118). VEGF-
C increases the rate of lymph flow to the tumor-draining lymph
node (187), which could facilitate cancer metastasis. However,
further studies are warranted to draw a concrete link between
them. Tumor cells can also gain metastatic features as a result of
epithelial-to-mesenchymal transition (EMT). EMT is associated
with chemoresistance in many cancer types. MCs were reported
to induce EMT and cancer stem cell signatures in human thyroid
cancer through CXCL8/IL-8 pathways (188, 189).

MCs can remodel the tumor microenvironment not only
by regulating the cells but also by changing the tumor matrix,
commonly known as extracellular matrix (ECM). MCs secrete
different matrix metalloproteinases (such as MMP9) (190) and
proteases, including tryptase and chymase (77, 191). These
enzymes digest tumor matrix favoring the expansion and
migration of tumor and other cells in the microenvironment.
Such matrix degradation also disrupts the physical contact
between epithelial and stromal layers, leading to detachment of
tumor cells and metastasis (192, 193).

In summary, the involvement of MCs in tumor progression
is multi-faceted. Several studies of different cancers in human
patients and experimental models indicate that MCs promote
tumor growth by suppressing immunity and/or by promoting

angiogenesis, while other studies indicate MCs are instrumental
in inhibiting tumor growth. These studies have been summarized
and discussed in multiple recent review articles (165, 167, 194).
While the controversy remains as to whether MCs act as pro-
tumorigenic or anti-tumorigenic cells, it is probably safe to
assume that their functions are tumor type-specific in nature
and cannot be generalized. Furthermore, it has long been
debated whether inflammation is linked to cancer (195, 196)
and to what extent MCs are involved in this process in order
to develop new treatment lines and preventive measures. The
precise mechanism by which MC-mediated inflammation leads
to cancer progression, if any, is yet to be determined.

CONCLUSIONS AND PERSPECTIVES

For many years, MCs have only been perceived as an integral
part of the innate immune system. However, recent studies
on MCs have tremendously changed our understanding of
their roles in the development of adaptive immune responses
as well as their close association with lymphatic vasculature.
Evidence presented in this review suggests that MCs are
intricately involved in the regulation of lymphatic functions,
thus contributing to the convergence of the immune system
with the lymphatic vascular system. Through the secretion of
various mediators, cytokines and growth factors, MCs not only
facilitate cellular interaction and migration but also influence
lymphatic permeability, contractility, and vascular remodeling
and immune cell trafficking toward and through the LVs. These
MC-mediated physiological alterations on LVs are also critical
to cancer progression. The signaling axis and the cross-talk
between MCs and different cell types in the lymphatic niche of
healthy and cancerous tissue remain poorly defined. Certainly,
this lymphatic-MC-adaptive immune axis is greatly dependent
upon the various inflammatory contexts as well as a tissue-
or tumor-specific microenvironment. However, many of these
pathways and the crosstalk between MCs and other cells have yet
to be explored, warranting further studies to understand many
diseases associated with inflammation and to determine further
in depth howMCs could be approached as a potential therapeutic
target for next-generation medicine.
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