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Abstract

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune
response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B.
burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high
frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE
sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint,
ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in
C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast,
the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes
occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated,
indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to
undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations
into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination
event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained
‘‘template-independent’’ sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the
increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice
(as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE
antibody responses.
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Introduction

Lyme borreliosis is caused by Borrelia burgdorferi and other

members of the genus Borrelia, and is the most prevalent vector-

borne disease in the United States [1]. Spirochetes are transmitted

to mammalian hosts by Ixodes ticks, causing a local skin infection,

usually accompanied by a lesion called erythema migrans. As the

infection advances, Borrelia disseminate into deeper tissues despite

a strong immune response against the pathogen [2–6]. However,

Lyme disease Borrelia are able to escape clearance and cause

disease manifestations (including neurologic, arthritic, cardiovas-

cular, and dermatologic symptoms) for months to years after the

initial infection.

Antigenic variation results from changes in surface antigen

genes that occur during the course of infection at rates higher than

the expected mutation frequency [7]. This mechanism is

particularly important for organisms that cause long-term or

repeated infections. Pathogens with antigenic variation systems are

able to evade the immune response, thus gaining a selective

advantage over their more antigenically stable counterparts and

posing a challenge in the development of vaccines. Influenza virus

[8] , HIV [9], Neisseria gonorrhoeae and N. meningitidis [10],

Mycoplasma synoviae [11], Mycoplasma pulmonis [12], Anaplasma

marginale [13], Borrelia burgdorferi [14], Borrelia hermsii [15,16],

Treponema pallidum [17], Campylobacter jejuni [18], Candida species

[19], Plasmodium falciparum [20] and Trypanosoma brucei [21] are

some examples of viruses, bacteria, fungi and parasites that avoid

immune clearance through antigenic variation.

A surface-exposed lipoprotein, VlsE, contributes to immune

evasion and persistence of Lyme borreliosis organisms in infected

mammalian hosts through an elaborate antigenic variation

mechanism [14,22–25] . The Vmp-like sequence (vls) locus of B.

burgdorferi B31 is located on the linear plasmid lp28-1. The vls locus

is composed of an expression site (vlsE) encoding the 35 kDa

lipoprotein VlsE and a contiguous array of 15 unexpressed (silent)

vls cassettes. The silent cassettes have high homology to the central

cassette region of vlsE (90.0% to 96.1% nucleotide sequence

identity and 76.9% to 91.4% predicted amino acid sequence

identity), and most of the sequence differences are concentrated in

six variable regions within each cassette [22]. Clones lacking lp28-
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1 exhibit an intermediate infectivity phenotype, characterized by

decreased persistence and aberrant tissue distribution in immu-

nocompetent mice but no change in virulence in SCID mice

[24,26,27]. Recent studies by Bankhead and Chaconas [23]

demonstrated that removal of the vls locus by telomere-mediated

truncation resulted in the same phenotype as the loss of lp28-1,

whereas truncation of the other end of the plasmid had no

detectable effect on mouse infection by needle inoculation. These

results support the role of the vls locus in immune evasion.

Previous analysis of a limited number of clones recovered from

experimentally infected mice or rabbits indicated that vlsE

sequence variation occurs within 4 days and continues throughout

the course of infection [25,28]. Only the cassette region of the vlsE

is subject to sequence variation during these recombination events.

Segments of the vls silent cassette sequences replace portions of the

vlsE cassette region through a gene conversion process, such that

the sequence and organization of the silent vls cassettes remain

unaltered [14]. vlsE antigenic variation has not been detected

during in vitro culture or during tick infection, but occurs during

mammalian infection in both immunocompetent and severe

combined immunodeficiency disease (SCID) animals

[14,22,25,29,30]. Attempts to induce vlsE recombination ex vivo

have been unsuccessful. Therefore, the induction of vlsE

recombination occurs through an as yet unidentified signaling

mechanism.

Most sequence changes that occur during vlsE recombination

events are localized within the six variable regions. The six invariable

regions within the cassette region [22] contain relatively few variable

codons and are likely to be important in preserving overall protein

structure and biological function [31]. The variable regions form

random coil structures on the membrane distal surface of the protein

where antibody interactions are most likely [31]. Immunoglobulins

specific for these regions are generated during the course of infection

[32]. Also, the resulting variants exhibit decreased reactivity to

antisera raised against a recombinant form of the vlsE cassette region

from the parental clone; indicating that the sequence changes result in

real antigenic variation [22]. The mechanisms that promote the

selectivity and unidirectionality of gene conversion in the vls locus

have not been identified.

In the current study, B. burgdorferi clones acquired 4 to 365 days

following infection of immunocompetent or SCID mice were

examined to gain a better understanding of the vlsE recombination

process. The results provide further evidence of the remarkable

randomness of recombination events occurring within the vlsE

cassette region.

Results/Discussion

Prolonged persistence of clones possessing the parental
vlsE sequence in SCID mice

We analyzed the vlsE cassette region sequences of 1399 clones

recovered during the time course of infection of immunocompe-

tent C3H/HeN and immunocompromised C3H/HeN SCID and

CB-17 SCID mice (Table 1). These results comprised 85

previously reported clones [14,22] and 1320 clones derived during

this study. The earlier studies were performed with B. burgdorferi

B31clone 5A3 and utilized CB-17 SCID mice, whereas our recent

analyses used clone B31 5A4 and C3H/HeN SCID mice.

Although clone 5A3 is lacking plasmids lp28-2 and lp56 and

CB-17 mice have a different genetic background than C3H/HeN,

the results obtained were comparable (data not shown); therefore,

the results obtained with the two B. burgdorferi B31 clones and the

two SCID mouse strains were combined to increase the number of

isolates and time points analyzed without necessitating additional

animal experiments. Bladder, heart, joint, ear and back skin biopsy

isolates were obtained to examine the rate and nature of vlsE

recombination occurring in different tissues. In the current

analysis, we focused on days 4, 7, 10, 14 and 28 post-inoculation

because individual recombination events can be discerned more

commonly at these earlier time points.

As previously observed [25], we found that clones had already

undergone vlsE recombination within 4 days post infection in both

immunocompetent and SCID mouse models (Figure 1). In

immunocompetent mice, only 50% of the retrieved spirochetes

retained the parental vlsE sequence after 4 days of infection,

meaning that the remaining 50% of the population had already

incurred one or more vlsE recombination events. By 14 days post

infection, clones with the parental vlsE sequence were few in

number (3% of all examined) and were not detected at 28 days

after inoculation (Figure 1). In SCID mice, 87% of the recovered

bacteria retained the parental vlsE sequence at 4 days post

infection. The proportion of parental bacteria decreased more

slowly than in immunocompetent mice, such that parental clones

represented 18.7% and 15% of the populations recovered in SCID

mice at 14 and 28 days post infection, respectively.

The parental bacteria thus persisted longer in the absence of an

adaptive immune response. The rapid clearance of the parental

genotype in immunocompetent mice actually preceded the

detection of anti-VlsE antibodies by ELISA 8 days post infection

in C3H/HeN mice [33]; this result suggests that the anti-variable

region immune responses are present in small quantities within a

few days of infection and are extremely effective in eliminating

clones expressing the corresponding variable region epitopes. The

more gradual decrease in the proportion of parental clones in

SCID mice most likely represents the simple dilution of the initial

genotype by variant clones.

Reduced persistence of clones showing the parental vlsE
sequence in heart and bladder in immunocompetent
mice

At 4 days post infection, only the back skin biopsies (taken at a

site distant from the inoculation site) and blood samples (not

shown) exhibited positive culture results in C3H/HeN and SCID

Author Summary

Lyme borreliosis is the most common vector-transmitted
infection in Europe and North America, and is caused by the
spirochete Borrelia burgdorferi and other closely related
Borrelia species. Lyme disease Borrelia have an elaborate
mechanism for varying the sequence of VlsE, a surface-
localized, immunogenic lipoprotein. This antigenic variation
is thought to be important in immune evasion and thus in
the ability of Lyme disease Borrelia to cause long-term
infection. In this study, we examined 1,399 B. burgdorferi
clones isolated from infected immunocompetent and
immunodeficient mice to gain a better understanding of
the rate and variety of VlsE sequence changes that occur
during infection. We determined that clones with few or no
VlsE sequence changes are rapidly cleared in mice with active
immune responses, whereas clones with many VlsE changes
persist. The vls antigenic variation system can utilize any of
the 15 silent cassette sequences as sequence ‘‘donors,’’ and
does not exhibit obvious preferences in the location of
changes within the vlsE cassette region or the types of VlsE
sequence variations found in different tissues, such as in
joints or in the heart. Our findings provide further evidence
that the vls locus represents a remarkably robust recombi-
nation system and immune evasion mechanism.

vlsE Recombination in Mice
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mice, suggesting that the spirochete had not colonized the other

tissues examined to a detectable extent at this early time point

(Table 1, Figure 2). At 7 days post infection in both mouse models,

samples from the ear pinnae did not yield positive cultures, while

all other sites were culture positive; this result indicates that the

colonization of the external ear takes more time than the other

tissues tested (Table 1, Figure 2). In comparing the different

tissues, the proportion of clones with the parental vlsE sequence

was not significantly different in either mouse model at day 7 post

infection. Thereafter in C3H/HeN mice (but not in SCID mice),

the proportion of parental clones dropped drastically in bladder,

heart, and skin samples between 7 to 10 days post infection and in

joint and ear samples between 10 and 14 days post infection

(Figure 2A). These results indicate that the parental bacteria are

cleared more quickly (or, alternatively, undergo more rapid vlsE

recombination) in bladder, heart and skin than in joint and ear

tissues in immunocompetent mice.

The more rapid clearance of B. burgdorferi with the parental vlsE

sequence in heart, bladder and skin may indicate a higher

accessibility of the bacteria to the adaptive immune system in these

sites. Alternatively, bacteria in joint and ear tissues may localize in

immunoprotective niches (e.g. in relatively avascular or highly

collagenous regions) that allow those expressing the parental vlsE

sequence to survive longer. In previous studies, it has been

demonstrated that, in immunocompetent mice, B. burgdorferi clones

lacking lp28-1 [24,26,33] or the vls locus [23] persist for longer

periods in joint tissue than in other tissues. In contrast, organisms

with these genotypes are able to infect and disseminate to all tested

tissues in SCID mice. These results support the concept that

immune evasion mechanisms provided by VlsE expression and

sequence variation promote the survival of B. burgdorferi, but that

bacteria that either do not express VlsE or have not undergone

sequence variation are relatively protected in some tissues, such as

those present in the tibiotarsal joint.

Accelerated accumulation of vlsE sequence changes in
the presence of the adaptive immune response

We analyzed more specifically the population of variants

(n = 1,073) by excluding all clones with the parental vlsE sequence

(n = 326). The group of variants included 921 ‘unique’ variant

sequences and 158 additional sibling clones (i.e. variants with the

same sequence in the same tissue specimen). The number of codon

changes observed was paralleled closely by the number of amino

acid changes (Figure 3), in concordance with the high proportion

of nonsynonymous codon differences in the silent cassettes that

serve as templates for these sequence changes.

In immunocompetent mice, the median number of codon or

amino acid changes in the vlsE variant clones did not increase

significantly between 4 to 10 days post infection, but at 14, 21 and

28 days post infection the number of changes increase rapidly and

significantly (Figure 3A; P,0.001 for differences in the median

number of changes on days 10 and 14, days 14 and 21, and days

21 and 28). There was no significant difference in the median

number of changes at 28 days and 365 days post infection. The

Table 1. Number of vlsE sequences analyzed from different tissues and time points during experimental infection of
immunocompetent C3H/HeN mice or SCID mice with B. burgdorferi B31.

Days post infection No. of sequences

C3H/HeN SCIDa

Bladder Heart Joint Ear Skin Bladder Heart Joint Ear Skin

4 NCb NC NC NC 43* NC NC NC NC 231*

7 72 71 76 NC 6* 4 15 20 NC ND

10 61 59 60 60 NDc 34 27 28 24 ND

14 49 40 57 55 10* 21 39 31 47 91*

21 ND ND ND ND 48* ND ND ND ND ND

28 42* 49* 40* 19* 17* 441* 411* 201* ND 23 1*

214 ND ND ND ND 7* ND ND ND ND ND

365 3* ND ND ND 5* ND ND ND ND ND

B. burgdorferi B31 Clones 5A4 or 5A3 (asterisks) were injected subcutaneously 105/mouse at the base of the tail. Groups of 4 to 6 mice were sacrificed on the indicated
days post infection.
Cultures from the tissue sites (urinary bladder, heart, tibiotarsal joint, ear pinnae and skin punch biopsies) were acquired under aseptic conditions and clones obtained
by subsurface colony formation in agar plates.
aSCID mice were either C3H/HeN SCID or CB-17 SCID (1).
bNC = no positive cultures obtained.
cND = cultures not done.
doi:10.1371/journal.ppat.1000293.t001

Figure 1. B. burgdorferi clones having the parental vlsE
sequence are cleared more rapidly during infection of
immunocompetent C3H/HeN mice than in immunodeficient
SCID mice. The numbers in parentheses represent the total number of
clones at each time point.
doi:10.1371/journal.ppat.1000293.g001

vlsE Recombination in Mice
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process of recombination in vlsE is still functional after 28 days, but

the number of changes relative to the parental strains becomes

asymptotic [25], as addressed further below. In immunocompro-

mised mice, the number of codon or amino acid changes in vlsE was

not significantly different when comparing 4 days and 14 days post

infection (P.0.05). On days 14 and day 28, the number of changes

was significantly lower in SCID mice than in immunocompetent

C3H/HeN mice (P,0.001, Figure 3A and B). Thus, the immune

pressure provided by the adaptive immune system not only results in

the more rapid elimination of parental clones (Figure 1), but also

selects for clones with more sequence changes and hence antigenic

differences. These findings are again consistent with the observation

that the presence of lp28-1 or, more specifically, an intact, functional

vls locus [23] is required for long-term survival of B. burgdorferi in

immunocompetent mice, but not in SCID mice.

Analysis of recombination events
Each of the 1,073 clones that had undergone vlsE sequence

variation was examined individually to provide a global view of the

length, location, and most likely silent cassette sources of the

recombination events. As in previous analyses of vlsE sequence

variation, segmental gene conversion events were observed; in no

instance was the entire cassette region of vlsE replaced by a silent

cassette. In most cases, the sequence changes could be attributed

to a particular silent cassette sequence or set of potential donor

sequences. However, in many instances, the donor sequence could

not be identified unequivocally due to the high degree of sequence

redundancy among the silent cassettes. Tentative identifications of

recombination events and the corresponding donor sequences

were thus based on those sequence alignments that incorporated

the longest stretch of sequence changes (minimal recombination

event) flanked by regions that were shared between the parental

vlsE and vls silent cassette sequences (constituting the maximal

possible recombination event).

We developed a method for visual, semi-automated analysis of

the recombination events using Visual Basic macros in an Excel

spreadsheet. An example is shown in Figs. 4A and 4B, in which the

sequence of clone D10M8H8 (a variant isolated from a C3H/HeN

mouse heart 10 days post infection) was aligned with the parental

vlsE sequence and each of the silent cassette sequences. Each silent

cassette (vls2 through vls16) is represented sequentially by a

different colored bar. Solid color regions represent individual

codons that have undergone a sequence change and match the

corresponding silent cassette in the aligned sequences. Hatched

color regions are contiguous codons that match both the parental

and silent cassette sequences in that part of the alignment. As

shown in Figure 4B, silent cassette vls13 (arrow) represents the

most likely donor sequence due to the uninterrupted region of

sequence identity spanning VR2 and VR3. Many silent cassettes

match at one or more codons in this region, due to the high degree

Figure 2. Relative persistence of clones retaining the parental vlsE sequence at different tissue sites during the course of infection
of C3H/HeN and SCID mice. Panel (A) represents data obtained from C3H/HeN mice, whereas Panel (B) contains data from SCID mice. Results for
each time point are presented in the order shown (bladder, heart, joint, ear, and skin). - No data available (no positive culture obtained, or culture not
done). 0 No parental sequences identified for that tissue and timepoint.
doi:10.1371/journal.ppat.1000293.g002

vlsE Recombination in Mice
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of redundancy among the vls at the individual codon level.

However, vls13 is the only silent cassette that provides a

contiguous match over this entire region. It is interesting to

note that vls13 is the most likely donor sequence in two regions of

the D10M8H8 sequence, separated by a short sequence that

matches the parental vlsE sequence but not the vls13 sequence

(Figure 4A). Thus this variant may represent an example of

intermittent recombination (see below).

The lengths of predicted minimum recombinations varied

widely, from a single nucleotide change (e.g. variant D7M5J12,

Figure 4C) to a region of at least 372 nucleotides (e.g. variant

D14M2B01, Figure 4C). In some cases, especially at early time

points, some variant sequences exhibited several distinct regions of

gene conversion using apparently the same silent cassette source,

separated by regions of unchanged parental sequence (e.g. variants

D10M8H8 [Figure 4A] and D7M6H09, [Figure 4C]). This

‘skipping’ appears to be due to alignment of a silent cassette

sequence with the vlsE sequence over a long distance, followed by

intermittent strand invasion and replacement of the vlsE sequence

or intermittent cleavage of a single invaded strand. These

observations indicate the occurrence of so-called ‘‘intermittent

recombination events’’ in vlsE. An apparent intermittent recom-

bination event in B. burgdorferi had been reported previously by

Knight et al. [34]; in this case, a sequence containing the putative

Shine Delgarno sequence had been ‘skipped’ during targeted

allelic exchange of the gyrase A C-terminus (gac) gene.

Template-independent sequence changes
Most of the sequence changes in vlsE could be explained as

straight-forward genetic recombinations from silent cassette

sequences to vlsE. However, genetic changes that could not be

attributed to simple gene conversion events with silent cassette

sequences were found in 167 clones (Table S1 and Figure S1).

These ‘template-independent’ changes encompassed a variety of

genetic events ranging from single nucleotide changes, apparent

illegitimate recombination events, triplet repeat expansions/

contractions, or other insertions or deletions of up to 9 base pairs;

they also tended to cluster in the variable regions (Figure S2).

Certain codons had particularly high rates of template-indepen-

dent sequence changes; for example, template-independent

sequence changes of codons 73–75 were identified in 19 variant

sequences isolated from 10 different animals (11% of template-

independent clones). Similarly, sequence variants containing

template-independent changes of codons 194–199 were isolated

23 times from 13 different animals (14% of template-independent

clones). It is unclear whether these areas represent mutation

‘hotspots’ or whether mutations arising in the variable regions are

more likely to be maintained due to their location. The crystal

structure of VlsE [31] reveals that the variable regions (VRs) form

loop structures at the membrane distal surface of VlsE while the

invariant regions (IRs) form structured alpha helical bundles.

Mutations arising in the IRs might destabilize the proteins.

Conversely, mutations in the VRs may aid the organism in

antigenic variation and be maintained preferentially.

We did recover a large number of clones showing deletions or

mutations in one IR region. Codons 10–15 in IR1 contained

deletions or template independent changes in 24 variants from 12

different animals (14% of template-independent clones). Sequence

changes in this region included a group of 7 variants (the last

clones listed in Table S1) in which related sequences differed at

between 9 and 12 of 18 nt in the vlsE1 sequence. These clones

originated from skin and joint tissues of one mouse and the skin

from another mouse 14 days post infection in the same

experiment. These 18 nt sequences were not found elsewhere in

the B. burgdorferi B31 genome sequence, so their source is unknown.

(They are not cloning artifacts, because the PCR products were

sequenced directly without cloning.) The amino acid sequence in

this segment of VlsE1 is LLDKLV, whereas the corresponding

variant sequences are SAVRKE, SAVQQK, SAVRQE and

SADQKE. This region of IR1 is part of the a3 alpha helix in the

VlsE structure [31]. Interestingly, the variant sequences preserve

the alpha helical structure according to protein structure

prediction programs (data not shown); thus these replacements

most likely would not disrupt VlsE secondary structure.

Overall, sequences containing template-independent changes

represented 15% (169 of 1,073) of vlsE variants, reinforcing the

conclusion that they occur at a rate much higher than found in the

rest of the B. burgdorferi genome [35]. These genetic mechanism(s)

therefore may play an important role in antigenic variation of vlsE.

Remarkably, only two of the 169 template-independent changes (a

frame shift in D10M8H7 and a stop codon in SD14M4E1)

represented interruptions in the open reading frame, indicating

that the genetic mechanism(s) and/or selective pressure favor

preservation of the full-length vlsE gene.

Progressive recombination in the vlsE locus
Many vlsE clones appear to have undergone multiple recom-

bination events. No direct lineage of recombinations could be

identified in most cases due to the high degree of sequence

variation. In rare instances, we were able to identify clones that

were likely in the same ‘recombination lineage’, i.e. represented a

sequential series of recombinations. Figure 5 shows an example of

three clones, recovered from a single day 14 mouse bladder

specimen, that have apparently undergone sequential recombina-

Figure 3. Median number of vlsE codon changes and predicted
amino acid changes in variants during the time course of
infection of C3H/HeN or SCID mice. Clones with the parental vlsE
sequence were excluded from this analysis. (A) vlsE codon changes. (B)
Predicted amino acid changes. ** indicates a significant difference
(P,0.01) between organisms from C3H/HeN and SCID mice at the time
points indicated, as calculated by unpaired Student’s t test. - No data
available (culture not done).
doi:10.1371/journal.ppat.1000293.g003

vlsE Recombination in Mice
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Figure 4. Schematic representation of vlsE recombination patterns. (A) Upper panel represents the locations of the 6 invariable regions (IR)
and the 6 variable regions (VR) within the vlsE cassette region. Lower panel illustrates the pattern of recombination of clone D10M8H8 showing
sequence changes between VR1 to VR5. (B) Magnified region of D10M8H8 recombination pattern. The top portion of the diagram shows the
alignment between the parental vlsE sequence (vlsE1), the vls silent cassettes vls2 through vls16, and the vlsE variant. The line ‘‘differences’’ highlights
the difference between the vlsE and the variant sequences. In the lower panel, each colored line schematically represents regions of the 15 silent
cassette sequences which could be involved in the variant sequence changes. Each dark colored block represents a region of sequence change within
the variant sequence that is present in the selected silent cassette sequence. The light colored regions in each line represent segments adjacent to
sequence changes that are identical in vlsE1, the variant and the selected silent cassette sequence (i.e. the maximal possible recombination region).
From this analysis, two likely recombination events using silent cassette vls13 (green) as template were identified: from VR1 to VR3 (arrow, panel B)
and from VR4 to VR5 (see panel A). (C) Recombination patterns obtained for variant sequences, exemplifying the following patterns: a single codon
change involving any one of several possible silent cassettes (D7M5J12), a long recombination event with silent cassette 8 spanning VR2 through VR6
(D14M2B01), and 4 intermittent recombination events involving silent cassette 13 (D7M6H9).
doi:10.1371/journal.ppat.1000293.g004

vlsE Recombination in Mice
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tion events. In panel A, the first clone, D10M10B3 was predicted

to be the result of an intermittent recombination with vls5 (the only

silent cassette that contained all the sequence changes observed in

both regions). The other two clones in the panel, D10M10B1 and

D10M10B21, had the same sequence changes as D10M10B3 but

also contain significant differences in other variable regions. Both

clones contained identical sequence changes in the VR1 region

that suggest a recombination event involving silent cassette 12 took

place in a daughter of D10M10B3. However, D10M10B1 and

D10M10B21 differ in VR6, consistent with these clones having

undergone additional recombination events. Both clones con-

tained sequence changes that are consistent with recombination

with silent cassette 10 in VR6, but clone D10M10B21 exhibited

additional changes in VR6 that suggest another recombination

event with silent cassette 8 at some time following the

recombination with vls10. Panel B summarizes the postulated

sequence of recombination events: an initial recombination with

vls5, followed by recombinations with vls12 and vls10 (in either

order) and a final recombination with vls8 in clone D10M10B21.

Thus we propose that these clones represent a series of sequential

recombinations.

Increased accumulation of putative recombination
events in the presence of the adaptive immune system

The median number of putative recombination events per clone

was tabulated for each time point post infection (Figure 6). This

Figure 5. Progressive recombination in vlsE variant clones. (A) Schematic representation of possible recombination events for three clones
derived from a single day 10 bladder culture. The shaded gray boxes indicate the variable regions (VR). Colored bars represent the maximum possible
length of DNA involved in a putative recombination event for each vls silent cassette. Dark colored blocks within the colored bars represent observed
sequence changes between vlsE and the variant sequence that are present in the selected silent cassette. (B) Postulated sequence of recombination
events leading to the three clones.
doi:10.1371/journal.ppat.1000293.g005

vlsE Recombination in Mice
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value was found to increase significantly during the infection of

immunocompetent C3H/HeN mice between day 7 and day 28

post infection (P,0.0001, Figure 6). The higher number of

recombination events identified at 214 days and 365 days post

infection provides further evidence that recombination continues

to occur throughout the course of infection. On day 4 post

infection, the number of recombination events is probably over-

estimated, because several variant sequences contained intermit-

tent recombination events (see below); by default, we considered

an intermittent recombination as multiple recombination events.

In contrast to the results obtained with immunocompetent mice,

the number of deduced recombination events did not increase

significantly between day 4 and day 28 post infection in SCID

mice. These results again support a role of the adaptive immune

system in the selection of clones with a higher number of putative

recombination events. In a previous study, Anguita, et al. [36]

examined a small number of B. burgdorferi clones and reported that

the recombination at the vls locus is impaired in the absence of

interferon (IFN)-c-mediated signals. The proportion of clones that

initiate vlsE gene conversion and the average numbers of changes

per clone were lower in samples from IFN-c receptor a-deficient

mice than in wild-type mice [36]. In our study, we cannot exclude

the possibility that the observed difference in the accumulation of

vlsE variants in immunocompetent and SCID hosts is due in part

to alterations in IFN-c expression or other cytokine-mediated

pathways. Other infectious agents (including Escherichia coli,

Mycobacterium tuberculosis and Trypanosoma cruzi [37,38,39]) have

developed diverse ways to subvert the immune system through the

alteration of cytokine responses, so it is not outside the realm of

possibility that vlsE antigenic variation is influenced by host

cytokine production.

Full-length VlsE protein expression is not required for
sequence variation

The silent cassette vls11 sequence contains a stop codon within

invariable region 4 (IR4); recombination of this codon into vlsE

would result in translational termination and a truncated

polypeptide representing 63% of the full length VlsE [22,25]. In

the current study, 16 independent clones containing this stop

codon in the vlsE sequence were isolated in the population of 1,399

clones analyzed. To determine whether a clone containing this

stop codon in the vlsE sequence can colonize a mammalian host,

two clones, 1379A and D7M5H5, were inoculated into immuno-

competent C3H/HeN mice. The colonization of the mice was

successful, as demonstrated by the detection of organisms in the

skin at day 7 and in all tissues cultured at 28 days post infection

(data not shown). We cloned sequences from the vlsE expression

cassette to examine the ability of B. burgdorferi defective in full-

length VlsE expression to undergo vlsE recombination in mice.

Seven days after inoculation, bacteria recovered from back skin

biopsies from 5 mice were analyzed for vlsE recombination.

Interestingly, all 10 of the sequences analyzed still possessed the

stop codon, although 50% of the clones showed changes in other

parts of the vlsE sequence as compared to the sequence of the

parental clone 1379A (data not shown) . At day 28 post-infection,

vlsE sequences lacking the stop codon were recovered, indicating

that sequences derived from the vls11 silent cassette are capable of

undergoing recombination to generate full length VlsE. Taken

together, these results indicate that continuous expression of a full

length VlsE protein is not required for either the successful

colonization of mice or the occurrence of vlsE recombination. This

phenomenon could be considered a form of phase variation, as

occurs in the pilin expression system in Neisseria species [10]. These

data are also consistent with several previous studies indicating

that B. burgdorferi clones lacking either lp28-1 or the vls locus can

disseminate and survive for short periods (,18 days) in immuno-

competent mice, yet can apparently survive indefinitely in SCID

mice [23,24,33,40,41].

Predominance of short recombination events
To investigate the length of individual vlsE recombination

events, we performed a detailed examination of clones with only

one apparent event of recombination. These results comprised

126 independent clones recovered from all tested tissues from

both immunocompetent and SCID mice during the time course

of infection (Table 2). Variant sequences with a single event of

recombination encompassed a broad range of one (e.g.

D7M5J12) to 22 (e.g. D14M2B01) codon changes (Figure 4C).

The recombination observed in clone D7M5J12 represented

only a GGGRAAG conversion at codon 84 in the aligned

sequences, and could have arisen from any of the vls silent

cassettes containing the AAG codon at this position (vls3, vls8,

vls11, vls13, vls15 and vls16). In this case, the minimal

recombination event comprised only two nucleotides, whereas

possible maximal recombination events (the range in which the

variant sequence matches both the ‘recipient’ and ‘donor’

sequences on either side of the sequence change) ranged from

2 to 17 nt upstream and 21 to 37 nt downstream, depending on

the silent cassette involved. Overall, the recombination event in

this example involved a maximum of 25 to 48 nt of DNA,

indicating that vlsE recombination can take place in a very small

region. At the other end of the spectrum, the putative

recombination event with vls4 in clone D14M2B01 (Figure 4C)

encompassed a minimum of 349 nt and a maximum of 423 nt of

donor sequence, with 64 nt and 10 nt of sequence identity

flanking the region of sequence change on the upstream and

downstream ends, respectively. Thus the vlsE recombination

system appears to promote both minuscule and long recombi-

nation events within the cassette region.

A subset of 126 vlsE variants was identified that appeared to

represent ‘templated’ single recombination events (Table S2). All

of the sequence changes in this group had corresponding template

sequences in one or more silent cassettes, and most had regions of

homology with both the ‘donor’ and ‘recipient’ sequences both

upstream and downstream from the sequence change (e.g.

Figure 6. Median number of putative recombination events in
variant B. burgdorferi clones during the time course of infection.
Hatched and empty bars represent the populations of bacteria
recovered from C3H/HeN or SCID mice, respectively. ** indicates a
significant difference (P,0.01) between the results obtained for C3H/
HeN and SCID mice for that time point, as calculated by unpaired
Student’s t test.
doi:10.1371/journal.ppat.1000293.g006
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D7M5J12, Figure 4C). The majority of these clones (70 of 126, or

55%) exhibited a minimum region of recombination of 1 to 5

nucleotides (Figure 7A) Amazingly, 33 of 126 (26%) had only a

single nucleotide change (Figure 7A). These most likely represent

templated gene conversion events, because they occur at a much

higher frequency than that of template-independent single

Table 2. Number of vlsE sequences analyzed exhibiting a putative single recombination event.

Days post infection No. of sequences

C3H/HeN SCID

Bladder Heart Joint Ear Skin Bladder Heart Joint Ear Skin

4 days 1*

7 days 11 6 18 1 4

10 days 11 7 13 9 3 5 1 3

14 days 2 3 5 7 5 1 11*

28 days 1* 31* 51* 21* 31*

The description and key are the same as in Table 1.
doi:10.1371/journal.ppat.1000293.t002

Figure 7. Lengths of minimum and maximum predicted recombination events in 126 clones identified as having a single, well-
defined recombination event. Histograms of the deduced (A) minimum and (B) maximum lengths of recombination are depicted as bars; the
cumulative percentage of clones having predicted minimal or maximal recombination lengths#the length shown are represented as lines. Panel C
represents the putative silent cassette usage in clones with a single recombination event in which the silent cassette source could be determined
unambiguously.
doi:10.1371/journal.ppat.1000293.g007
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nucleotide sequence changes (76 of 1,073 sequences examined, or

7%) (Table S1).

An additional 28 clones (22%) exhibited minimal recombination

events of 6 to 14 nt, whereas only 28 clones (21%) had minimal

recombinations $15 nt. In contrast, the lengths of the predicted

maximum recombination events were more widely distributed

between 7 to 419 nucleotides (Figure 7B). (In this analysis, the

maximal recombination event was based on the longest region of

sequence identity if more than one silent cassette could have

served as the ‘donor’ for the recombination event.) These results

indicate that the length of DNA that is utilized during the

recombination process is highly variable, but tends to include a

short region of nonhomologous DNA. The observed median

minimal recombination (6S.E.) was 560.27 nt, whereas the

median maximal recombination (6S.E.) was 8960.37 nt. The

difference between minimal and maximal recombinations reflects

the high homology between the silent cassette sequences and the

vlsE cassette region. Thus, each round of vlsE gene conversion (i.e.

each vlsE recombination event) often introduces only one or two

amino acid changes in each variant protein sequence, although a

much larger region may be involved in each recombination event.

To examine this mechanism further, the base changes occurring in

33 well-defined ‘templated’ single nucleotide changes (proposed

gene conversion events) were compared with 76 ‘template-

independent’ changes (Table S3). While the proportion of

nucleotide conversions were similar overall, CRA transversions

were favored in the templated group, and CRG transversions

were predominant in the template-independent group; this result

implies that different mechanisms are operative in the two groups.

While we cannot determine conclusively whether single nucleotide

changes were introduced by genetic recombination or hypermuta-

tion as previously proposed by Sung et al. [35], our study indicates

that most sequence changes in vlsE result from gene conversion

events between the vls silent cassettes and the vlse1 expression

cassette.

Silent cassette usage as recombination template
The putative silent cassette usage was determined for the

sequence of clones showing a single, non-ambiguous recombina-

tion event (Figure 7C). We observed that some silent cassettes,

including vls6, vls7, vls9, appeared to be used more often than the

others. Although it had been proposed previously that the 17 bp

direct repeat sequences present at the 59 and 39 ends of each silent

cassette are involved in vlsE recombination [22], those silent

cassettes with poorly conserved direct repeats (e.g. cassettes 10 and

11) are used during vlsE variation (Figure 7C). In the population of

clones with a single recombination event, no clones were identified

in which silent cassettes vls2, vls14 and vls16 were used as template

for recombination. To extend this analysis, we also identified well-

separated, unambiguous recombination events in all 1,073 clones

with vlsE variations, including those with multiple recombination

events. In this extended group, examples where vls2, vls14 or vls16

were unambiguously used as template were observed (data not

shown). These results indicates that any region of any silent

cassette can be use as template, although the silent cassettes

present in the central part of the silent cassette locus tend to be

used more frequently.

Distribution of sequence variations within the vlsE
cassette region

In our study, we analyzed the location of sequence changes

within the vlsE cassette region during the time course of infection.

No evidence of a recombination ‘program’ in which recombina-

tions involved certain variable regions earlier than others was

observed (data not shown). We also checked each individual

variant amino acid sequence to determine if a specific VlsE protein

sequence can be linked with a specific tissue tropism. In the

relapsing fever organism Borrelia turicatae, the variable large

protein/variable small protein (Vlp/Vsp) antigenic variation

system influences tissue tropism as well as immune evasion

[42,43]. For example, B. turicatae expressing VspA are neurotropic

while those expressing VspB achieve higher concentrations in the

blood in a mouse model [42,43]. In our study, there were no

obvious differences in the amino acid sequence changes observed

in different tissues (Figure 8). These results suggest that the vlsE

gene conversion system is primarily involved in immune evasion

rather than tissue tropism. Interestingly, we were also able to

identify 5 pairs of clones presenting the exact same variant

sequence in different tissues of the same mouse (e.g. D28M2BX1

from bladder and D28M2HX6 from heart); an additional 33 pairs

of identical variants in different tissues were identified in other

mice. These findings verify the occurrence of dissemination of

variant clones in individual mice.

Conclusion
The vls antigenic variation system is an example of segmental

gene conversion, which is also found in the N. gonorrhoeae pilE

system [44], the A. marginale msp2 system [13], and the Babesia

bovis ves1a system [45]. In each of these systems, a set of silent

gene segments serves as the source of the ‘donor’ sequence, but

the donor site remains unaltered in progeny following the

recombination. Also, the recombination events occur at a high

rate within the target gene, indicating that special mechanisms

facilitate unidirectional genetic change in the target site (but not

the donor sites). Another unusual property shared by segmental

gene conversion mechanisms is that the recombination is

‘unanchored’ within the target gene, i.e. it does not start or

stop at a certain sequence. The relapsing fever antigenic

variation system is different in this aspect, in that most gene

conversion recombination events occur at specific upstream and

downstream homology sequences [16]. Our data also indicated

that very short recombinations occur in the vls system, and that

long flanking regions of sequence identity between the donor

and recipient sequences are not required. Indeed, in our analysis

of probable single recombination events, there were examples

where there was no sequence identity on one end or the other of

the recombination (e.g. clones D7M3B12, D10M9H6, and

D10M7J4). The day 7 joint isolate D7M2J05 (data not shown)

exemplified clones with short segments of sequence identity at

both ends of the recombination, with regions of identity of only

2 nt and 6 nt upstream and downstream of an 11 nt region of

sequence replacement (from cassette 10). These results indicate

that the vls recombination system requires very little sequence

identity to initiate the recombination event. In this regard, the

vls system appears to be similar to the N. gonorrhoeae pilE system,

in which sequence changes ranging in size from as short as 1 nt

to as long as 200 nt have been observed; in addition, over 50%

of the recombinations are 15 nt or less [44,46,47]. In no case,

however, has illegitimate recombination into nonhomologous

sites been observed in vlsE (or pilE), demonstrating that some

extent of sequence complementarity and alignment is needed to

‘nucleate’ the recombination event.

The mechanisms involved in segmental gene conversion

during antigenic variation are not well understood. pilE

sequence variation is RecA-dependent [48], and appears to

involve circular intermediates that are derived from pilS silent

cassette sequences [49]. We propose that a vls silent cassette

sequence (in the form of lp28-1, a separate episomal DNA copy,

vlsE Recombination in Mice
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or possibly even an RNA copy) undergoes strand invasion,

displacing the parental strain. This process requires very short

regions of sequence identity and could be facilitated by a DNA-

binding protein or endonuclease to nick the recipient and/or

donor DNA, although the lack of specificity in terms of the site

of sequence change suggests that these activities would not be

very site-specific. The strand invasion also appears to be

terminated in a non-specific manner, in that the lengths of

recombination were variable (although predominantly short).

Termination may not require a region of sequence identity, in

that there were examples where no region of sequence identity

was found at one end of the vlsE sequence change. We believe

that as yet unidentified mediators of vlsE recombination are

induced or activated during mammalian infection, as evidenced

by rapid occurrence of vlsE sequence changes during mamma-

lian infection and the lack of detectable sequence variation

during in vitro culture or tick infection. (Alternatively, an

inhibitor of vlsE recombination could be repressed or inactivat-

ed during mouse infection; however, this scenario seems unlikely

in that vlsE recombination has not been observed in E. coli

transformed with constructs containing vlsE and an adjacent

region of the silent cassettes [S. J. N. and J. K. Howell,

unpublished data].) Study of this phenomenon and its cis- and

trans-acting mediators would be aided greatly by the identifica-

tion of conditions that activate vlsE recombination in vitro, or vls

shuttle constructs that undergo recombination in B. burgdorferi

and can be genetically manipulated to permit the identification

of cis-acting elements.

Antigenic variation and phase variation in bacterial surface

proteins are common and have been shown to contribute to

avoidance of adaptive immune responses, to tissue tropism, or to

the pathogenesis process (e.g. altered adherence properties). Our

studies provide direct in vivo evidence of the function of gene

conversion of the Borrelial VlsE lipoprotein. In wild-type mice

(in comparison with SCID mice), clones having the parental vlsE

sequence persist for a shorter period; in addition, vlsE codon

changes and recombination events accumulate more rapidly.

These data indicate that variants are selected in immunocom-

petent mice, most likely due to antibodies specific for the variable

regions of VlsE [32]. Similar results have been observed in the

Vlp/Vsp antigenic variation system of relapsing fever Borrelia

[50] and the Vsa phase variation system in Mycoplasma pulmonis

[12]. The adaptive immune system thus acts as a selective force,

killing clones with less variation but not eliminating clones with

more extensive variation (and hence antigenic differences). In

this study and as previously observed by Zhang and Norris [25],

the presence or absence of the adaptive immune system is not

required to induce the vlsE gene conversion mechanism.

However, we cannot rule out the possibility that the adaptive

immune system can directly affect the kinetics of the ongoing

process of vlsE recombination, i.e. that the bacteria exhibit

increased recombination under the influence of immune pressure

(e.g. production of specific antibody or cytokines) [36]. Indeed,

vlsE expression is increased under the influence of the immune

pressure, specifically when functional B cells are present [51]. An

interesting experiment would be to follow the rate of vlsE variant

accumulation during the time course of infection of immuno-

competent or SCID mice previously immunized with recombi-

nant VlsE protein. An additional finding was that the production

of a stable VlsE protein is not required for the vlsE gene

conversion process to occur. Any silent cassette (and any region

thereof) can be involved in a recombination event, and a variety

of apparent template-independent genetic changes contributed

to sequence variation. The recombination events are evenly

distributed throughout the vlsE cassette region and exhibit no

apparent bias for particular regions. Furthermore, no VlsE motif

was associated with infection of a specific tissue site. The degree

of variation observed indicates that the vlsE recombination

system is one of the most robust antigenic variation systems

found in pathogens.

Figure 8. The locations and amino acid utilization of deduced VlsE amino acid changes paralleled the changes predicted by the
sequence differences between vlsE1 and the silent cassettes. The distribution of amino acid changes found in the variant sequences from
different infected tissues were depicted as sequence logo patterns using the program WebLogo [54]. The height of the letter is proportional to the
frequency of changes. The letter ‘‘x’’ indicates a 3-nt indel, and the asterisk a stop codon. The panels for bladder, heart, joint, ear, and skin represent
the observed changes in the variant sequences recovered from the respective tissue at all time points during B. burgdorferi infection of C3H/HeN or
SCID mice. The silent cassette panel represents the relative probability of a given amino acid change at each position of vlsE1, based on the amino
acids encoded by the silent cassette sequences at each position in the vlsE1/silent cassette alignment.
doi:10.1371/journal.ppat.1000293.g008
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Materials and Methods

Bacterial strains and cultures
The high-infectivity B. burgdorferi B31 clones 5A3 (B31-5A3,

lacking plasmids lp28-2 and lp56) and 5A4 (B31-5A4, containing

all plasmids) were isolated previously from low-passage strain B31

[27]. Small quantities were removed from the surface of frozen

stocks by scraping with sterile 1 ml pipet tips and were inoculated

into 6 ml of BSKII medium [52]. Cultures used in this study had

undergone no more than two passages since clone isolation, thus

minimizing the likelihood of plasmid loss.

Animal studies
All research involving animals was approved by the Animal

Welfare Committee of the University of Texas Health Science

Center at Houston. Eight-week-old, female C3H/HeN mice

(Harlan, Indianapolis, IN), C3H/HeN severe combined immuno-

deficiency (SCID) mice (Harlan) and CB-17 SCID mice (Charles

River Laboratories, Wilmington, MA) were housed in micro-

isolator cages and provided with antibiotic-free food and water.

For mouse inoculation, frozen stocks of low passage B. burgdorferi

strains were cultured in BSK II medium [52] at 37uC in 3% CO2

until the mid-log phase of growth. The cultures were diluted in

BSK II medium to a concentration of 106 bacteria/ml as

determined by dark-field microscopy, and 0.1 ml (105 organisms)

was injected subcutaneously at the base of the tail. Groups of 4 to 6

mice were sacrificed on 4, 7, 10, 14 and 28 days post infection,

and samples from tissue sites (bladder, heart, joint, ear and skin)

were acquired under aseptic conditions and cultured in 6 ml of

BSK II broth with an antibiotic mixture to reduce the occurrence

of microbial contamination (Sigma Aldrich; 50 mg/ml rifampin,

20 mg/ml phosphomicin and 2.5 mg/ml amphotericin B). After

7 days, the cultures were checked for growth, diluted, and

subsurface plated in BSKII-agarose medium to obtain individual

clones as described previously [53].

Amplification and sequencing of vlsE cassette region
Well-isolated colonies from BSKII-agarose plates were inocu-

lated in BSK II medium with antibiotics and cultured for 4 days

prior to use as PCR templates (<104 cells per reaction).

Alternatively, agarose plugs containing individual colonies were

added directly to the PCR reaction. The vlsE cassette region of

each clone was amplified by PCR using the Phusion High-Fidelity

DNA Polymerase (New England BioLabs, Ipswich, MA) and vlsE

primers 4066 and 4120 as described previously [25]. The PCR

products were purified and sequenced on both strands at the High-

Throughput Genomics Unit (Department of Genome Sciences,

University of Washington , Seattle), utilizing the same primers

used for the amplification. The PCR products were sequenced

directly (without cloning the products) to minimize the effects of

sequence errors due to PCR infidelity. The chromatographs

corresponding to each DNA sequence were examined individually

to verify the quality of the sequence data, and each sequence

difference (in comparison to the parental vlsE1 sequence) was

checked for sequence accuracy. Variant clones that originated

from the same tissue specimen and had identical sequences were

considered siblings but were treated separately in this analysis.

vlsE variant sequence analysis
The B31 parental vlsE (allele vlsE1), vls silent cassettes, and all of

the vlsE variants sequences presented in this study are contained in

GenBank entries U76406, U76405, EU484573–EU485396,

EU485400–EU485403, EU485405–EU485714, EU485716–

EU485724, EU485726–EU48748, and EU485750–EU485984; a

list of the clone numbers and the corresponding GenBank

accession numbers is at http://www.uth.tmc.edu/pathology/

borrelia/. Most clone numbers are in the following format:

S = SCID mouse infection; D4 = 4 days post infection;

M3 = mouse 3; B, E, H, J, S = bladder, ear, heart, tibiotarsal

joint, and skin, respectively; number and/or letter designation-

s = individual clone from that animal and tissue. An ‘X’ indicates

that a colony PCR product was sequenced, and no B. burgdorferi

culture was retained. Infecting clone refers to either B31 5A3

(lacking plasmids lp28-2 and lp56) or B31 5A4 (containing all

plasmids).

The DNA sequences of the parental vlsE cassette region (vls1)

and the silent cassettes (vls2 to vls16) were aligned manually to

match the arrangement in Figure 3 of Zhang et al. [22], and their

sequences were formatted into codons (corresponding to vlsE

codons). Indels were recorded using the letters ‘‘OOO’’ as a place

marker. The aligned sequences were inserted into a MicrosoftH
Excel spreadsheet (one codon per cell), creating the template used

to analyze vlsE variant sequences. Each vlsE variant sequence was

codon-formatted, trimmed, and optimally aligned with vls1 (using

the ClustalW multiple alignment algorithm embedded in the

Bioedit software [http://www.mbio.ncsu.edu/BioEdit/BioEdit.

html] (followed by manual adjustments) prior to analysis. The

sequences were then compared to the parental vls1 sequence and

the silent cassette sequences using a set of macros written using

MicrosoftH Visual Basic for Applications. The Excel template and

macros may be obtained by contacting the authors.

The nucleotide and deduced amino acid sequences of each

variant were compared computationally to both vls1 and the silent

cassette nucleotide and predicted amino acid sequences. We first

analyzed the overall number of codon differences between vls1 and

the variant sequence. The codon sequence for each individual

observed difference was compared to the sequences present among

the silent cassettes at the same position, thus determining the

putative silent cassette source(s) of any non-parental codon found

in a given variant sequence. By combining the location and the

possible silent cassette sources for each change in a variant

sequence, we were able to identify regions of sequence variation

and to propose putative events of recombination as well as the

silent cassettes potentially used as templates. For each region of

sequence variation, the minimal deduced regions of recombination

were defined as groups of contiguous codons differing from the

parental sequence and matching a silent cassette sequence,

whereas the maximal deduced regions of recombination included

all contiguous codons in either direction in which the variant

sequence matched both the parental and silent cassette sequences.

The possible recombination events were thus determined

computationally and portrayed graphically by the ExcelTM

spreadsheet, as exemplified in Figure 4. In cases where more

than one silent cassette could serve as the template for a

recombination event, the silent cassette showing the longest

maximal recombination pattern was selected as the possible

template.

Positional changes in vlsE variants with time
By comparing the silent cassette sequences and the vls1

sequence, we determined the probability of change at each codon

in vls1. Each vlsE variant sequence was then compared to vls1 to

determine the number and position of codon and amino acid

differences in that variant. The results obtained for variant

sequences at a given time post infection were analyzed together,

and the total number of differences at each position was

calculated, normalized for the number of variants, and compared

with the probability of change at each position in vls1. The
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deduced amino acid changes occurring at each position were also

compared to probability data obtained from vlsE1/silent cassette

comparisons and displayed using the program WebLogo [54].

Statistical analyses
Statistics were performed in MicrosoftH Excel using the

unpaired Student’s t test.

Supporting Information

Table S1 B. burgdorferi vlsE variant clones with template-

independent sequence changes.

Found at: doi:10.1371/journal.ppat.1000293.s001 (0.12 MB PDF)

Table S2 B. burgdorferi vlsE variant clones with sequences

consistent with a single recombination event.

Found at: doi:10.1371/journal.ppat.1000293.s002 (0.11 MB PDF)

Table S3 Comparison of the base changes occurring in

‘templated’ vs. ‘template-independent’ single nucleotide changes

in vlsE variants.

Found at: doi:10.1371/journal.ppat.1000293.s003 (0.08 MB PDF)

Figure S1 D28M1HX5 as an example of a vlsE variant with

templated and template-independent sequence modifications.

Possible involvement of silent cassette sequences vls2–vls16 in vlsE

gene conversion events are shown by the colored bars, as described

in the legend for Fig. 4. Variant D28M1HX5 contains an

template-independent variations at codons 147 and 165. This

mismatch to any vls silent cassette is indicated by a 0 in the vlsE

match row as well as by the lack of color fill in the graphic column

of those codons. Variant D28M1HX5 has apparently undergone

multiple templated recombination events, with the most likely

‘donor’ sequences being vls6 (minimal recombination event = co-

dons 37–64), either vls3 or vls4 (98–127), vls7 or vls10 (141–144),

vls8 (156–162), and vls3 (169–201).

Found at: doi:10.1371/journal.ppat.1000293.s004 (0.09 MB XLS)

Figure S2 Locations of template-independent sequence varia-

tion. The X axis numbers represent the codon number of each

amino acid in vlsE as presented in Figure 3 of [22]. The dark blue

bars represent the number of variants recovered at each codon.

The black line represents a 3 point moving average. In the

diagram below the graph, the light areas indicate the locations of

the invariable regions of vlsE while the dark areas indicate the

positions of the variable regions of vlsE.

Found at: doi:10.1371/journal.ppat.1000293.s005 (0.07 MB PDF)
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7. van der Woude MW, Bäumler AJ (2004) Phase and antigenic variation in

bacteria. Clin Microbiol Rev 17: 581–611.

8. Gitelman AK, Kaverin NV, Kharitonenkov IG, Rudneva IA, Zhdanov VM

(1984) Changes in the antigenic specificity of influenza hemagglutinin in the

course of adaptation to mice. Virology 134: 230–232.

9. Johnson WE, Desrosiers RC (2002) Viral persistence: HIV’s strategies of

immune system evasion. Annual Review of Medicine 53: 499–518.

10. Zhang QY, DeRyckere D, Lauer P, Koomey M (1992) Gene conversion in

Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc Nat

Acad Sci USA 89: 5366–5370.

11. Noormohammadi AH, Markham PF, Kanci A, Whithear KG, Browning GF

(2000) A novel mechanism for control of antigenic variation in the

haemagglutinin gene family of Mycoplasma synoviae. Mol Microbiol 35: 911–923.

12. Denison AM, Clapper B, Dybvig K (2005) Avoidance of the host immune system

through phase variation in Mycoplasma pulmonis. Infect Immun 73: 2033–2039.

13. Brayton KA, Palmer GH, Lundgren A, Yi J, Barbet AF (2002) Antigenic

variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion.

Mol Microbiol 43: 1151–1159.

14. Zhang JR, Norris SJ (1998) Genetic variation of the Borrelia burgdorferi gene vlsE

involves cassette-specific, segmental gene conversion. Infect Immun 66:

3698–3704.

15. Restrepo BI, Barbour AG (1994) Antigen diversity in the bacterium B. hermsii

through ‘‘somatic’’ mutations in rearranged vmp genes. Cell 78: 867–876.

16. Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, et al. (2006) Antigenic

variation by Borrelia hermsii occurs through recombination between extragenic

repetitive elements on linear plasmids. Mol Microbiol 60: 1329–1343.

17. Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, et al. (2004)

Gene conversion: a mechanism for generation of heterogeneity in the tprK gene

of Treponema pallidum during infection. Mol Microbiol 52: 1579–1596.

18. Harrington CS, Thomson-Carter FM, Carter PE (1997) Evidence for

recombination in the flagellin locus of Campylobacter jejuni: implications for the

flagellin gene typing scheme. J Clin Microbiol 35: 2386–2392.

19. De Las Penas A, Pan S-J, Castano I, Alder J, Cregg R, et al. (2003) Virulence-

related surface glycoproteins in the yeast pathogen Candida glabrata are encoded

in subtelomeric clusters and subject to RAP1- and SIR-dependent transcrip-

tional silencing. Genes Dev 17: 2245–2258.

20. Dzikowski R, Templeton TJ, Deitsch K (2006) Variant antigen gene expression

in malaria. Cellular Microbiology 8: 1371–1381.

21. Taylor JE, Rudenko G (2006) Switching trypanosome coats: what’s in the

wardrobe? Trends in Genetics 22: 614–620.

22. Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in

Lyme disease borreliae by promiscuous recombination of VMP-like sequence

cassettes. Cell 89: 275–285.

23. Bankhead T, Chaconas G (2007) The role of VlsE antigenic variation in the

Lyme disease spirochete: persistence through a mechanism that differs from

other pathogens. Mol Microbiol 65: 1547–1558.

24. Lawrenz MB, Wooten RM, Norris SJ (2004) Effects of vlsE complementation on

the infectivity of Borrelia burgdorferi lacking the linear plasmid lp28-1. Infect

Immun 72: 6577–6585.

25. Zhang JR, Norris SJ (1998) Kinetics and in vivo induction of genetic variation of

vlsE in Borrelia burgdorferi. Infect Immun 66: 3689–3697.

26. Labandeira-Rey M, Baker E, Skare J (2001) Decreased infectivity in Borrelia

burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect

Immun 69: 446–455.

27. Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity

in Borrelia burgdorferi. Proc Natl Acad Sci USA 97: 13865–13870.

28. Embers ME, Liang FT, Howell JK, Jacobs MB, Purcell JE, et al. (2007)

Antigenicity and recombination of VlsE, the antigenic variation protein of

Borrelia burgdorferi, in rabbits, a host putatively resistant to long-term infection

with this spirochete. FEMS Immunol Med Microbiol 50: 421–429.

29. Indest KJ, Howell JK, Jacobs MB, Scholl-Meeker D, Norris SJ, et al. (2001)

Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick

vector. Infect Immun 69: 7083–7090.

30. Ohnishi J, Schneider B, Messer WB, Piesman J, de Silva AM (2003) Genetic

variation at the vlsE locus of Borrelia burgdorferi within ticks and mice over the

course of a single transmission cycle. J Bacteriol 185: 4432–4441.

31. Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, et al. (2002)

Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia

burgdorferi. J Biol Chem 277: 21691–21696.

32. McDowell JV, Sung SY, Hu LT, Marconi RT (2002) Evidence that the variable

regions of the central domain of VlsE are antigenic during infection with Lyme

disease spirochetes. Infect Immun 70: 4196–4203.

vlsE Recombination in Mice

PLoS Pathogens | www.plospathogens.org 13 February 2009 | Volume 5 | Issue 2 | e1000293



33. Labandeira-Rey M, Seshu J, Skare JT (2003) The absence of linear plasmid 25

or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental
infection via distinct mechanisms. Infect Immun 71: 4608–4613.

34. Knight SW, Kimmel BJ, Eggers CH, Samuels DS (2000) Disruption of the

Borrelia burgdorferi gac gene, encoding the naturally synthesized GyrA C-terminal
domain. J Bacteriol 182: 2048–2051.

35. Sung SY, McDowell JV, Marconi RT (2001) Evidence for the contribution of
point mutations to vlsE variation and for apparent constraints on the net

accumulation of sequence changes in vlsE during infection with Lyme disease

spirochetes. J Bacteriol 183: 5855–5861.
36. Anguita J, Thomas V, Samanta S, Persinski R, Hernanz C, et al. (2001) Borrelia

burgdorferi-induced inflammation facilitates spirochete adaptation and variable
major protein-like sequence locus recombination. J Immunol 167: 3383–3390.

37. Denis M, Campbell D, Gregg EO (1991) Interleukin-2 and granulocyte-
macrophage colony-stimulating factor stimulate growth of a virulent strain of

Escherichia coli. Infect Immun 59: 1853–1856.

38. Bermudez LE, Petrofsky M, Shelton K (1996) Epidermal growth factor-binding
protein in Mycobacterium avium and Mycobacterium tuberculosis: a possible role in the

mechanism of infection. Infect Immun 64: 2917–2922.
39. Hall BS, Pereira MA (2000) Dual role for transforming growth factor beta -

dependent signaling in Trypanosoma cruzi infection of mammalian cells. Infect

Immun 68: 2077–2081.
40. Purser JE, Lawrenz MB, Caimano MJ, Howell JK, Radolf JD, et al. (2003) A

plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia

burgdorferi in a mammalian host. Mol Microbiol 48: 753–764.

41. Xu Q, Seemanapalli SV, Lomax L, McShan K, Li X, et al. (2005) Association of
linear plasmid 28-1 with an arthritic phenotype of Borrelia burgdorferi. Infect

Immun 73: 7208–7215.

42. Cadavid D, Pachner AR, Estanislao L, Patalapati R, Barbour AG (2001)
Isogenic serotypes of Borrelia turicatae show different localization in the brain and

skin of mice. Infect Immun 69: 3389–3397.

43. Pennington PM, Cadavid D, Barbour AG (1999) Characterization of VspB of

Borrelia turicatae, a major outer membrane protein expressed in blood and tissues

of mice. Infect Immun 67: 4637–4645.

44. Criss AK, Kline KA, Seifert HS (2005) The frequency and rate of pilin antigenic

variation in Neisseria gonorrhoeae. Molec Microbiol 58: 510–519.

45. Allred DR, Al-Khedery B (2004) Antigenic variation and cytoadhesion in Babesia

bovis and Plasmodium falciparum: different logics achieve the same goal. Mol

Biochem Parasitol 134: 27–35.

46. Hagblom P, Segal E, Billyard E, So M (1985) Intragenic recombination leads to

pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156–158.

47. Haas R, Meyer TF (1986) The repertoire of silent pilus genes in Neisseria

gonorrhoeae: evidence for gene conversion. Cell 44: 107–115.

48. Serkin CD, Seifert HS (1998) Frequency of pilin antigenic variation in Neisseria

gonorrhoeae. J Bacteriol 180: 1955–1958.

49. Howell-Adams B, Seifert HS (2000) Molecular models accounting for the gene

conversion reactions mediating gonococcal pilin antigenic variation. Mol

Microbiol 37: 1146–1158.

50. Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, et

al. (2003) The resolution of relapsing fever borreliosis requires IgM and is

concurrent with expansion of B1b lymphocytes. J Immunol 170: 3819–3827.

51. Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, et al. (2004) Borrelia

burgdorferi changes its surface antigenic expression in response to host immune

responses. Infect Immun 72: 5759–5767.

52. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes.

Yale J Biol Med 57: 521–525.

53. Norris SJ, Howell JK, Garza SA, Ferdows MS, Barbour AG (1995) High- and

low-infectivity phenotypes of clonal populations of in vitro-cultured Borrelia

burgdorferi. Infect Immun 63: 2206–2212.

54. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence

logo generator. Genome Res 14: 1188–1190.

vlsE Recombination in Mice

PLoS Pathogens | www.plospathogens.org 14 February 2009 | Volume 5 | Issue 2 | e1000293


