
https://doi.org/10.3758/s13428-021-01674-7

Efficient estimation of bounded gradient-drift diffusion models
for affect on CPU and GPU

Tim Loossens1 · Kristof Meers1 ·Niels Vanhasbroeck1 ·Nil Anarat1 · Stijn Verdonck1 · Francis Tuerlinckx1

Accepted: 16 July 2021
© The Author(s) 2021

Abstract
Computational modeling plays an important role in a gamut of research fields. In affect research, continuous-time stochastic
models are becoming increasingly popular. Recently, a non-linear, continuous-time, stochastic model has been introduced
for affect dynamics, called the Affective Ising Model (AIM). The drawback of non-linear models like the AIM is that
they generally come with serious computational challenges for parameter estimation and related statistical analyses. The
likelihood function of the AIM does not have a closed form expression. Consequently, simulation based or numerical
methods have to be considered in order to evaluate the likelihood function. Additionally, the likelihood function can have
multiple local minima. Consequently, a global optimization heuristic is required and such heuristics generally require a large
number of likelihood function evaluations. In this paper, a Julia software package is introduced that is dedicated to fitting
the AIM. The package includes an implementation of a numeric algorithm for fast computations of the likelihood function,
which can be run both on graphics processing units (GPU) and central processing units (CPU). The numerical method
introduced in this paper is compared to the more traditional Euler-Maruyama method for solving stochastic differential
equations. Furthermore, the estimation software is tested by means of a recovery study and estimation times are reported for
benchmarks that were run on several computing devices (two different GPUs and three different CPUs). According to these
results, a single parameter estimation can be obtained in less than thirty seconds using a mainstream NVIDIA GPU.

Keywords Affect dynamics · Affective Ising Model · CPU · Euler-Maruyama · GPU · Metropolis-Hastings ·
Non-linear diffusion models

Introduction

Continuous-time stochastic modeling is becoming increas-
ingly popular in the field of affect research (de Haan-
Rietdijk et al., 2017; Hamaker et al., 2015; Oud, 2002, 2010;
Voelkle & Oud, 2013). Continuous-time models, like the
Ornstein-Uhlenbeck (OU) model (de Haan-Rietdijk et al.,
2017; Hamaker et al., 2015; Oud, 2002, 2010; Voelkle &
Oud, 2013) and the Affective Ising Model (AIM; Loossens
et al., 2020) have several advantages over discrete-time
models, such as the popular vector autoregressive model
(Bos et al., 2012; Bringmann et al., 2013; Lodewyckx et al.,
2011; Pe et al., 2015; Snippe et al., 2015; Wichers, 2014;

� Tim Loossens
tim.loossens@kuleuven.be

1 KU LEUVEN, Tiensestraat 102 - bus 3713,
3000 Leuven, Belgium

Zheng et al., 2013); for instance, affect processes are gen-
erally conceived as continuously unfolding across time. A
continuous-time description is more conform with this idea.
By modeling affect processes as if they evolve continuously,
issues with unequally spaced time intervals are naturally
resolved. Unequally spaced time intervals are common
in affect studies, especially studies concerned with affect
dynamics in daily life which generally rely on experience
sampling methods (Bolger et al., 2003, 2013). Although
studies could be designed where time intervals between
observations are equally spaced, unequal intervals are often
desirable for the ecological validity of the data (Hektner
et al., 2006) or for increasing the efficiency by which infor-
mation about the process being studied can be obtained
(Voelkle & Oud, 2013).

Another aspect of affect dynamics that is brought
more frequently into the spotlight is its non-linear nature.
Evidence has been found for heavily skewed (Crawford
& Henry, 2004; Merz et al., 2013; Yik et al., 1999),
V-shaped (Kuppens et al., 2013; Mattek et al., 2017)

/ Published online: 24 September 2021

Behavior Research Methods (2022) 54:1428–1443

1 3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01674-7&domain=pdf
http://orcid.org/0000-0002-7587-1922
mailto: tim.loossens@kuleuven.be

and even multimodal data distributions (Loossens et al.,
2020). There is a particular interest in non-linear dynamics
because of possible relationships with chaotic behavior
and catastrophe theory (Van der Maas & Molenaar, 1992).
Claims have been made, for instance, about autocorrelations
and cross-correlations increasing before a switch to a state
of depression – a signature which is credited to the effects
of critical slowing down before a phase transition (Leemput
et al., 2014). Non-linearities, like the presence of multiple
attractors, could also describe regime-switching dynamics,
a dynamical feature that is believed to be an important
characteristic of certain psychopatologies of affect, such
as bipolar disorder (Hamaker et al., 2015) and borderline
personality disorder (Houben et al., 2016).

Although non-linear dynamics have caught the atten-
tion of affect researchers, continuous-time models that
incorporate and unify such dynamics and whose param-
eters can also be estimated on real data remain scarce.
Serious attempts are nonetheless being made to promote
continuous-time modeling (Driver et al., 2017). Software
has been developed for parameter estimation of the OU
model – the continuous-time variant of the lag-1 vector
autoregressive model. Possibilities for a state space formu-
lation of the model or a hierarchical formulation have also
been made available. The development of performant soft-
ware for parameter estimation and related analyses is crucial
because unlike for the popular discrete-time autoregressive
models, closed-form expressions for the parameters esti-
mates of continuous-time stochastic models, such as the OU
model, generally do not exist. One has to rely on numer-
ical, and (global) optimization schemes in order to locate
the global optimum of the likelihood function. Optimiza-
tion algorithms often require numerous objective function
evaluations in order to locate the global optimum which
can constitute a computational bottleneck. Although the
OU model does not have closed-form expressions for its
parameter estimates, it does have a closed-form expression
for its likelihood function. Such a closed form expression
is beneficial when a large number of function evaluations
are required. For non-linear models, even the likelihood
function itself need not have a closed-form expression; in
that case, one has to rely on simulation-based or numerical
approximations to obtain the likelihood function, making
the optimization procedure more complicated and computa-
tionally expensive.

Recently, the Affective Ising Model (AIM) was intro-
duced, which is a non-linear, continuous-time, stochastic
model for affect (Loossens et al., 2020). The model was
applied to two-dimensional affect data characterised by
the positive (PA) and negative affect (NA) dimensions. It
was demonstrated that the AIM is able to capture non-
linearities that commonly occur in experience sampling
data, like skew, V-shape and bimodalities. Similar to the

OU model, fitting of the AIM is done using maximum-
likelihood optimization. Likelihoods are preferably approx-
imated numerically using graphics processing units (GPU),
but approximations can also be obtained using Central Pro-
cessing Units (CPU). The min-log-likelihood function is
minimized using a global optimization heuristic: differential
evolution (DE; storn & Prive 1997).

In this paper, we introduce a Julia (https://Julialang.
org) software package dedicated to fitting the Affective
Ising Model. Julia is a performant scientific programming
language that includes packages for writing GPU code.
Furthermore, it is open and free to use. First, we will
briefly discuss the AIM as introduced by Loossens et al.
(2020). Next, we will discuss the numerical algorithm that
is used in the software package to compute the likelihood
of the model. Subsequently, we elaborate on the structure
of the software package and the different options that
are included. The package includes an implementation of
the DE heuristic for the minimization of the min-log-
likelihood function. The min-log-likelihood function can be
numerically computed using either a GPU or a CPU. In
the final section of the paper, we discuss the accuracy of
the numerical approximation method by comparing it to
the traditional Euler-Maruyama approximation scheme. We
also test the estimation software by means of a recovery
study. Additionally, some benchmark estimations have been
included to demonstrate the performance of the estimation
software both on GPU and CPU for different computing
devices (a standard ‘thin and light’ laptop, a workstation
laptop and a workstation desktop).

The Affective IsingModel

the Affective Ising Model (Loossens et al., 2020) describes
the evolution of the momentary experienced levels of
positive and negative affect, which we will denote as y1(t)

and y2(t) respectively. In the absence of positive sensations,
y1 equals zero. Similarly, y2 equals zero in the absence of
negative sensations. If the momentary experienced positive
affect is overwhelming, on the other hand, y1 is equal to
one. Likewise, y2 equals one when the momentary negative
affect is overwhelming. Thus, 0 ≤ yi ≤ 1 for i = 1, 2.

According to the AIM, the dynamics of the affect
state y(t) = (y1(t), y2(t)) is governed by the stochastic
differential equations

dyi(t) = −D
∂F(y(t))

∂yi

dt + √
2D dWi(t), (1)

with i = 1, 2. The function F(y) depicts the free energy
of the affect system, which is unique to every individual. It
includes all interactions involved in orchestrating affective

1429Behav Res (2022) 54:1428–1443

1 3

https://Julialang.org
https://Julialang.org

experiences. From a modeling perspective, it can be
considered a potential surface on which the affect state y(t)
evolves. The parameterD is known as the diffusion constant
and is also unique to every individual. It determines how
quickly the affect state y(t) evolves on the potential surface
F(y) – it is a time-scaling parameter. Smaller values make
time move slower (for the same amount of time, the system
will change less), while larger values make time move faster
(for the same amount of time, the system will change more).
The functions Wi denote uncorrelated Wiener processes,
introducing inherent stochasticity to the system.

The free energy function F(y) of the AIM is given by

F(y) =
2∑

i=1

[
−Λiy

2
i +Θiyi+Ni

(
yi ln(yi)+(1−yi) ln(1−yi)

)]+Λ12y12.

(2)

The parameters Λi ∈ R
+ represent positive feedback

parameters; both the positive and negative affect systems are
self-exciting. The parameter Λ12 ∈ R depicts the mutual
interaction between the positive and negative dimensions.
When Λ12 > 0, the subsystems are mutually inhibiting;
strong positive sensations will suppress negative sensations
and vice versa. When Λ12 < 0, the subsystems are mutually
exciting; positive sensations will stir negative sensations and
the other way around. The parameters Θi ∈ R

+ depict
thresholds. The larger the threshold, the more difficult it is
for the corresponding dimension to become agitated. The
terms involving the parameters Ni ≥ 0 and the logarithms
are related to the entropy of the affect system. Underlying
the positive and negative affect systems are actually two
pools containing an incredible number of stochastic binary
units (see Loossens et al., 2020). These units are an abstract
representation of all neuronal, hormonal and chemical
processes involved in brain and body to establish affect.
Given this underlying system, the entropy describes what
affect states y are more probable and which are less probable
should there be no interactions. By virtue of the interactions,
affect states that would rarely be experienced because of
the entropy can become more natural. For a more elaborate
description of the parameters and their interpretation, see
Loossens et al. (2020).

Equation 1 describes how the affect system updates in
an infinitesimal interval dt . Aggregating all these small
changes (i.e., integrating the equation over time), one
can determine the position of the affect state given the
underlying model parameters and a previous observation
y(t0). However, because of the inherent stochasticity, it
is impossible to determine the position of the affect state
exactly. There are many pathways the affect system could

have taken since the previous observation. At most, the
conditional probability of the affect state being somewhere
in the affect space – the unit square – can be determined.

There are two effects that influence the conditional
probability: drift and diffusion. The term in Eq. 1 involving
the dt is called the drift term. It governs the deterministic
evolution of the affect state. The affect state is bound to
drift towards local minima of the free energy function,
even if external fluctuations were absent. Because of the
logarithmic terms in the free energy, the drift term is
non-linear. By virtue of the non-linearity, the free energy
function of the AIM can have multiple local minima (up to
four in a two-dimensional space). The presence of multiple
local minima will result in multimodal data patters, since the
affect state is more likely to be found around local minima
(for an illustration of a bimodal AIM fit, see Fig. 1c or see
Loossens et al., 2020). In addition, the combination of the
non-linearity and the mutual inhibition between the PA and
NA dimension can result in V-shaped, nonlinear correlations
between PA and NA as often observed in real data (Larsen
et al., 2017; Kuppens et al., 2013; Mattek et al., 2017).
Heavily skewed data distributions can also be generated.

The term in Eq. 1 containing the Wiener processes is
the source of the inherent stochasticity or diffusion effect.
Although the affect state is bound to drift toward local
minima, part of the change in the affect state is probabilistic
– a random fluctuation. On an infinitesimal timescale,
the Wiener processes are Gaussian distributed with mean
zero and variance dt (see e.g., (Gardiner, 1986)). The
Wiener processes are uncorrelated. In addition, they are also
uncorrelated in time.

If we were to prepare someone in a specific affect state
and let him evolve for a while, over and over again, always
for the same period time, we would always get different
outcomes because of the inherent stochasticity. Were we
to do this an infinite number of times, we would however
notice that there are specific regions in the affect space
where the person ends up most of the time, while other
regions remain largely unexplored. After the evolution has
initiated, there is a probability density function p(t, y)
that specifies where the affect state is more probable to
be observed and where it is not. This probability density
depends on the initial state (where it started), the model
parameters, and the time that has elapsed. The more time
has elapsed, the more ground could have been covered.

The evolution of the conditional probability density
function p(t, y) is governed by the Fokker-Planck equation,

∂p(t, y)
∂t

= D

2∑

i=1

{
∂

∂yi

(
∂F (y)
∂yi

p(t, y)
)

+ ∂2p(t, y)

∂y2
i

}
(3)

1430 Behav Res (2022) 54:1428–1443

1 3

with initial condition

p(0, y) = δ(y − y0). (4)

Since all possible emotional experiences live in the unit
square, the affect state can never cross the boundary of
this space. We therefore also have to impose the no-flux
boundary conditions (see Appendix A)

{
∂F (y)
∂yi

p(t, y) + ∂p(t, y)
∂yi

}∣∣∣∣
∂Ω

= 0, (5)

where ∂Ω denotes the boundary of the unit square. The
initial condition (4) states that we let the affect state evolve
from a known position y(0) = (y1,0, y2,0) at time t = 0.
Here, the time of the last measurement is considered to
be at t = 0 and y(0) simply denotes the last observation.
The boundary condition (5) states that the affect state
cannot cross the boundary, the probability flux through the
boundary is zero (but there can be probability mass on
the boundary). The first term on the right-hand side of
Eq. 3 describes the effect of the drift on the conditional
probability density function. The second term is a pure
diffusion term.

Because the affect state is attracted toward local minima
of the free energy function and because of the boundedness
of the affect space, the conditional probability density
p(t, y) stabilizes in the long-time limit – it becomes
stationary. The stationary distribution is given by the
Boltzmann distribution

p(y) = lim
t→∞ p(t, y) = e−F(y)

Z
, (6)

where Z denotes the normalization constant,

Z =
∫ 1

0
dy e−F(y).

If enough data is collected over a sufficiently long period
of time, the Boltzmann distribution (6) will be the same as
the distribution of the data (provided the data was generated
by AIM mechanisms). The stationary distribution specifies
what regions of the affect space are more likely to be visited
by an individual and what regions are unlikely to be visited,
unconditional on any previous state.

Many models encountered in affect psychology, which
are primarily related to the Ornstein-Uhlenbeck (OU) model
(de Haan-Rietdijk et al., 2017; Oud, 2002, 2010; Voelkle &
Oud, 2013), have a description similar to the AIM. However,
they often do not have any nonlinear terms in the drift nor
are they bounded. As a consequence, their conditional and
stationary distributions are Gaussian (see (Loossens et al.,
2020)). For the AIM, both the conditional and stationary
distributions deviate from Gaussianity.

Data

Although the AIM has an abstract (neuro) physiological
inspiration (Loossens et al., 2020), it was introduced as a
model for affective time series obtained via experience sam-
pling (ESM) (Csikszentmihalyi & Larson, 1987; Hektner
et al., 2006) and daily diary (Bolger et al., 2003) meth-
ods. In general ESM and daily diary studies, participants
are instructed to carry around a mobile device (typically a
smartphone or palmtop) in their daily life. Throughout the
day, or once at the end of the day, they fill out several sur-
veys about their momentary emotion levels. Participants rate
the intensity of a fixed set of discrete emotion items (e.g.,
How happy do you feel at the moment?), usually on a Likert
scale or a continuous scale ranging from not at all to very
much. Capturing people’s emotions (almost) in the moment
has the strength that it not only significantly reduces mem-
ory biases, the ambulatory nature of these assessments also
yields emotional time series that are high in ecological
validity (Dejonckheere et al., 2019). If positive and nega-
tive affect are not explicitly included as items in the surveys,
PA and NA ratings at a given time point are generally con-
structed by averaging over the positive and negative affect
ratings, respectively, obtained at that time.

An illustration of a typical ESM time series is depicted
in Fig. 1a. Positive affect ratings are depicted in lighter grey
and negative affect ratings are depicted in darker grey. In
Fig. 1b, a scatter plot of the same data is shown. In Fig. 1c,
the same scatter plot is shown, but in combination with a
fit of the AIM. The contour lines depict the equilibrium
distribution of the model fit. We can see that the equilibrium
distribution has two distinct modi.

Estimation

The AIM includes eight parameters Θ = {Λ1, Λ2, Λ12,

Θ1, Θ2, N1, N2, D}. Given a time series {xj =
(x1j , x2j) | j = 0, 1, ..., n − 1} of momentary PA and NA
ratings, these parameters can be estimated using maximum-
likelihood optimization. In order to make the affect ratings
interpretable for the model, they have to be transformed
so that they fall between 0 and 1. We then identify each
(transformed) measurement xj with a position in the affect
space:

xj = y(tj).

The likelihood function

Parameter estimates Θ̂ can be found by maximiz-
ing the likelihood function. The likelihood function
L (Θ | {xj }j=0,...,n−1) of the parameter set Θ given the data

1431Behav Res (2022) 54:1428–1443

1 3

Fig. 1 Illustration of ESM data a A time series of PA (light grey) and NA (dark grey) ratings. This is an extract from the data discussed by
Heininga et al. (2019). b A scatter plot of the data from panel (a). c The same scatter plot as in panel (b), but combined with a fit of the AIM. The
contour depicts the altitude lines of the equilibrium distribution of the AIM fit

{xj | j = 0, 1, ..., n − 1} is a product of the likelihoods of
the individual data points:

L (Θ | {xj }j=0,...,n−1) = �(Θ | x0)
n−2∏

j=1

�(Θ | xj , xj+1),

where the likelihoods �(Θ | xj , xj+1) of the parameter
set Θ given the consecutive measurements (xj , xj+1) are
defined as

�(Θ | xj , xj+1) = pΘ (tj+1, xj+1 | tj , xj).

Here, pΘ (tj+1, y | tj , xj) corresponds to the probability
density function of y conditional on the observation xj =
y(tj) at time tj and the AIM parameters Θ . It is a solution
of the Fokker-Planck (3) with Θ as parameters and initial
condition

p(tj , y) = δ(y − xj).

The initial data point x0 cannot be evaluated condi-
tionally on some prior information because there is no
information of the affect state prior to this observation. If
this data point is assumed not to be exceptional in any way, it
should probably lie within a likely region in the affect space,

which can be determined using the stationary distribution
(6). In that case, the likelihood �(Θ | x0) of the parameter
set Θ given the initial measurement x0 is given by

�(Θ | x0) = pΘ (x0),

where pΘ (y) denotes the stationary distribution of y
corresponding to the parameter set Θ . If there is however
reason to believe something exceptional has occurred before
the initial measurement, something which might have
disrupted the affect state in such a way that it is possible
that x0 does not nicely fall within the stationary distribution,
then it is better to ignore this data point in the optimization
of the likelihood and use x0 only to condition on for the
likelihood contribution of x1. In practice, this can be done
by setting �(Θ | x0) equal to 1.

In general, it is not the likelihood function that is
maximized, but the min-log-likelihood function which is
minimized. The min-log-likelihood function is defined as
the negative logarithm of the likelihood function,

L̃ (Θ | {xj }j=0,...,n−1) = − ln(L (Θ | {xj }j=0,...,n−1))

= − ln(�(Θ | x0)) −
n−2∑

j=1

ln(�(Θ | xj , xj+1)).

1432 Behav Res (2022) 54:1428–1443

1 3

Numerical solution

There does not exist a closed-form expression for the
conditional probability densities pΘ that make up the
likelihood function – an analytic solution for the Fokker-
Planck (3) of the AIM is unavailable. We therefore have
to rely on numerical methods to construct the min-log-
likelihood function.

Using Eq. 1, we could simulate numerous trajectories
using the Euler-Maruyama algorithm (see, e.g., kloeden
& Platen 1992), all starting from the same initial state
y(tj) = xj and using a specific discrete time step
Δt . If we let them all evolve for a time tj+1 − tj ,
the distribution of the endpoints will approximate the
conditional probability density function pΘ (tj+1, y | tj , xj)

(upon proper normalization). Although this method is fairly
straightforward and the computation of a single trajectory
has got a low computation cost, a tremendous number of
trajectories have to be simulated in order to obtain a smooth
approximation and an additional kernel smoothing function
may be required (see, e.g., Verdonck et al. 2016). When
the numeric approximations are obtained by means of such
stochastic simulation procedures, the randomness is passed
on to the min-log-likelihood. In other words, computing the
min-log-likelihood twice, we will not end up with the same
result. This makes it difficult to determine the parameter
set Θ̂ that minimizes the min-log-likelihood function since
the result will inherently vary, unless a sufficient number of
trajectories are simulated to obtain smooth solutions for the
min-log-likelihood functions.

Another issue with the Euler-Maruyama algorithm is that
we have to evaluate the partial derivatives ∂iF (y) in Eq. 1
each time we want to update the system (∂i is a shorthand
notation for ∂

∂yi
). Because of the logarithmic terms in the

expression of the free energy (2), its partial derivatives
diverge toward infinity on the boundary ∂Ω of the affect
space – positive or negative, depending on which side.
This indicates that the free energy function is very steep
at the boundary. In the neighborhood of this steep “wall”,
appropriate measures have to be taken in order to control
the size of the simulated steps and avoid overshooting.
Since the partial derivatives of the free energy appear in
combination with the step size in Eq. 1, controlling the step
size essentially comes down to choosing a sufficiently small
time step. The smaller the simulation step, the more steps
have to be simulated to bridge a specific period of time. As
such, simulating even a single trajectory can become time
consuming.

Instead of simulating trajectories, we can also numeri-
cally solve the Fokker-Planck (3). The advantage of solving
the Fokker-Planck equation is that we can obtain smooth

solutions without any randomness. The Fokker-Planck
equation (3) is a linear, second-order partial differential
equation. It can be rewritten as

∂p(t, y)
∂t

= D

2∑

i=1

{
∂2F(y)

∂y2
i

+ ∂F (y)
∂yi

∂

∂yi

+ ∂2

∂y2
i

}
p(t, y)

= Lp(t, y),

where L represents the linear differential operator. We can
discretize the affect space so that we obtain an equally
spaced grid with spacing δ. Because the partial derivative
of the free energy is singular on the boundary, we position
the grid cells at the corners of the grid in such a manner
that their centers coincide with the points

(
δ
2 ,

δ
2

)
, (δ

2 , 1 −
δ
2), (1 − δ

2 ,
δ
2) and

(
1 − δ

2 , 1 − δ
2

)
. By discretizing the

affect space, the application of the differential operator
L can be approximated as a matrix vector-multiplication,
describing how the probability density pmn(t) in each of the

cells
(
2m+1

2 δ, 2n+1
2 δ

)
changes over an infinitesimal time

interval Δt (see, e.g., Chang & Cooper 1970). Applying
these changes to each of the cells, an approximation of
the conditional probability density p(t + Δt, y) at time
t + Δt can be obtained. Repeating this procedure k times,
we obtain the approximate solution at time t + kΔt .
In the remainder of the text, we will refer to the cell(
2m+1

2 δ, 2n+1
2 δ

)
using the short-hand notation (m, n).

The matrix approximation of L can be constructed by
approximating the partial derivatives ∂ip(t, y) and ∂2i p(t, y)
using finite differences (see e.g., Chang & Cooper 1970).
However, the operator L contains the partial derivatives
∂iF (y) and ∂2i F (y), which are both singular at the boundary
where they diverge to infinity. Just like for the Euler-
Maruyama method, this implies that the step size Δt and
the bin width δ have to be chosen sufficiently small in order
to obtain meaningful approximations. Smaller step sizes Δt

means having to do more updates to bridge a specific time
interval. Also, smaller bin widths δ give rise to more cells
that have to be updated each time step.

Instead of relying on finite differences, we will use a
Metropolis-Hastings’ updating scheme to describe the effect
of the differential operator L (see e.g., Kikuchi et al., 1991).
Consider the cell (m, n) with probability density pmn(t)

at time t . From a random walk perspective, if the affect
state is located somewhere in this cell at time t , it could
do five different things within the time interval Δt : it could
remain there, or it could move to any of its four neighboring
cells (diagonal motions are not allowed). The probability of
choosing any of these is 1/5. Because the AIM describes
a random walk on a potential surface – the free energy

1433Behav Res (2022) 54:1428–1443

1 3

function – a move to a neighboring cell, say (m − 1, n), is
only accepted with a probability

k
[
(m, n) → (m − 1, n)

] = min

{
1, eFm,n−Fm−1,n

}
,

where Fmn denotes the value of the free energy function at

the cell center
(
2m+1

2 δ, 2n+1
2 δ

)
. Hence, if the free energy

is lower in the neighboring cell, the update is always
accepted (probability 1). If the free energy is higher in
the neighboring cell, the update is only accepted with a
probability eFm,n−Fm−1,n . If the state were to choose to
remain in the cell (m, n), the probability of acceptance
would also be 1 because the free energy difference between
the current cell and the cell it wants to move to is zero –
hence, the probability of the state remaining in the current
grid cell is at least 1/5; there is a 1/5 chance of selecting
this grid cell for the update and the update is accepted with
probability 1. If one of the neighboring cells was selected
for the update, but the update was rejected, then the state
would also remain in the grid cell.

Using this updating scheme, the probability of the affect
state moving away from the cell (m, n) – the out-flux – at
time t is given by

jout
m,n(t) = 1

5
pm,n(t)

∑

(m′,n′)∈N
k
[
(m, n) → (m′, n′)

]
,

whereN = {
(m−1, n), (m+1, n), (m, n−1), (m, n+1)

}

denotes the set of neighboring cells of (m, n). The out-flux
is equal to the probability of being in the cell (m, n) times
the probability of moving to any of the neighboring cells. In
the same vein, the probability of the affect state entering the
cell (m, n) from any of the neighboring cells – the in-flux –
at time t is given by

j in
m,n(t) = 1

5

∑

(m′,n′)∈N
pm′,n′(t) k

[
(m′, n′) → (m, n)

]
.

The net flux through the boundary of cell (m, n) at time t is

jm,n(t) = j in
m,n(t) − jout

m,n(t) (7)

and thus

pm,n(t + Δt) = pm,n(t) + jm,n(t). (8)

Boundary conditions

At this stage, we have not yet imposed the (no-flux)
boundary conditions (5). If we do not do this, probability
mass will flow from the interior of the affect space to the
exterior. To avoid this, we construct a layer of ghost cells
around the interior cells of the affect grid. In a ghost cell,
the free energy is infinite. As a consequence, the probability
of the affect state moving from a cell on the boundary of
the affect grid to a ghost cell is zero – the free energy of

an interior cell is always finite. Therefore, the free energy
of the ghost cell is infinitely larger than that of the interior
cell and the probability of acceptance is zero. If the affect
state cannot move from the interior to any of the ghost cells,
the flux through the boundary of the affect grid is zero, as
required by the boundary conditions.

The step size

The diffusion constant D of the Metropolis-Hastings
algorithm described above is defined as

D =
〈
(Δyi)

2
〉

2Δt
. (9)

It has the same value for both dimensions i = 1 and i = 2.
This is the same parameter as the time scaling parameter in
Eqs. 1 and 3.

Rewriting expression (9), we have that

Δt =
〈
(Δyi)

2
〉

2D
. (10)

Assume the affect state is at the site (m, n). The expected
quadratic change along the first dimension is given by

〈
(Δy1)

2〉 = δ2

5

(
k
[
(m, n) → (m−1, n)

]+k
[
(m, n) → (m+1, n)

])
.

Assuming, without loss of generality, that ∂1F(y) < 0 at the
site (m, n), we have that

k
[
(m, n) → (m − 1, n)

] = eFm,n−Fm+1,n ,

and

k
[
(m, n) → (m + 1, n)

] = 1.

Hence,

〈
(Δy1)

2〉 = δ2

5

(
eFm,n−Fm+1,n + 1

)
.

Provided the bin width δ is small, Fm,n − Fm+1,n will be
small and we can use Taylor’s approximation to write

eFm,n−Fm+1,n ≈ 1 + Fm,n − Fm+1,n

≈ 1 − ∂F (y)
∂y1

δ.

Using this approximation, the expected quadratic change
along the first dimension becomes

〈
(Δy1)

2〉 = δ2

5

(
2 − ∂F (y)

∂y1
δ

)
.

Up to second-order in the infinitesimal bin width δ, this
reduces to

〈
(Δy1)

2〉 ≈ 2δ2

5
.

1434 Behav Res (2022) 54:1428–1443

1 3

A similar derivation for the second dimension would give
the same result.

From expression (10), we see that after fixing the bin
width δ of the grid and after fixing the time scaling
parameter D, the step size Δt of the Metropolis-Hastings
updates is fixed at

Δt = δ2

5D
. (11)

In other words, the discretization of the affect space and the
discretization of time are entwined; the bin width δ and the
time step Δt cannot be specified independently from one
another.

Global minimization

The min-log-likelihood function can have multiple local
minima. To find the global minimum, a global optimization
heuristic is required. The software package we provide
includes an implementation of the differential evolution
(DE) global optimization heuristic (Storn & Price, 1997).

Differential evolution is a parallel, stochastic, direct
search method for solving continuous optimization prob-
lems. It relies on a population of NP model parameter
vectors or “agents” which update over generations (iter-
ations). While updating, the population size NP remains
constant.

To start a DE optimization, an initial population of agents
is sampled from a prior distribution on the parameter space.
This prior distribution best covers the entire search space
(the part of the parameter space that is of interest). For each
of the sampled agents, the min-log-likelihood is computed.
This initial population comprises the first generation of
agents.

After initialization, the population is updated iteratively.
Every population update results in a new generation of
agents. The updating of a population happens in three
stages. First, for every agent in the population, a mutant
vector is constructed by randomly selecting three distinct
agents from the population (different from the agent
concerned) and adding the weighted difference of two
agents to the third. Second, a crossing-over between agents
and mutants takes place. During this procedure, the agents’
parameters are intermixed with the parameters of their
corresponding mutant vector. The resulting vectors make
up the offspring and will be referred to as children. Third,
the min-log-likelihood is computed for each of the children.
Then, the min-log-likelihood of each child is compared to
that of the agent to which it is kin (the parent; i.e., the
agent of which it inherited part of its parameters during
crossover). If the min-log-likelihood of the child is smaller,

it replaces the parent in the population. Otherwise, the
parent lives on and the child is disposed of. The remaining
agents comprise the next generation.

The summed min-log-likelihood across all agents can
only decrease from one generation to the next (DE is a
greedy algorithm). Agents that are more optimal (smaller
min-log-likelihood) will attract other agents. In doing so,
the population increasingly focuses on regions in the
parameter space that are more interesting for finding
the global minimum. Across generations, the spread of
the population naturally shrinks and so do the weighted
differences between the agents. Hence, the optimization
scheme naturally adapts from that of a global search to that
of a local search.

The software package

We have developed a Julia package (Gradient
Diffusion.jl)that enables users to obtain parameter
estimates of general bounded drift-diffusion models like the
AIM. The package requires users to define a free energy
surface F(y) and functions which appropriately generate
and manipulate parameters. These functions have been
implemented for the AIM and a bounded version of the OU
model, and are readily available in the package. The soft-
ware package is available at https://ppw.kuleuven.be/okp/
software/gradientdiffusion/. We also included documen-
tation, three example data sets (extracts from the original
ESM data of Heininga et al. (2019)), and a brief tutorial
demonstrating how to use the package.

The package that we provide is actually a synergy
of different packages that we developed. Because the
DE optimization heuristic is more broadly applicable to
general optimization problems, we have written a separate
package for this. In a similar vein, the Metropolis-
Hastings method that we use to approximate solutions of
the Fokker-Planck equation is not specific to the AIM.
We therefore isolated this method in a package of its
own. The GradientDiffusion.jl package serves as an
overarching package which includes all other packages and
which provides higher level functions for users to call.

GPU and CPU

We have implemented the Metropolis-Hastings method both
for NVIDIA GPUs and for CPUs. The CPU implementation
allows users without an appropriate GPU to use the software
package. However, estimations on the CPU are much more
time consuming. The GPU implementation is provided to
significantly reduce the computational bottleneck of having
to compute a tremendous number of conditional probability
densities.

1435Behav Res (2022) 54:1428–1443

1 3

https://ppw.kuleuven.be/okp/software/gradientdiffusion/
https://ppw.kuleuven.be/okp/software/gradientdiffusion/

CUDA kernel

Many conditional probabilities have to be computed in order
to update a DE population. These conditional probabilities
can be computed in parallel. The computation of a
conditional probability density comes down to evaluating
numerous updates of grid cells (see the description of the
numeric algorithm above). These individual cell updates can
also be done largely simultaneously, in parallel.

Much more so than CPUs are GPUs built for massive
parallel computations. For that reason, the software package
includes a CUDA kernel (written in Julia instead of
CUDA C) which computes the numerical solutions to the
Fokker-Planck (3) on the GPU. CUDA (Compute Unified
Device Architecture) is an extension of the C programming
language developed by NVIDIA to optimally program
NVIDIA GPUs for custom parallel calculations. By virtue
of the GPU, parameter estimates can be obtained much
faster than when using a CPU (see benchmarks below).

Because of the specific architecture of NVIDIA GPUs,
fixing the size of the affect grids so that they are 30 by
30 (boundary layer of ghost cells excluded) significantly
improves the performance. Hence, on the GPU, the bin
width is δ = 1/30 ≈ 0.033. In principle, bin widths could
be made larger or smaller if desired, but because of the
computational benefit of using this specific grid size, this
option has not been made available for the GPU in the
provided package.

CPU version of the diffusion kernel

To facilitate distribution of the package, we have also
included an implementation of the diffusion kernel which
runs entirely on the CPU. Although CUDA is preferred
when many data sets or large data sets have to be analyzed
(see benchmarks below), the CPU version does allow
estimations to be done in the absence of a NVIDIA GPU.
However, in order to make estimations feasible on the CPU,
we had to rely on the multithreading features of Julia. This
means that users can significantly reduce the computational
cost of CPU estimations by allowing Julia to use multiple
processor cores.

Benchmarks

We compared the Metropolis-Hastings method to the Euler-
Maruyama method for several grid sizes. We also tested the
estimation software by means of a recovery study. For both
these analyses, we relied on parameter estimates obtained
by fitting the AIM to 118 ESM time series concerning the
evolution of positive and negative affect. Finally, to give the
user an idea of the time it takes to do an estimation, we ran

benchmark estimations using three different CPUs and two
different GPUs. For these benchmark estimations, the same
118 time series were used.

Materials andmethods

Data

The 118 ESM time series were collected in the context
of a study regarding symptoms and emotion dynamics in
individuals suffering from major depressive disorder and/or
borderline personality disorder. An in detail description of
the study is given by Heininga et al. (2019). We had no
involvement in the study nor in the collection of the data.
The study was approved by the Medical Ethics Committee
UZ Leuven (B322201627414) and every participant gave
informed consent.

Participants were givenMotorola Defy Plus Smartphones
which they had to carry on them throughout their daily
lives. The devices were programmed to send a question-
naire to the participants 10 times a day in between 10 a.m.
and 10 p.m. using a stratified random sampling scheme.
The time interval between consecutive questionnaires was
on average 72 minutes. Each questionnaire consisted of
27 questions, including questions about emotions, social
expectancy, emotion regulation, context and psychiatric
symptoms. It took participants on average 2′2′′ (SD =
37′′) to fill out a questionnaire. The positive (euphoric,
happy, relaxed) and negative (depressed, stressed, anx-
ious, angry) emotion items could be rated using a con-
tinuous slider ranging from 0 (not at all) to 100 (very
much). On average, the participants filled out 87% (SD =
11%) of the questionnaires that were sent to them. Conse-
quently, the time series on average consisted of 61 actual
measurements.

Accuracy

It can be shown that the Metropolis-Hastings method
discussed in this paper converges to actual results of
the Fokker-Planck equation (3) when the bin width δ

goes to zero (Kikuchi et al., 1991). By comparing
the Metropolis-Hastings method to the traditional Euler-
Maruyama method, we investigated at what rate the
Metropolis-Hastings scheme converges to the actual solu-
tions of the Fokker-Planck equation when the bin width δ is
reduced. Since we know that the Euler-Maruyama method
provides a good approximation of the solutions of the
Fokker-Planck equation given an sufficient number of tra-
jectories and a small enough time step, the Euler-Maruyama
method is a good reference to study how quickly the
Metropolis-Hastings method converges to actual solutions
of the Fokker-Planck equation.

1436 Behav Res (2022) 54:1428–1443

1 3

To start from relevant AIM parameters, we first fitted
the AIM to the 118 time series included in this paper
(see Section Data). For each of these 118 parameter sets,
we then sampled a random initial condition and compared
the probability density conditional on this initial condition
obtained with the Metropolis-Hastings method to that
obtained with the Euler-Maruyama method at different time
intervals.

We considered five different grid sizes: n = 15, n = 30,
n = 60, n = 120 and n = 240. The larger the grid size, the
more resolution and the more accurate the approximation
should become. For the Euler-Maruyama method, we used
107 trajectories to construct the conditional probability
densities. The time step Δt of the Euler-Maruyama method
was always taken equal to the time step of the Metropolis-
Method with the smallest bin width (δ = 1/240). We
evaluated the conditional probabilities of the two methods
after four different time intervals; these intervals were given

by t
(1/30)2

5D with t = 5, 50, 100, 500. Here, D represents
the (estimated) diffusion constant of the parameter set under
consideration. For these time intervals, exactly t updates are
required for the Metropolis-Hastings algorithm on a 30×30
grid (the grid size used for GPU estimations) to obtain the
desired conditional probability density. This implies that for
larger t , the conditional probability density functions lie
closer to the equilibrium probability density.

For the sake of comparing the approximations generated
by the Euler-Maruyama method and those generated by
the Metropolis-Hastings method, we always rebinned the
approximations on a 30 × 30 grid. The more bins that
are considered, the more trajectories have to be simulated
in order to approximate all the bin heights. By always
considering the same grid size, and thus the same number
of bins, the accuracy of the Euler-Maruyama method was
always the same. About 104 trajectories were considered
per bin. We compared approximations of the Metropolis-
Hastings method with those of the Euler-Maruyama
method by taking the L2-norm of the difference of the
approximations on the 30 × 30 grid. We also considered
the L∞-norm. The results of this analysis are discussed in
Appendix B.

Recovery study

With the recovery study, we investigated whether the exact
parameters can be retrieved using the estimation procedure
in the software package when a sufficient amount of data is
simulated. To start from relevant AIM parameters, we first
fitted the model to the available 118 data time series (see
data section). For each of these 118 parameters sets, we
simulated two data sets: one data set with the same sample
size as the original observed time series, and another data

set with 100 times more data points. For each parameter
set, simulated data points were obtained by computing
the conditional probability densities starting from the true
observations in the original data set and using the true
time intervals. Then, respectively 1 and 100 data points
were sampled from each of these conditional probability
densities. As such, we ensured that data features in the
simulated data sets closely matched those of the true data
sets. For the first observation of a day, the stationary
distribution was used. We used the software package to
fit the AIM to every simulated data set and compared the
obtained estimates with the corresponding parameters with
which the data were simulated.

Benchmarks

The estimations were run on three different computing
devices, two of which had a NVIDIA GPU. On all devices,
the estimations were run using only the CPU (multithreaded
on all cores). On the devices including a GPU, the
estimations were additionally run using the GPU. The
device without GPU was a standard ‘thin and light’ laptop
with a Intel� CoreTM i7-7600U CPU. The second device
was a workstation laptop with a Intel� CoreTM i7-9850H
CPU and a NVidia� Quadro� T2000 GPU. The last device
we ran the estimations on was a workstation desktop with
a Intel� CoreTM i7-7800X CPU and a NVidia� GeForce�

RTXTM 2080 Ti GPU. Table 1 lists some of the principal
specifications of the three CPUs and Table 2 lists some of
the principal specifications of the two GPUs. On all devices,
the estimations were done using the single precision floating
point format.

For the estimations, the scores of the positive items
and negative items were respectively averaged over to
construct positive and negative affect. These were the two
variables that we analyzed. To avoid unduly long estimation
times, nights were ignored for the estimation procedures
– the min-log-likelihood of the first observation after a
night was not computed. Although these observations can
also be included by evaluating them using the stationary
distribution (which is less computationally intensive), we
did not do this because we wanted to primarily focus
on the computationally intensive aspects of the estimation
procedure. Therefore, the very first observation of each time
series was not evaluated either, but only used to condition
on for the second observation of that day. All estimations
on all devices were carried out using the same estimation
settings. For the differential evolution, a population size
NP of 50 was used and a crossover rate CR = 0.6.
The number of iterations was fixed at 1000. On every
device, only one estimation per time series was run. If
an observation was missing, we bridged the gap from the

1437Behav Res (2022) 54:1428–1443

1 3

Table 1 Some CPU specifications

Frequency

CPU Launch year Cores Base Turbo Vector extensions

(GHz) (GHz)

i7-7600U 2017 2 2.80 3.90 AVX2

i7-9850H 2019 6 2.60 4.60 AVX2

i7-7800X 2017 6 3.50 4.00 AVX-512

previous measurement to the next. A seed was set before
every estimation.

Results

Accuracy

The results of comparing the Metropolis-Hastings method
with the Euler-Maruyama method are shown in Fig. 2. In
this figure, the median L2-differences between the condi-
tional probability densities obtained with the Metropolis-
Hastings method and those obtained with the Euler-
Maruyama method are depicted as a function of the grid
size. The different lines correspond to the different time

intervals t
(1/30)2

5D . We see that the conditional probabil-
ity densities obtained with the Metropolis-Hastings method
converge to those obtained with the Euler-Maruyama
method when the grid size becomes larger. We also see that
differences between the two methods are typically smaller
for larger time intervals; the closer the solution to the sta-
tionary distribution, the better the approximation – because
of the limited resolution of the grid, localized dynamics on
shorter time intervals are typically harder to approximate.

Recovery

Figure 3 depicts the results of the recovery study. Every
panel corresponds to a different AIM parameter. In every
panel, the estimated parameters are depicted in function of
the parameter values that were used to simulate the data.
Lighter dots correspond to simulated data sets with the same
sample size as the original data sets (about 70 observations)
and darker dots correspond to simulated data sets with 100

times more data points. The red diagonal lines indicate
where the dots should fall if the parameters with which
data was simulated were recovered exactly. For the lighter
dots, there is some variability around the diagonals. This is
to be expected because of the limited sample sizes of the
original data sets (the maximum number of observations
was 70). When the sample size becomes larger, parameters
are recovered more accurately – the variability of the darker
dots around the red diagonal is smaller.

Benchmarks

The results of the benchmark estimations on the different
devices are depicted in Fig. 4. The mean time (in seconds)
per estimation is depicted by a red dot. The grey dots
indicate the median time per estimation and the lighter lines
correspond to the 95% range of the estimation times.

The average time per estimation is 1.75 s for the RTX
2080 Ti GPU, 5.08 s for the T2000 GPU, 188.66 s for the
i7-7800X CPU, 222.02 s for the i7-9850H CPU and 537.18
s for the i7-7600U CPU. The slowest GPU (T2000) is on
average 37 times faster than the fastest CPU (i7-7800X).
For analyzing many and large data sets, it is recommended
to use a GPU. Nonetheless, for exploratory analyses, a CPU
can be sufficient. A workstation desktop and laptop is still
recommended in that case, because they are significantly
faster than a standard ‘thin and light’ laptop – for the
workstation desktop and laptop it took respectively about
6.2 hours and 7.3 hours to analyze the 118 data sets, while
it took 17.6 hours for the standard laptop to finish the same
analyses. For the GPUs, it took only a few minutes to do the
estimations.

Although the 118 data sets have approximately the same
sample size and were obtained in a similar fashion (same

Table 2 Some CPU specifications

Frequency

GPU Launch year Memory Base Turbo FP32 performance

(GB) (GHz) (GHz) (TFLOPS)

T2000 2019 4 1.575 1.785 3.656

RTX 2080 Ti 2018 11 1.350 1.545 13.45

1438 Behav Res (2022) 54:1428–1443

1 3

Fig. 2 Comparison between the Euler-Maruyama method and the Metropolis-Hastings method The median L2-difference between the conditional
probability densities obtained with the Euler-Maruyama method and those obtained with the Metropolis-Hastings method in function of the grid

size. The different lines correspond to different time intervals t
(1/30)2

5D (such that for larger time intervals, the conditional distribution lies closer to
the equilibrium distribution)

sampling schemes with same average time interval), the
broad 95% ranges of the estimation times in Fig. 4 indicate
that the estimation time is quite variable, even on the same
device. This variability has several origins. The sample size
determines the number of conditional probability densities
that have to be computed in order to compute the min-
log-likelihood associated with a specific parameter set and
these sample sizes differ. The more observations, the more

computations have to be carried out. For the CPU, this
is a major concern because it has a limited number of
cores to compute the conditional probability densities in
parallel. The large number of cores of a GPU allows more
conditional probability densities to be computed in parallel,
which alleviates the computational burden.

Another important source of variation is the number
of steps that typically have to be taken to obtain the

Fig. 3 Results of the recovery study. The recovered parameters depicted in function of the true parameters. If the parameter was recovered correctly,
the point lies on the main diagonal (depicted in red). Lighter dots correspond to simulated data sets which have the same sample size as the original
data sets. Darker dots correspond to data sets with 100 times more data points than the original data sets

1439Behav Res (2022) 54:1428–1443

1 3

Fig. 4 Benchmarks The average time per estimation is indicated in red and the median time per estimation is indicated in grey. The grey lines
denote the 95% range of the estimation times

numerical conditional probability densities. In Eq. 10 we
see that the time step (and thus the number of steps required
to bridge a specific time interval) is influenced by the
diffusion parameter D. This is a parameter that has to be
determined during the optimization procedure. Depending
on the suggestions and mutations (which are random),
parameter values resulting in more steps can occur. Initial D
values are always sampled from an exponential distribution
whose rate parameter has been chosen in such a way that
the average number of steps during the initial optimization
round equals 25. This small number of steps must ensure
that dynamical solutions are visited more frequently in
the beginning of the DE optimization than are stationary
solutions, since stationary solutions tend to be prominent
local attractors. If solutions close to stationarity are more
optimal for a specific data set, the number of time steps will
gradually increase. For such data sets, estimation times can
be a lot longer.

Another source of variation has to do with the inherent
randomness of the search algorithm. Search agents are
initially sampled randomly from some distribution and are
then made to mutate using a scheme that is also inherently
random. Hence, analyzing the same data set twice with
a different seed will already result in different estimation
times, because different parameter sets are considered.

Conclusion

In this paper, we have introduced numerical tools and an
associated (free and open source) Julia software package
that can be used to obtain parameter estimates for bounded
gradient-drift diffusion models in general. The package

comes with an implementation of the nonlinear Affective
Ising Model and a bounded version of the Ornstein-
Uhlenbeck model (also known as the continuous-time
VAR(1) model in the field of affect research).

Because nonlinear models like the AIM typically do not
have closed form expressions for the min-log-likelihood
function, we relied on a numerical method that could
be implemented with a large degree of parallelism. By
exploiting this parallelism using Graphics Processing Units,
parameter estimates can be obtained in a reasonable
amount of time. By comparing the implemented numerical
method to the Euler-Maruyama algorithm for different grid
resolutions (different bin widths), we demonstrated that
both methods converge to the same solutions for sufficiently
small time steps and bin widths. We additionally showed
that the exact parameters with which data were simulated
can be recovered with the estimation software, provided that
the sample size of the simulated data set is sufficiently large.

The software package includes functionalities to run the
estimations both on GPU and on CPU. The results of
the benchmarks indicate that exploratory analyses can be
done on CPU but for analyzing many data sets, a GPU is
recommended. The GPU devices included in this paper were
at least 37 times faster on average than the CPU devices. On
average, they are able to finish an estimation in about 1 to 5
seconds.

Limitations and future directions

The accuracy of the numeric algorithm discussed in this
paper depends on the grid resolution (the bin width δ). The
narrower the bins, the more accurate the numerical solutions

1440 Behav Res (2022) 54:1428–1443

1 3

to the Fokker-Planck equation, and the more accurate the
min-log-likelihood values. Because of the architecture of a
GPU, the grid size is fixed at 32 by 32. The outer layer
of grid cells are ghost cells used to impose the boundary
conditions. As a consequence, the grid size is effectively
30 by 30, and thus the bin width is 0.033. For experience
sampling studies where measurements are obtained through
self-report, this resolution is likely to be sufficient. Only
if individuals are able to distinguish between affect ratings
which are less than 0.033 units apart on a zero to one scale,
would we have to increase the accuracy of the numerical
solutions. Because then, important dynamics could take
place on scales smaller than a grid bin and these would go
undetected.

In contrast to the GPU, there is no reason to fix the grid
size for a CPU. In the Julia package that we provide, the grid
size for estimations on the CPU can be adjusted by the user.
The default setting is nonetheless to use a 30× 30 grid, like
on the GPU. That way, comparable results can be obtained,
irregardless of the hardware that is used (unless the user
wants to increase the accuracy); results can differ between
the GPU and the CPU because the execution order of
specific calculations is not exactly the same on the devices.
Another reason not to increase the grid size on the CPU is
that CPU estimations are already slower than estimations on
the GPU. By increasing the number of bins, more cells have
to be updated each Metropolis-Hastings step. Furthermore,
because of the relation (11) between the bin width and the
step size, the number of Metropolis-Hastings steps required
to bridge a specific time interval also significantly increases.
It is therefore not recommended to decrease the bin width.
Only perhaps to analyze a select number of time series that
exhibit very little variability.

Currently, the implementation of the Metropolis-
Hastings method that we provide for the GPU only supports
NVIDIA GPUs. The reason for this is that we use func-
tionalities that are specific to the CUDA programming
language. Since this programming language is specific for
NVIDIA GPUs, the implementation is not readily extensi-
ble to other GPU devices. In future developments, we may
consider adaptations of the implementation which could be
extended to other devices.

Appendix A: No-flux boundary conditions

The Fokker-Planck equation (3) can be rewritten as a
continuity equation:

∂p(t, y)
∂t

−D

2∑

i=1

{
∂

∂yi

(
∂F (y)
∂yi

p(t, y)
)

+ ∂2p(t, y)

∂y2
i

}
= 0.

Using vector notation, we can also write this as

∂p(t, y)
∂t

− D ∇ ·
{
∇F(y)p(t, y) + ∇p(t, y)

}
= 0.

Defining the flux

j(t, y) = −D

{
∇F(y)p(t, y) + ∇p(t, y)

}
,

we retrieve a typical continuity equation

∂p(t, y)
∂t

+ ∇ · j(t, y) = 0.

The vector j(t, y) describes the net probability flux through
the point y at time t . Since there can be no flux through the
boundary ∂Ω of the affect space, we must have that

j(t, y)

∣∣∣∣
∂Ω

= 0,

for all t . Because D is merely a (nonzero) constant, it
follows from the definition of the flux that
{
∇F(y)p(t, y) + ∇p(t, y)

}∣∣∣∣
∂Ω

= 0,

or
{

∂F (y)
∂yi

p(t, y) + ∂p(t, y)
∂yi

}∣∣∣∣
∂Ω

= 0,

for all dimensions i.

Appendix B: Comparison
of the Euler-Maruyamamethod
andMetropolis-Hastings method: L∞-norm

We also compared the Euler-Maruyama method and the
Metropolis-Hastings method using the procedure described
in Section Accuracy, but with a L∞-norm instead of a
L2-norm. The results of this comparison are depicted in
Fig. 5. In this figure, the median L∞-differences between
the conditional probability densities obtained with the
Metropolis-Hastings method and those obtained with the
Euler-Maruyama method are depicted as a function of the
grid size. The different lines correspond to the different time

intervals t
(1/30)2

5D . The figure is comparable to the Fig. 2
for the L2-norm. We see that the conditional probability
densities obtained with the Metropolis-Hastings method
converge to those obtained with the Euler-Maruyama
method when the grid size becomes larger. We also see
that differences between the two methods are typically
smaller for larger time intervals; the closer the solution
to the stationary distribution, the better the approximation.
Because of the limited resolution of the grid, localized
dynamics on shorter time intervals are typically harder to
approximate.

1441Behav Res (2022) 54:1428–1443

1 3

Fig. 5 Another comparison between the Euler-Maruyama method and the Metropolis-Hastings method. The median L∞-difference between the
conditional probability densities obtained with the Euler-Maruyama method and those obtained with the Metropolis-Hastings method in function

of the grid size. The different lines correspond to different time intervals t
(1/30)2

5D

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open practices statement The source code of the software pack-
age and data are available at https://ppw.kuleuven.be/okp/software/
gradientdiffusion/.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary Methods: Capturing
Life as it is Lived. Annual Review of Psychology, 54(1), 579–616.
https://doi.org/10.1146/annurev.psych.54.101601.145030

Bolger, N., & Laurenceau, J.-P. (2013). Intensive Longitudinal
Methods: An Introduction to Diary and Experience Sampling
Research, (1st ed.). New York: The Guilford Press.

Bos, E. H., Hoenders, R., & de Jonge, P. (2012). Wind direction
and mental health: a time-series analysis of weather influ-
ences in a patient with anxiety disorder. Case Reports, 2012(1),
bcr2012006300–bcr2012006300. https://doi.org/10.1136/bcr-
2012-006300

Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens,
P., Peeters, F., . . . , Tuerlinckx, F. (2013). A Network Approach
to Psychopathology: New Insights into Clinical Longitudinal

Data. Plos One, 8(4), e60188. https://doi.org/10.1371/journal.
pone.0060188

Chang, J. S., & Cooper, G. (1970). A practical difference scheme for
Fokker-Planck equations. Journal of Computational Physics, 6(1),
1–16. https://doi.org/10.1016/0021-9991(70)90001-X

Crawford, J. R., & Henry, J. D. (2004). The Positive and Neg-
ative Affect Schedule (PANAS): Construct validity, measure-
ment properties and normative data in a large non-clinical sam-
ple. British Journal of Clinical Psychology, 43(3), 245–265.
https://doi.org/10.1348/0144665031752934

Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of
the experience-sampling method. Journal of Nervous and Men-
tal Disease, 175(9), 526–536. https://doi.org/10.1097/00005053-
198709000-00004

de Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker,
E. L. (2017). Discrete- vs. Continuous-Time Modeling of
Unequally Spaced Experience Sampling Method Data. Frontiers
in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01849

Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels,
L., Kuppens, P., & Tuerlinckx, F. (2019). Complex affect
dynamics add limited information to the prediction of psycho-
logical well-being. Nature Human Behaviour, 3(5), 478–491.
https://doi.org/10.1038/s41562-019-0555-0

Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time
Structural Equation Modeling with R Package ctsem. Journal of
Statistical Software, 77(5). https://doi.org/10.18637/jss.v077.i05

Gardiner, C. W. (1986). Handbook of Stochastic Methods: For
Physics, Chemistry, and the Natural Sciences, (Subsequent).
Berlin: Springer.

Hamaker, E., Ceulemans, E., Grasman, R., & Tuerlinckx, F.
(2015). Modeling Affect Dynamics: State of the Art and
Future Challenges. Emotion Review, 7. https://doi.org/10.1177/
1754073915590619

Heininga, V. E., Dejonckheere, E., Houben, M., Obbels, J., Sienaert,
P., Leroy, B., . . . , Kuppens, P. (2019). The dynamical signature
of anhedonia in major depressive disorder: positive emotion
dynamics, reactivity, and recovery. BMC Psychiatry, 19(1).
https://doi.org/10.1186/s12888-018-1983-5

Hektner, M. J., Schmidt, A. J., & Csikszentmihalyi, M. (2006).
Experience Sampling Method: Measuring the Quality of Everyday
Life, (1s). Thousand Oaks: SAGE Publications, Inc.

1442 Behav Res (2022) 54:1428–1443

1 3

https://ppw.kuleuven.be/okp/software/gradientdiffusion/
https://ppw.kuleuven.be/okp/software/gradientdiffusion/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1146/annurev.psych.54.101601.145030
https://doi.org/10.1136/bcr-2012-006300
https://doi.org/10.1136/bcr-2012-006300
https://doi.org/10.1371/journal.pone.0060188
https://doi.org/10.1371/journal.pone.0060188
https://doi.org/10.1016/0021-9991(70)90001-X
https://doi.org/10.1348/0144665031752934
https://doi.org/10.1097/00005053-198709000-00004
https://doi.org/10.1097/00005053-198709000-00004
https://doi.org/10.3389/fpsyg.2017.01849
https://doi.org/10.1038/s41562-019-0555-0
https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.1177/1754073915590619
https://doi.org/10.1177/1754073915590619
https://doi.org/10.1186/s12888-018-1983-5

Houben, M., Vansteelandt, K., Claes, L., Sienaert, P., Berens, A.,
Sleuwaegen, E., & Kuppens, P. (2016). Emotional switching in
borderline personality disorder: A daily life study. Personality
Disorders: Theory, Research, and Treatment, 7(1), 50–60.
https://doi.org/10.1037/per0000126

Kikuchi, K., Yoshida, M., Maekawa, T., & Watanabe, H. (1991).
Metropolis Monte Carlo method as a numerical technique to solve
the Fokker-Planck equation. Chemical Physics Letters, 185(3-4),
335–338. https://doi.org/10.1016/S0009-2614(91)85070-D

Kloeden, P. E., & Platen, E. (1992). Numerical Solution of
Stochastic Differential Equations. Stochastic Modelling and
Applied Probability. Berlin: Springer.

Kuppens, P., Tuerlinckx, F., Russell, J. A., & Barrett, L. F.
(2013). The relation between valence and arousal in sub-
jective experience. Psychological Bulletin, 139(4), 917–940.
https://doi.org/10.1037/a0030811

Larsen, J. T., Hershfield, H. E., Stastny, B. J., & Hester, N. (2017).
On the relationship between positive and negative affect: Their
correlation and their co-occurrence. Emotion, 17(2), 323–336.
https://doi.org/10.1037/emo0000231

Leemput, I. A. v. d., Wichers, M., Cramer, A. O. J., Borsboom, D.,
Tuerlinckx, F., Kuppens, P., . . . , Scheffer, M. (2014). Critical
slowing down as early warning for the onset and termination of
depression. Proceedings of the National Academy of Sciences,
111(1), 87–92. https://doi.org/10.1073/pnas.1312114110

Lodewyckx, T., Tuerlinckx, F., Kuppens, P., Allen, N., & Sheeber,
L. (2011). A hierarchical state space approach to affective
dynamics. Journal of Mathematical Psychology, 55(1), 68–83.
https://doi.org/10.1016/j.jmp.2010.08.004

Loossens, T., Mestdagh, M., Dejonckheere, E., Kuppens, P.,
Tuerlinckx, F., & Verdonck, S. (2020). The Affective Ising
Model: A computational account of human affect dynamics.
PLOS Computational Biology, 16(5), e1007860. https://doi.org/
10.1371/journal.pcbi.1007860

Mattek, A. M., Wolford, G. L., & Whalen, P. J. (2017). A
Mathematical Model Captures the Structure of Subjective
Affect. Perspectives on Psychological Science: A Journal of
the Association for Psychological Science, 12(3), 508–526.
https://doi.org/10.1177/1745691616685863

Merz, E. L., Malcarne, V. L., Roesch, S. C., Ko, C. M., Emer-
son, M., Roma, V. G., & Sadler, G. R. (2013). Psychometric
properties of Positive and Negative Affect Schedule (PANAS)
original and short forms in an African American commu-
nity sample. Journal of Affective Disorders, 151(3), 942–949.
https://doi.org/10.1016/j.jad.2013.08.011

Oud, J. H. L. (2002). Continuous Time Modeling of the Cross-Lagged
Panel Design. Kwantitatieve Methoden, 69, 26.

Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous Time
Modeling of Panel Data by means of SEM. In van Montfort, K.,
Oud, J. H. L., & Satorra, A. (Eds.), Longitudinal Research with
Latent Variables, (pp. 201–244). Berlin: Springer.

Pe, M. L., Kircanski, K., Thompson, R. J., Bringmann, L. F.,
Tuerlinckx, F., Mestdagh, M., . . . , Gotlib, I. H. (2015).
Emotion-Network Density in Major Depressive Disorder. Clini-
cal Psychological Science, 3(2), 292–300. https://doi.org/10.1177/
2167702614540645

Snippe, E., Bos, E. H., van der Ploeg, K. M., Sanderman, R., Fleer,
J., & Schroevers, M. J. (2015). Time-Series Analysis of Daily
Changes in Mindfulness, Repetitive Thinking, and Depressive
Symptoms During Mindfulness-Based Treatment. Mindfulness,
6(5), 1053–1062. https://doi.org/10.1007/s12671-014-0354-7

Storn, R., & Price, K. (1997). Differential Evolution – A Simple
and Efficient Heuristic for global Optimization over Continu-
ous Spaces. Journal of Global Optimization, 11(4), 341–359.
https://doi.org/10.1023/A:1008202821328

Van der Maas, H. L., & Molenaar, P. C. (1992). Stagewise cognitive
development: An application of catastrophe theory. Psychological
Review, 99(3), 395–417. https://doi.org/10.1037/0033-295X.99.3.395

Verdonck, S., Meers, K., & Tuerlinckx, F. (2016). Efficient simulation
of diffusion-based choice RT models on CPU and GPU. Behavior
Research Methods, 48(1), 13–27. https://doi.org/10.3758/s13428-
015-0569-0

Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling
with individually varying time intervals for oscillating and non-
oscillating processes: Continuous time modelling. British Journal
of Mathematical and Statistical Psychology, 66(1), 103–126.
https://doi.org/10.1111/j.2044-8317.2012.02043.x

Wichers, M. (2014). The dynamic nature of depression: a new
micro-level perspective of mental disorder that meets cur-
rent challenges. Psychological Medicine, 44(7), 1349–1360.
https://doi.org/10.1017/S0033291713001979

Yik, M., Russell, J. A., & Barrett, L. F. (1999). Structure of
Self-Reported Current Affect: Integration and Beyond. Jour-
nal of Personality and Social Psychology, 77(3), 600–619.
https://doi.org/10.1037//0022-3514.77.3.600

Zheng, Y., Wiebe, R. P., Cleveland, H. H., Molenaar, P. C. M., &
Harris, K. S. (2013). An Idiographic Examination of Day-to-Day
Patterns of Substance Use Craving, Negative Affect, and Tobacco
Use Among Young Adults in Recovery. Multivariate Behavioral
Research, 48(2), 241–266. https://doi.org/10.1080/00273171.2013.
763012

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1443Behav Res (2022) 54:1428–1443

1 3

https://doi.org/10.1037/per0000126
https://doi.org/10.1016/S0009-2614(91)85070-D
https://doi.org/10.1037/a0030811
https://doi.org/10.1037/emo0000231
https://doi.org/10.1073/pnas.1312114110
https://doi.org/10.1016/j.jmp.2010.08.004
https://doi.org/10.1371/journal.pcbi.1007860
https://doi.org/10.1371/journal.pcbi.1007860
https://doi.org/10.1177/1745691616685863
https://doi.org/10.1016/j.jad.2013.08.011
https://doi.org/10.1177/2167702614540645
https://doi.org/10.1177/2167702614540645
https://doi.org/10.1007/s12671-014-0354-7
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1037/0033-295X.99.3.395
https://doi.org/10.3758/s13428-015-0569-0
https://doi.org/10.3758/s13428-015-0569-0
https://doi.org/10.1111/j.2044-8317.2012.02043.x
https://doi.org/10.1017/S0033291713001979
https://doi.org/10.1037//0022-3514.77.3.600
https://doi.org/10.1080/00273171.2013.763012
https://doi.org/10.1080/00273171.2013.763012

	Estimation of diffusion models for affect on CPU and GPU
	Abstract
	Introduction
	The Affective Ising Model
	Data
	Estimation
	The likelihood function
	Numerical solution
	Boundary conditions
	The step size
	Global minimization

	The software package
	GPU and CPU
	CUDA kernel
	CPU version of the diffusion kernel

	Benchmarks
	Materials and methods
	Data
	Accuracy
	Recovery study
	Benchmarks

	Results
	Accuracy
	Recovery
	Benchmarks

	Conclusion
	Limitations and future directions
	Appendix A: No-flux boundary conditions
	Appendix B: Comparison of the Euler-Maruyama method and Metropolis-Hastings method: L-norm
	Declarations
	References

