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Topological states from topological crystals
Zhida Song1,2, Sheng-Jie Huang3,4, Yang Qi5,6,7, Chen Fang1,8*, Michael Hermele3,4*

We present a scheme to explicitly construct and classify general topological states jointly protected by an onsite
symmetry group and a spatial symmetry group. We show that all these symmetry-protected topological states can
be adiabatically deformed into a special class of stateswe call topological crystals. A topological crystal in, for example,
three dimensions is a real-space assembly of finite-sized pieces of topological states in one and two dimensions
protected by the local symmetry group alone, arranged in a configuration invariant under the spatial group and glued
together such that there is no open edge or end. As a demonstration of principle, we explicitly enumerate all inequiv-
alent topological crystals for noninteracting time-reversal symmetric electronic insulatorswith spin-orbit coupling and
any one of the 230 space groups. This enumeration gives topological crystalline insulators a full classification.
INTRODUCTION
Symmetry-protected topological (SPT) phases are gappedmany-body
ground states that can only be adiabatically deformed into product
states of local orbitals by breaking a given symmetry group or by
closing the energy gap (1). Typical examples are topological insulators,
topological superconductors, and the Haldane spin chain [hereinafter,
if not explicitly stated otherwise, the terms “topological insulator” and
“strong topological insulator” (STI) will refer to the three-dimensional
(3D) topological insulator protected by time-reversal symmetry]. The
best-understood SPT phases are those of noninteracting fermions; not
long after the discovery of topological band insulators, free-fermion
topological phases were completely classified for systems with internal
(i.e., nonspatial) symmetries (2–5). Of course, crystalline symmetries
play a central role in solid-state physics, so attention naturally began to
turn to topological crystalline insulators (TCIs), which are electronic
insulators whose topologically nontrivial nature is protected, in part,
by point group or space group symmetry (5–8). Sparked by the pre-
diction and observation of TCIs in SnTe (7, 9–11), remarkable theo-
retical (12–24) and experimental progress (25–27) has followed over
the last few years.

Despite these developments, somewhat unexpectedly, a unified
picture of the classification of noninteracting electron TCIs has yet to
emerge. The primary tool for the classification of free-fermion
topological phases with spatial symmetries has been K-theory (3) and
equivariant K-theory (28). A number of concrete classification results
have been obtained (12, 14, 16, 17, 22), but reflecting the complexity
of K-theory, there is a paucity of concrete results for 3D (d = 3) insula-
tors with general space group symmetry and time-reversal symmetry.
Moreover, it is not understood howorwhether electron interactions can
be included withinK-theory. Therefore, there is a need to develop alter-
nate means to classify TCIs and other crystalline SPT (cSPT) phases
jointly protected by internal and spatial symmetries. Ideally, to provide
a useful complement toK-theory, thesemethodswill be real space based
and physically transparent and allow for interactions to be included.
Here, we propose a general method for classifying and construct-
ing cSPT phases, which is then applied to the case of electronic TCIs
in all 230 space groups, with time-reversal symmetry and spin-orbit
coupling. We also extend these results to include STIs. Our approach
is based on recent developments in the seemingly harder problem of
classifying interacting cSPT phases (29–33). The key idea is to first
argue that any cSPT phase is adiabatically connected to a real-space
crystalline pattern of lower-dimensional topological states, which we
refer to as a topological crystal (29, 32). One then develops a classifi-
cation of phases of matter in terms of topological crystals. For bosonic
cSPT phases with only space group symmetry, the resulting classifica-
tion (32) agrees with that obtained in complementary approaches
based on tensor network states and gauging crystalline symmetry
(30, 31). Recently, Shiozaki et al. (34) have discussed how to formu-
late the topological crystal approach within K-theory via the Atiyah-
Hirzebruch spectral sequence.

Our approach is related to, but goes beyond, layer constructions
of TCIs. Any construction of a TCI in terms of decoupled layers,
including the archetype of weak topological insulators as stacks of
d = 2 topological insulators, is a topological crystal. However, by com-
parison to the recent systematic study of layer constructions in (35),
we show that in certain nonsymmorphic space groups, there are TCIs
that do not have a layer construction but can still be realized as
topological crystals. We emphasize that all the topological states
implied by symmetry eigenvalues proposed in (19, 20) are contained
in our classification. The work in (35) shows that only five symmetry-
eigenvalue-implied TCIs—five weak topological insulators—are not
layer constructable. Here, we explicitly construct these weak topological
insulators as topological crystals.

The results we obtain are related to the recent work of Khalaf et al.
(36), who considered TCIs with anomalous surface states (dubbed
sTCIs) and proposed a classification for sTCIs with point group
and space group symmetry via the surface states of doubled STIs.
The TCI classifications produced by our approach, which focuses
on the bulk and does not assume anomalous surface states or a de-
scription in terms of Dirac fermions, agree with the sTCI classifica-
tions in (36). This agreement shows that all the TCIs we classify have
anomalous surface states for some surface termination.
RESULTS
Topological crystals
We begin by considering a d = 3 systemwith symmetryG =Gint ×Gc,
where Gint is some internal symmetry and Gc is either a crystalline
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site symmetry (i.e., point group) or space group. (The assumption
that G is a direct product of Gint and Gc is not necessary and is only
made for simplicity of discussion and because it holds for the electronic
TCIs to be later discussed.) We assume the system is in an SPT phase
(which could be the trivial phase); that is, below an energy gap, the
ground state ∣y> is unique and symmetry preserving, and moreover,
∣y> is adiabatically connected to a trivial product state if the sym-
metryG is broken explicitly.Moreover, we restrict to those SPT phases
that only remain nontrivial in the presence of crystalline symmetry;
that is, ∣y> is adiabatically connected to a product state ifGc is explic-
itly broken, even ifGint is preserved. To avoid complications associated
with gapless boundary states, we consider periodic boundary
conditions.

To proceed, we identify an asymmetric unit (AU), which is the
interior of a region of space that is as large as possible, subject to the
condition that no two points in the region are related by a crystalline
symmetry. The AU is then copied throughout space using the crys-
talline symmetry, and we denote the resulting union of nonoverlap-
ping AUs as A. This construction gives 3D space a cell complex
structure (see Methods), where the 3-cells are the individual (non-
overlapping) copies of the AU in A. The 2-cells lie on faces where
two 3-cells meet, with the property that no two distinct points in the
same 2-cells are related by symmetry. Similarly, 1-cells are edges
where two or more faces meet, and 0-cells are points where edges
meet. The 3-cells are in one-to-one correspondence with elements
of Gc: arbitrarily choosing one 3-cell to correspond to the identity
element, each other 3-cell is the unique image of this one upon acting
with g ∈ Gc. The 2-skeleton X2 is the complement ofA. An example
of this cell structure for the space group P1 is shown in Fig. 1.

The work in (32) argued that ∣y> is adiabatically connected to a
product of a trivial state onA, with a possibly nontrivial state on X2

[see section VI of (32)]. More precisely, one considers a thickened
version of X2, with characteristic thickness w, and its complement.
For the argument to go through, it is important thatw≫ x, where x is
any characteristic correlation or entanglement length of the short-
range entangled state ∣y>. If Gc is a point group symmetry, then this
requires no assumptions because w can be taken sufficiently large.
For space group symmetry, w is limited by the unit cell size, and
one must make the assumption that, by adding a fine mesh of trivial
degrees of freedom, it is possible to make the correlation length x as
small as desired. This assumption not only allows the reduction to a
topological crystal state but also implies that the correlation length of
the topological crystal state itself is much smaller than the unit cell
size; this is important because it allows us to associate a well-defined
lower-dimensional state with each cell of X2. While we believe that
Song et al., Sci. Adv. 2019;5 : eaax2007 18 December 2019
this assumption is likely to hold, it is not proven, and strictly speak-
ing, it should be treated as a conjecture. If this conjecture is false, then
our approach is simply restricted to those cSPT phases whose corre-
lation length is not bounded below upon adding trivial degrees of
freedom. We note that a preliminary version of the idea of reduction
toX2 was discussed in (32); there, unlike in the present work, the idea
was not developed into a tool to obtain classifications.

The result of this reduction procedure is a topological crystal state.
The state on X2 can be understood by associating a db-dimensional
topological phase with each db-cell ofX

2, where db = 0, 1, and 2. These
lower-dimensional states are referred to as the “building blocks” of the
topological crystal, and db is the block dimension. The building blocks
must be glued together so as to eliminate any gaplessmodes in the bulk
while preserving symmetry; for instance, db = 2 blocks will generally
have gapless edgemodes, whichmust gap out at the 1-cells and 0-cells
where the building blocks meet. Whereas crystals are formed by peri-
odically arranged atoms, i.e., zero-dimensional objects, topological
crystals are “stacked” from building blocks which are themselves
topological states in lower dimensions.

TCI classification
First, we note that a number of topological invariants are already
known that distinguish different phases and should be a part of any
classification of TCIs. In particular, these invariants include the weak
ℤ2 invariants (37, 38), mirror Chern numbers (ℤ invariant) (39), and ℤ2
invariants associated with rotation (40), glide reflection (17, 18), inver-
sion (21, 41, 42), rotoreflection (35, 36), and screw rotation (35, 36) sym-
metries. All possible combinations of these invariants that can be
realized in TCIs with a layer construction were enumerated in (35).
While one could not prove a priori that these seven quantities exhaust
all independent topological invariants, in this work, we show they play a
special role as a complete list of invariants for TCIs. That is, we find that
any two inequivalent TCIs differ by at least one of these invariants.

To further apply the tool of topological crystals to the case of elec-
tronic TCIs, we consider a system of noninteracting electrons with
spin-orbit coupling, with internal symmetries of charge conservation
and time reversal; that is,Gprotectint ¼ Uð1Þ⋊ ℤT

2 . In addition, we have
to specify the action of symmetry on fermionic degrees of freedom;
for instance, we have Kramers time reversal T with T2 = (−1)F, where
(−1)F is the fermion parity operator. More generally, some equa-
tions in the group Gc are also modified by factors of fermion parity,
in a manner determined from the d = 3 Dirac Hamiltonian describ-
ing relativistic electrons (see the Supplementary Materials). Formally,
this amounts to specifying an element wf ∈ H2(G, ℤ2); we emphasize
that wf is uniquely determined by G in the physical setting we are
considering.

The next step is to understand what kind of topological crystal
states can be placed on X2. First, we consider topological crystals built
out of d = 2 topological states. There are two kinds of 2-cells, those that
coincide with a mirror plane and those that do not. 2-Cells coinciding
with a mirror plane can host a d = 2 mirror Chern insulator (MCI)
state, which is characterized by a ℤ invariant (39). The MCI state
can be understood by diagonalizing the mirror operation s : z → −z,
where z is the coordinate along the normal direction of the mirror
plane. Because s2 = (−1)F, one-electron wave functions can be divided
into two sectors with mirror eigenvalue ±i. Because sT = Ts, time re-
versal exchanges these two sectors, which therefore have equal and
opposite Chern numbers, leading to a ℤ invariant. Each sector can
be understood as a d = 2 fermion system in class A, which has a ℤ
A B
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1 y

z

Fig. 1. Cell complex structure for space group P1 (#2). (A) The AU 0 < x, y < 1
and 0 < z < 1

2. (B) The symmetry-inequivalent 2-cells (colored faces), 1-cells (bold
lines), and 0-cells (red dots). The other cells can be obtained from these by acting
with symmetry operations.
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classification. We see that the relevant symmetry class is, thus,
effectively modified from AII to A on a mirror plane; this modifica-
tion of symmetry class is familiar from classifications of reflection-
symmetric free-fermion topological phases in momentum space (12).
For 2-cells not coinciding with a mirror plane, the symmetry class re-
mains AII, and these cells can host a d = 2 STI (2dTI), which is char-
acterized by a ℤ2 invariant.

We also have to consider the possibility of topological crystals
built from the d = 1 and d = 0 states. 1-Cells only host trivial states:
The effective symmetry class on a 1-cell can be either AII or A (see
the discussion on MCIs above), and in either case, the classification
in d = 1 is trivial. On the other hand, there are nontrivial topological
crystals built from db = 0 building blocks, which are atomic insula-
tors formed from patterns of localized filled orbitals. Although there
are distinct atomic insulators constituting different quantum phases
of matter and although these distinctions may be a source of in-
teresting physics, all these states, being product states of localized
orbitals, are, in a sense, topologically trivial. Therefore, we ignore
distinctions among atomic insulators in our classification. Formally,
this is accomplished by taking a certain quotient (Methods). In the
future, our results could be extended to include db = 0 building blocks,
which would facilitate a more direct comparison withK-theory–based
approaches, which do include such states.

We, thus, see that there are two kinds of TCIs, both built from
db = 2 blocks.We refer to TCIs built fromMCI blocks as mirror TCIs
(MTCIs), while TCIs built from 2dTI blocks are dubbed ℤ2 TCIs. Of
course, a general TCI can have mixed MTCI and ℤ2 TCI character,
and the classification is a product of MTCI and ℤ2 TCI classifica-
tions. To proceed, we consider the requirement that the building
blocks must be glued together to eliminate any gapless modes in
the bulk. As shown inMethods, this requirement implies thatMTCIs
can always be decomposed into decoupled planar MCI layers.

ℤ2 TCIs are not quite as simple. If we consider placing a 2dTI on
some subset of the 2-cells of X2, then it can be shown these building
blocks can be glued together into a topological crystal if and only if
every 1-cell is the edge of an even number of 2dTI blocks (Methods).
While, sometimes, these states can be decomposed into decoupled
2dTI layers, this is not always true. For example, in space group
P42212 (#94), for which the possible topological crystals are de-
scribed below, we find a topological crystal that is beyond the scope
of layer construction, as shown in Fig. 2B. In this state, the 2-cells
decorated with 2dTIs form a complicated yet connected structure.
Intuitively, one may lower the two yellow facets at z ¼ 1

2 down to
z = 0, such that the 2dTIs form decoupled layers; however, such a
process breaks the screw symmetry 4001∣ 1

2
1
2
1
2

� �
. More rigorously,

the non–layer constructability can be proved by observing that the
topological invariants of this state, specifically its nontrivial weak
ℤ2 invariants, cannot be obtained in any TCI constructed from de-
coupled 2D layers (35).

Having described TCIs in terms of topological crystals, we next
use these states to classify TCIs. First, we discuss equivalence rela-
tions among topological crystal states and argue that two distinct
topological crystals on X2 are in different phases. Following (29, 32),
we need to consider an additional equivalence relation, beyond those
for the d = 2 phases of matter on the 2-cells. Within an AU and all its
copies under symmetry, we create a small bubble of 2dTI and expand
the bubble until it joins with the AU boundary; this process can be
achieved by adiabatic evolution, preserving symmetry, within a finite
time, so any two states related in this way belong to the same phase.
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(Equivalently, this process can be achieved by acting with a finite
depth symmetry-preserving quantum circuit.). The reason we con-
sider a bubble of 2dTI and not something else is that this is the only
nontrivial d = 2 state that can exist within the AU, where the only
symmetries are charge conservation and time reversal. The source
of this equivalence relation is the arbitrary width w of the thickened
X2 space in the dimensional reduction procedure; making w larger
corresponds to bringing in additional degrees of freedom from the
“bulk.”However, in the present case, this equivalence operation has a
trivial effect because every 2-cell is joined with two layers of 2dTI,
one on each side of the 2-cell. InMethods, we give an example (with-
out time-reversal symmetry) where this equivalence relation has a
nontrivial effect.

Therefore, any two distinct topological crystal states are in differ-
ent quantum phases of matter. So, to obtain a classification of TCIs,
we need to enumerate possible topological crystals. First, we observe
that topological crystals form anAbelian groupC under stacking, i.e.,
upon superposing two different states in the same space. Because
MCIs (2dTIs) are characterized by ℤ (ℤ2) invariants, C is a product
of ℤ and ℤ2 factors, with the ℤ factors generated byMTCIs and the
ℤ2 factors generated by ℤ2 TCIs. Because the MTCIs can be
decomposed into decoupled planar layers, there is one ℤ factor for
each symmetry-inequivalent set of mirror planes. For any particular
crystalline symmetry of interest, the classification C is easily worked
out by considering possible colorings of the faces of the AU with the
MCI and 2dTI states.

To provide a concrete illustration, we here explicitly work out the
topological crystals for space group P42212. P42212 has a tetragonal
lattice and is generated from three translations {1∣100}, {1∣010},
and {1∣001}, a fourfold screw 4001∣ 1

2
1
2
1
2

� �
, and a twofold rotation

{2110∣000} (here, the lattice constants are set to 1). The AU can
be chosen as the region 0 < x; y; z < 1

2. The 2-cells and 1-cells are
given, respectively, by e2i¼1;2;3;4 and e

1
i¼1;2;3;4;5;6, as shown in Fig. 2A,

and their images under symmetry. There are no mirror planes, so
each inequivalent 2-cell can be decorated with a 2dTI state, and pos-
sible configurations are described by four ℤ2 numbers, ni = 1,2,3,4,
A B

DC

e21
e11

e16
e12

e13
e14
e15

x
1

1

1 y

z

e23

e24
e22

Fig. 2. Topological crystals in space group P42212 (#94). (A) The symmetry-
inequivalent 2-cells ðe2i¼1;2;3;4Þ and 1-cells ðe1i¼1;2;3;4;5;6Þ are represented by colored
faces and bold lines, respectively. Here, the lattice constants are set to 1, the unit
cell is given by 0 ≤ x, y, z < 1, and the AU is given by 0 < x; y; z < 1

2. (B to D) The
three independent ℤ2 topological crystal generators, where only 2-cells decorated
with 2dTIs are shown. (C) and (D) are layer constructions, whereas (B) is not.
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indicating whether the corresponding e2i ’s are decorated (=1) or not
(=0). The gluing condition can be expressed in matrix form

∑
j
Aijnj ¼ 0 mod 2 ð1Þ

where Aij is defined to be the number of 2-cells (modulo 2) that are
symmetry equivalent to e2j , for which e

2
i is an edge. For the setting in

Fig. 2, one can immediately read out

A ¼

0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0

0
BBBBBB@

1
CCCCCCA

ð2Þ

Solving Eq. 1, we get three independent states that generate
all possible topological crystals under stacking: (i) n1 = n4 = 1, n2 =
n3 = 0 (Fig. 2B); (ii) n1 = n2 = 1, n3 = n4 = 0 (Fig. 2C); and (iii) n3 =
n4 = 1, n1 = n2 = 0 (Fig. 2D).While states (ii) and (iii) are obviously
layer constructions, state (i) is not layer constructible, as discussed
above.

Topological invariants
Now, we turn to the topological invariants characterizing topological
crystals. First, all MTCIs are characterized by real-space Chern num-
bers associated with certain mirror planes, and the mirror Chern
numbers in momentum space for each of them are listed in (35).
Therefore, we focus onℤ2 TCIs. Given a ℤ2 TCI and its corresponding
topological crystal, for each symmetry operation g ∈ Gc, we assign a
ℤ2 number d(g). We arbitrarily choose one AU and let r be a point
inside, then we set d(g) = 1 [d(g) = 0] if a path connecting r to gr
crosses through an odd (even) number of 2dTI 2-cells. It is shown
in Methods that (1) d(g) is well defined, independent of the arbitrary
choices of AU, r, and the path connecting r to gr, and (2) d(g1g2) =
d(g1) + d(g2). The latter property implies that d is a homomorphism
from Gc to ℤ2 [or, equivalently, an element of H1(Gc, ℤ2)], which
means that it is enough to specify d(g) for the generators of Gc. d(g) en-
codes all the ℤ2 invariants for TCIs listed earlier, by choosing different
operations g. For instance, if g is a translation, then d(g) is the
corresponding ℤ2 weak invariant, if g is inversion, then d(g) is the ℤ2
inversion invariant, and so on.

As an example, the topological crystal shown in Fig. 2B has
d({1∣100}) = 0, d({1∣010}) = 0, d({1∣001}) = 1, d 4001∣ 1

2
1
2
1
2

� �� � ¼ 0,
and d({2110∣000}) = 0. Taking advantage of the results in (35), we find
that these invariants, together with themirror Chern number, unique-
ly label all the TCIs in our classification, and moreover, we find all
TCIs that are beyond layer construction by comparing with (35) (Sup-
plementary Materials).

As suggested by the above discussion of invariants, the classifica-
tion C of TCIs has a simple relationship with H1(Gc, ℤ2), which
allows us to efficiently compute C and obtain the full TCI classifica-
tion C for all space groups (Methods); the results are given in Table 2.

Moreover, we find that there are 12 groups hosting topological
crystals beyond layer construction (Fig. 3); for these non–layer-
constructable states, we tabulated their invariants and symmetry-based
indicators (19, 20) in the Supplementary Materials, completing the
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mapping from indicators to TCI invariants (35). Table 1 gives the clas-
sification of TCIs protected by point group symmetry for the 32 crys-
tallographic point groups in three dimensions.

Last, given the classification of TCIs, we obtained simple rules that
extend this classification to include STIs. The key fact is that upon
stacking two identical STIs together, one can either obtain a trivial
state or a nontrivial TCI. Upon identifying the state thus obtained,
we obtain a full classification of all topologically nontrivial insulators
of noninteracting electrons with time-reversal symmetry and spin-
orbit coupling.

Unified classification of STIs and TCIs
We have focused thus far on classifying TCIs, where crystalline
symmetry is required to protect a nontrivial cSPT phase. Here, we ad-
dress a more general problem, namely, the classification of all d = 3
free-electron insulators with time-reversal symmetry, spin-orbit cou-
pling, and arbitrary crystalline point group or space group symmetry.
We still ignore distinctions among atomic insulators, so the one new
state that must be added as a generator of the classification is the STI,
which is, of course, robust even upon breaking crystalline symmetry.

First, we assume that the STI is compatible with an arbitrary crys-
talline symmetry.We expect that this is true, but to our knowledge, it
has not been proved rigorously. One argument in favor of this expec-
tation is to note that the STI can be described by a continuum theory
of a massive Dirac fermion, which is invariant under arbitrary rigid
motions of 3D space. This symmetry can be broken down to an ar-
bitrary space group or point group symmetry, for instance, by adding
a periodic potential, which produces amodel of an STI with arbitrary
space group symmetry. This is not quite a rigorous argument be-
cause one has to show that it is possible to regularize the continuum
theory in a manner compatible with an arbitrary lattice symmetry.
Another argument is to note that any centrosymmetric space group
has a ℤ4 indicator (20), and according to the Fu-Kane formula (37),
the root state with z4 = 1 is an STI. While it was argued that any
symmetry indicator can be realized by a band structure, there is no
guarantee that the resulting band structure is an insulator (20).
Assuming an STI can indeed be found for each centrosymmetric
space group, then we need only note that every noncentrosymmetric
space group is a subgroup of some centrosymmetric space group, so
an STI compatible with the latter is compatible with the former. To
show this expectation holds rigorously, a straightforward approach
would be to find a small number of space groups that contain all
space groups as subgroups and exhibit a model realizing an STI
for each of these symmetry groups.

Next, we would like to compute the classification Cfull including
both TCIs and STIs. The topological crystal picture tells us that TCIs
are a subgroup (i.e., C⊂ Cfull) because stacking two TCIs produces
another TCI or a trivial state. It is also true that Cfull/C ≃ ℤ2, because
this quotient corresponds to ignoring the distinctions among
TCIs, which leaves only aℤ2 generated by the STI. It follows that
∣Cfull∣ = 2 ∣C∣ when the TCI classification is finite. One might
expect Cfull = C × ℤ2, with the ℤ2 factor generated by the STI, but
this is not true in general because stacking two identical STIs can result
in a nontrivial TCI. Put another way, Cfull can be a nontrivial group ex-
tension of C by ℤ2, and we need to solve this group extension problem.

We proceed by choosing a particular STI state and stacking this
state with itself to get a state we call (STI)2. We know that (STI)2 has
trivial strong index and is, thus, either a nontrivial TCI or a trivial
state, that is, (STI)2 ∈ C. We need to determine the element ofC given
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by (STI)2. First, we observe that our choice of STI is arbitrary under
stacking with a TCI because this stacking does not change the strong
invariant. It is obvious that stacking STI with aℤ2 TCI does not affect
(STI)2, but stacking STI with anMTCI can change theℤ invariants of
(STI)2 by arbitrary even integers, depending on the choice of MTCI.
We, thus, see that the information in (STI)2 that is independent of
the arbitrary choice of STI is precisely the information preserved un-
der the map p : C→~C≃H1ðGc;ℤ2Þ introduced in Methods. There-
fore, (STI)2 is characterized by a homomorphism from Gc → ℤ2,
namely, p((STI)2) ∈ H1(Gc, ℤ2). Determining p((STI)2) solves the
group extension problem and determines the group Cfull.

Denoting the homomorphism given by p((STI)2) by d : Gc →
ℤ2, it is natural to conjecture that d(g) = 0 when g is a rigid motion
preserving the orientation of space (e.g., translations and rotations),
and d(g) = 1 when g reverses orientation (e.g., inversion, reflections,
and glide reflections). This conjecture is natural because the map d
should depend only on the crystalline symmetry Gc, and there does
not seem to be any other nontrivial map that can be defined in a
uniform way for all Gc.

We can establish this conjecture using results of Khalaf et al.
(36), where the authors studied surface theories obtained by stack-
ing two STIs. For a crystalline symmetry Gsurf

c preserved by some
surface termination, they considered a mass texture on the bound-
ary satisfying mgr = sgmr, where g∈Gsurf

c , r is a point on the bound-
ary, mr is the Dirac mass, and sg = ±1 keeps track of sign changes
in the mass. They showed that sg1g2 = sg1sg2, i.e., sg defines a
homomorphism from Gsurf

c to ℤ2. Moreover, they showed that, in the
case of stacking two identical STIs, sg = det Rg (this result follows from
equation 14 of (36) upon taking hð1Þg ¼ hð2Þg , as appropriate for identical
STIs). Here, g is the rigid motion {Rg∣tg}, where Rg is an O(3) matrix
and tg is a translation vector. Because det Rg = 1 (det Rg = −1) for
orientation-preserving (orientation-reversing) operations, this re-
sult is identical to our conjecture upon identifying that sg = (−1)d(g).
Physically, sg and d(g) should be, thus, identified because the gap-
less lines on the surface where the mass changes sign are, in the
topological crystal picture, precisely the gapless edges of 2-cells
touching the surface.

The argument is not quite complete because the crystalline
symmetry Gc cannot generally be preserved by a surface termination.
However, we found that specifying the seven types of invariants listed
in the Results section uniquely determines a TCI phase (element ofC).
Therefore, we can take Gsurf

c to be the subgroup of Gc associated with
each invariant. It is always possible to choose a surface termination
preserving suchGsurf

c , so we can run the above argument for each such
subgroup. This then determines p((STI)2).

This result determines the group structure of Cfull. There are three
cases: (i) If Gc contains only orientation-preserving operations, then
Cfull = C × ℤ2. (ii) IfGc contains orientation-reversing operations but
no mirror reflections, and hence C has no ℤ factors, then one of the
ℤ2 factors in C is replaced in Cfull by a ℤ4 factor. (iii) If Gc contains
mirror reflections, then (STI)2 generates a ℤ factor in C. In this case,
Cfull and C have the same group structure, but in Cfull, the generator
of one of the ℤ factors is an STI state. These rules easily allow one to
obtain Cfull for all the crystallographic point groups and space
groups, and the results are given as tables in the Supplementary
Materials. Because p((STI)2) is known, it is also straightforward to
explicitly construct the topological crystal corresponding to (STI)2,
up to the arbitrariness in defining STI. We note that recently, (43)
used K-theory to obtain classifications for crystallographic point
Table 1. Classifications C of TCIs for noninteracting electrons
with time-reversal symmetry, spin-orbit coupling, and crystalline
point group symmetry. N/A denotes a trivial classification.
Full classifications including strong topological insulators can be
easily obtained from this table by using the group extension
rules given in Results and are also provided as a table in the
Supplementary Materials.
Point group
 TCI classification
1
 N/A
�1
 ℤ2
2
 ℤ2
m
 ℤ
2/m
 ℤ × ℤ2
222
 ℤ2
2

mm2
 ℤ2
mmm
 ℤ3
4
 ℤ2
�4
 ℤ2
4/m
 ℤ × ℤ2
422
 ℤ2
2

4mm
 ℤ2
�42m
 ℤ × ℤ2
4/mmm
 ℤ3
3
 N/A
�3
 ℤ2
32
 ℤ2
3m
 ℤ
�3m
 ℤ × ℤ2
6
 ℤ2
�6
 ℤ
6/m
 ℤ × ℤ2
622
 ℤ2
2

6mm
 ℤ2
�62m
 ℤ2
6/mmm
 ℤ3
23
 N/A
m�3
 ℤ
432
 ℤ2
�43m
 ℤ
m�3m
 ℤ2
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groups in d = 3. To compare these results with ours for all point
groups would, for instance, require extending our results to include
topological crystals with db = 0 bulding blocks. However, for the nine
nontrivial point groups where all operations share a common fixed
line or fixed plane (Cn,Cs, andCnv), states with db = 0 building blocks
are not relevant, and for these point groups, our results agree with
those of (43).
DISCUSSION
Our method provides a unified, real-space perspective for TCIs,
complementary to the momentum-space perspective usually taken
for free-fermion systems. Real-space constructions have an advan-
tage when electron interactions are considered. For example, because
all ℤ2 TCIs are made from 2dTIs, from the stability of the 2dTI phase
against interactions, we immediately know that the classification of
ℤ2 TCIs is not affected by interactions. On the other hand, the ℤ clas-
sification of d = 2 MCI states collapses to ℤ8 in the presence of inter-
actions (44). This implies that the classification of MTCIs does
collapse, but the ℤ invariants characterizing MTCIs are robust to in-
teractions modulo 8.

One can easily use the idea of topological crystals to classify free-
electron d = 3 insulators with time-reversal but without spin-orbit
coupling, that is, with SU(2) spin rotation symmetry. For these
systems, time reversal and crystalline symmetry can be taken to
act trivially on electron operators, with no factors of fermion parity,
and in particular T2 = 1. It can then be seen that all 2-cells have
symmetry class AI, while 1-cells can be in class AI or A. In all these
cases, only trivial states are possible, and no free-electron TCIs can
occur. This means that any nonzero symmetry-based indicator
implies some topological nodes in the bulk, proved by exhaustion
in (45).

The topological crystal approach developed here can be applied in
many other physical settings. For instance, one can classify topological
crystalline superconductors, described at the free-fermion level by
Song et al., Sci. Adv. 2019;5 : eaax2007 18 December 2019
Bogoliubov–de Gennes Hamiltonians. Moreover, as other works
have begun to explore, it is also possible to use topological crystals
to classify interacting fermionic cSPT phases.
METHODS
Cell complex structure
A cell complex is a topological space constructed by gluing together
points (0-cells) and n-dimensional balls (n-cells). In more detail, to
construct a cell complex X, one starts with a set of discrete points
X0, referred to as the 0-skeleton. Next, one forms the 1-skeleton X1 by
attaching a set of 1-cells to X0. To attach a 1-cell, one starts with a
closed interval on the real line (whose interior is the 1-cell), and the
two endpoints are identified with points in X0. The resulting space
X1 is given by attaching the 1-cells to X0. The process continues in
the natural way; for instance, to attach a 2-cell to X1, we start with
a 2D disc D with boundary (whose interior is the 2-cell) and identify
∂D with a subset of X1 using a continuous map from ∂D to X1. The
n-skeleton Xn is given by attaching the n-cells to Xn−1. A more
detailed discussion can be found in the book by Hatcher (46).

Here, we describe in more detail how 3D space ℝ3 can be given a
cell complex structure upon choosing an AU. An AU is an open sub-
set of ℝ3 that is as large as possible, subject to the condition that no
two points in the AU are related by the action of Gc. The choice of
AU is not unique. While not strictly necessary, we can always choose
an AU such that the boundary of the closure of the AU consists of
segments of flat planes; that is, in the case of space group symmetry,
the AU can be chosen as the interior of a polyhedron. Once we
choose an AU, it and its copies under the action ofGc form the 3-cells,
which are in one-to-one correspondence with the elements of Gc.
The union of all the 3-cells is denoted by A, and its complement
X2 = ℝ3 − A is the 2-skeleton of the cell complex.

We choose 2-cells ofX2 satisfying three properties: (1) Each 2-cell
is a subset of a face where two 3-cells meet. To be precise, we say that
two 3-cells meet at a face when the intersection of their closures is
A B C D E F

G H I J K L

Fig. 3. Illustrations of the topological crystals beyond layer construction. (A) to (L) show these states for space groups Pnn2 (#34), Pnnn (#48), P42 (#77), P42/n
(#86), P4222 (#93), P42212 (#94), P42cm (#102), P4n2 (#118), P42/nnm (#134), Pn3 (#201), P4232 (#208), and Pn3m (#224), respectively. Inequivalent 2-cells are represented
by different colors. The topological invariants of these topological crystals and the coordinates of the plotted 2-cells can be found in the Supplementary Materials.
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Table 2. TCI classifications C for noninteracting electrons with time-reversal symmetry and spin-orbit coupling, given for all space groups. N/A denotes
a trivial classification. Full classifications including strong topological insulators can be easily obtained from this table by using the group extension rules
given in Results and are also provided as a table in the Supplementary Materials.
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homeomorphic to a 2-manifold (possibly with boundary), and we
define the face where they meet to be this intersection. (2) No two
distinct points in the same 2-cell are related under the action of Gc.
Note that a 2-cell may be a subset of a mirror plane, in which case the
mirror symmetry will take every point in the 2-cell to itself. This
property ensures that each 2-cell has no spatial symmetries; if there
is a mirror symmetry, it acts on the 2-cell effectively as an internal
symmetry. (3) The 2-cell structure on X2 respects the Gc symmetry.
Precisely, given a 2-cell e2 and a symmetry operation g ∈ Gc, the
image g(e2) is also a 2-cell.

It is always possible to choose a set of 2-cells satisfying these
properties: We started with the set of faces where pairs of 3-cells
meet and took their interiors as 2-manifolds. This gives a set of
2-cells for X2 satisfying properties (1) and (3), but property (2)
need not be satisfied. This can be rectified by dividing up the 2-cells
until property (2) is satisfied.

LettingA2 be the union of all the 2-cells, the 1-skeleton X
1 is X2 −

A2.We choose 1-cells to satisfy three properties very similar to those
for 2-cells. A difference from the 2-cell case is that different numbers
of 2-cells can meet at a 1-cell; we would like to ensure that the same
set of n 2-cells meets everywhere along the extent of a given 1-cell.
We therefore modified property (1) as follows: Each 1-cell is a subset
of an edge where exactly n 2-cells meet. More precisely, we say that
n 2-cells meet at an edge when the intersection of their closures is
homeomorphic to a 1-manifold (possibly with boundary), and the
edge where they meet is defined to be this intersection. Apart from
these n 2-cells, we require the edge to have empty intersection with
the closure of any other 2-cell. Properties (2) and (3) are required to
hold with the obvious modifications.

The 0-cells are just the points where two or more 1-cells meet.
Formally, letting A1 be the union of all 1-cells, the 0-cells are the
points of X1 − A1.

We illustrate this rather abstract discussion with some examples.
First, we considered Gc = Ci, the point group generated by inversion
symmetry. We took the AU to be the half space z > 0, and the 3-cells
are then the two half-spaces z > 0 and z < 0. There are two 2-cells,
which are z = 0 half planes with y > 0 and y < 0, and two 1-cells, which
are z = y = 0 half lines with x > 0 and x < 0. Last, the single 0-cell is the
point at the origin.

As a second example, we tookGc to be space group #1, which con-
sists only of translation symmetry. We set the lattice constant to unity
and take the three Bravais lattice basis vectors to be (1,0,0), (0,1,0),
and (0,0,1). A natural choice for an AU is simply the interior of a unit
cell, i.e., the region 0 < x, y, z < 1. The 3-cells are then the copies of the
AU under translation. There are three kinds of 2-cells. One type con-
sists of the xy plane (i.e., z = 0 plane) region with 0 < x, y < 1 and its
images under translation, and the other two types are similar but lie
in the xz and yz planes. Similarly, there are three kinds of 1-cells, with
one type consisting of the x = y = 0 region with 0 < z < 1 and its
images under translation. The other two types are similar regions
Song et al., Sci. Adv. 2019;5 : eaax2007 18 December 2019
oriented along the x and y axes. Last, the 0-cells are points (nx, ny, nz),
with nx, ny, and nz integers.

Formal structure of classification resolved by
block dimension
Here, we describe the Abelian group structure of TCIs (32) and how
taking a certain quotient allows us to ignore distinctions among
atomic insulators. We let Ddb be the Abelian group classifying insu-
lators whose nontrivial building blocks are dimension db and below.
That is, states classified byDdb can be reduced to a state on X2 where
all n-cells with n > db host a trivial state. Clearly, db = 0, 1, and 2, and
we have the sequence of subgroups D0 ⊂ D1 ⊂ D2. D2 as the classi-
fication of all TCIs or, at least, all those that can be classified in terms
of topological crystals. The observation that all 1-cells are trivial
implies that D0 = D1. Phases in D0 are atomic insulators, which we
wish to exclude from consideration. Although there are distinct
atomic insulators constituting different quantum phases of matter,
all atomic insulators are, in some sense, topologically trivial. We
can eliminate these states by taking the quotient C = D2/D0, which
gives the desired classification of TCIs.

Gluing MCI building blocks: Planar decomposition of MTCIs
Here, we address the consequences of the gluing conditions for
MTCIs, i.e., topological crystals built from MCI building blocks
placed on the 2-cells of X2. In particular, we show that MTCIs can
always be decomposed into decoupled planar MCI states placed on
mirror planes. We consider a mirror plane P, and note that we must
have P⊂ X2. Therefore, up to a set of measure zero, P is a union of
2-cells ofX2. We consider a 2-cell e21 ⊂ P and place anMCI state one21,
whose invariant is some element of ℤ. We want to show that symmetry
and gluing along 1-cells imply that every 2-cell in P is anMCIwith the
same ℤ invariant as the state in e21. It is enough to show that this holds
for a single 2-cell e22 ⊂ P that is adjacent to e21 in P. That is, e21 and e22
meet at a 1-cell e1 ⊂ P, as illustrated in fig. S1.

To proceed, we consider a number of cases. In case (1), there exists
an element g ∈ Gc that maps e21 to e22. First, we show that symmetry
requires that both 2-cells host an MCI state with the same invariant
(this is not a priori obvious; it is conceivable that some symmetry
operations could change the sign of the invariant). To begin, we claim
that either gs = sg, when g preserves the orientation of the mirror
plane, or gs = (−1)Fsg, when g reverses the orientation of the mirror
plane. If we ignore factors of fermion parity, then gs = sg or, equiva-
lently, gsg−1 = s. To see this, we observe that g ∈ GP, where GP Gc

is
the group of symmetries of themirror plane.Moreover, s is the only
nontrivial element of GP that acts on the mirror plane as the iden-
tity rigid motion. The operation gsg−1 also acts on the mirror plane
as the identity rigid motion, and s cannot be conjugate to the iden-
tity in GP; therefore, gsg

−1 = s.
The relativistic Dirac Hamiltonian as discussed in the Supple-

mentary Materials allows us to determine the presence or absence
36
 ℤ� ℤ2
2
 76
 ℤ2

2
 116
 ℤ3
2
 156
 ℤ × ℤ2
 196
 N/A
37
 ℤ3
2
 77
 ℤ3

2
 117
 ℤ3
2
 157
 ℤ × ℤ2
 197
 ℤ2
38
 ℤ3 × ℤ2
 78
 ℤ2
2
 118
 ℤ3

2
 158
 ℤ2
 198
 N/A
39
 ℤ� ℤ3
2
 79
 ℤ2

2
 119
 ℤ� ℤ2
2
 159
 ℤ2
 199
 ℤ2
40
 ℤ� ℤ2
2
 80
 ℤ2

2
 120
 ℤ3
2
 160
 ℤ × ℤ2
 200
 ℤ2
8 of 13



SC I ENCE ADVANCES | R E S EARCH ART I C L E
of the (−1)F factor. We choose coordinates so that the mirror plane
is the z = 0 plane, and the action of s on the Dirac fieldY(r) is given
in the Supplementary Materials. We consider a symmetry ope-
ration g that takes the mirror plane into itself, with action on the
Dirac field

g : YðrÞ→MgYðr′Þ ð3Þ

where

r′ ¼ Or þ t
→ ð4Þ

where O is an orthogonal matrix. The requirement that the mirror
plane goes into itself under g implies that tz = Ozx = Ozy = 0. More-
over, becauseO is an orthogonal matrix,Oxz =Oyz = 0 andOzz = ±1.
We are free to multiply g by inversion and/or translations within
the z = 0 plane to make g into a rotation. This can be done because
both translations and inversion preserve the orientation of the z = 0
plane. Moreover, translations have no effect onMg, while inversion
commutes with s. After doing this, there are two possibilities for g.
One possibility is a rotation by q with axis normal to the plane; this
operation preserves the orientation of the plane, and we have Mg =
exp (iqm3/2) so that g commutes with s. The other possibility is a C2

rotation with axis normal to the plane; this operation reverses the ori-
entation of the plane and anticommutes with s. This establishes the
claim that gs = sg, when g preserves the orientation of themirror plane,
or gs = (−1)Fsg, when g reverses the orientation of the mirror plane.

Now we use this claim to show that the MCI states on e21 and e22
have the sameℤ invariant. Consider a one-electron state∣y> supported
only on e21, whose mirror eigenvalue is given by s ∣ y > = i ∣ y>. The
state g ∣ y> is supported on e22 and has mirror eigenvalue +i if g pre-
serves the orientation of the plane, and −i if it reverses the orientation of
the plane. Because the Chern number of each sector with fixed mirror
eigenvalue is preserved when g preserves orientation and reversed
when g reverses orientation, it follows that the two MCI states have
the same ℤ index.

To complete the discussion of case (1), we need to address gluing
of the two MCI states at e1. It is enough to consider only symmetries
that take the set of cellsfe1; e21; e22g into itself. There are two subcases.
In case (1a), the only relevant symmetry is themirror reflection itself.
In this case, it is obvious that twoMCI states with the same invariant
can be glued together along e1. In case (1b), e1 is contained within a
C2v axis. To analyze gluing at e

1, we studied the edge theory at e1 for
MCI states on e21 and e22 . The edge of e

2
1 (e22) consists of a pair of

counterpropagating fermion modes cR1 and cL1 (cR2 and cL2). We as-
semble these 1D fermions into the four-component field yT = (cR1
cL1 cR2 cL2). Denoting by s′ the mirror symmetry exchanging the
two 2-cells, we take the symmetries to act by

T : y→ðim2Þy ð5Þ

s : y→im3t3y ð6Þ

s′ : y→im3t1y ð7Þ
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where the mi and ti Pauli matrices act in the 4 × 4 matrix space just as
in the earlier discussion of the relativistic Dirac Hamiltonian. These
symmetries act appropriately on fermions and are compatible with
the two 2-cells having the same MCI index. These symmetries allow
the mass term y†m2t2y, which gaps out the fermions on e1 and thus
glues the two 2-cells together.

Now, we move on to case (2), where there is no element g ∈ Gc

that mapse21 intoe
2
2. In this case, symmetry does not determine which

state is placed on e22, but we will see that this is determined by gluing
at e1. We found it useful to consider the 3-cells that meet at e21 and e

2
2.

These are defined in fig. S2. We considered two subcases. In case
(2a), e21↑ ¼ e22↑. It follows immediately that e21↓ ¼ e22↓, so there is only
a single 3-cell above and below the mirror plane in the region shown
in fig. S2. This means that e21 and e

2
2 are the only 2-cells meeting at e1,

which further implies that the only symmetry taking e1 into itself is
the mirror symmetry. The gluing condition at e1 is then satisfied if
and only if an MCI state is placed in e22.

In case (2b), e21↑≠e
2
2↑, which implies that e21 and e

2
2 are not the only

2-cells meeting at e1. The additional 2-cells come inmirror-symmetric
pairs above and below the mirror plane. There are two further sub-
cases. In case (2b.i), the only symmetry taking e1 into itself is the mir-
ror symmetry. In this case, the additional pairs of 2-cells do not
coincide with mirror planes. Therefore, for each pair, the only non-
trivial possibility is that both 2-cells host a 2dTI state, in which case
the 2dTI edges of the pair can be gapped out at e1. The relevant edge
theory for each pair at e1 is the same as that discussed in case (1), ex-
cept with only s′ and T symmetry (i.e., without s symmetry), and it
follows from the discussion there that this edge can be gapped. There-
fore, these additional pairs of 2-cells can be effectively eliminated, and
the gluing condition again requires us to place an MCI state on e22.

Last, in case (2b.ii), e1 is contained in a C3v axis, where the C3v

symmetry is generated by s and a 3-fold rotation C3. Here, there
are six 2-cells that coincide with themirror planesmeeting at e1. These
2-cells come in three pairs, with each pair contained in one of the three
mirror planes that intersect e1. e21 and e

2
2 constitute one such pair, with

the other two pairs obtained from it under the 3-fold rotation. We
suppose that an MCI state is placed on e21 and its rotation images,
but not on e22 (see fig. S3); we show that it is impossible to gap out
the resulting edge theory at e1, which imply that, again, an MCI state
must be placed on e22. The edge fermions for the e21 MCI are cR1 and
cL1, with

s :
cR1→icR1
cL1→�icL1

�
ð8Þ

The images of these fermions underC3 rotation arecR2 ¼ C3cR1C�1
3

and cR3 ¼ C2
3cR1C

�2
3 , with identical expressions holding for the left-

moving modes. The generators of the C3v group satisfy the following
relations, acting on a fermion field

s2 ¼ �1 ð9Þ

C3
3 ¼ �1 ð10Þ

ðsC3Þ2 ¼ �1 ð11Þ
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Using these relations, we find

s :

cR2→�icR3
cL2→icL3
cR3→� icR2
cL3→icL2

8>><
>>:

ð12Þ

Now, focusing only on the mirror reflection symmetry, we can
change variables to diagonalize s and find that the cR2, cR3, cL2, and cL3
fermion modes can be gapped out. This leaves the cR1 and cL1 edge of
the MCI state on e21 , which cannot be gapped; this establishes the
desired result.

Gluing condition for ℤ2 TCIs
Here, we consider the gluing condition for ℤ2 TCIs, i.e., the require-
ment that there are no gapless modes within the bulk. If we consider
placing 2dTI states on a subset of the 2-cells of X2, then we will show
that the gluing condition can be satisfied if and only if an even number
of 2dTI edges meet at each 1-cell. This is illustrated in fig. S4 for the
space groups P3 (no. 143) and P4 (no. 75). One direction is trivial to
show: If the gluing condition is satisfied, then an even number of 2dTI
edges must meet at each 1-cell e1 because, otherwise, time reversal
would forbid e1 from being gapped.

Now, we suppose that we place 2dTI states on 2-cells of X2 such
that an even number of 2dTI edges meets at each 1-cell. We would
like to show that each 1-cell can be gapped; thus, the gluing condition
is satisfied. We do this by considering the different possible point
group symmetries of a 1-cell e1, which may impose constraints on
gluing of 2dTI edge modes along e1. If e1 has trivial point group sym-
metry, then the only symmetries are charge conservation and time re-
versal, and an even number of 2dTI edgemodes can always be gapped.
If e1 is contained in a mirror plane, then 2dTI edge modes come in
mirror-symmetric pairs above and below the mirror plane, and we
have already shown in the above that each such pair can be gapped.

Next, we consider the case where e1 is contained in aCn axis.When
n = 2, 2dTI edgemodes come in pairs related byC2 symmetry, and the
action of C2 symmetry on such a pair is identical to that of the s′

symmetry discussed above (see Eq. 7 and the surrounding discussion).
Therefore, these pairs of edge modes can be gapped. When n > 2 is
even, edge modes come in groups of n related by Cn symmetry, and
these can be grouped into n/2 pairs related by C2 symmetry. We can
focus on one such pair and gap it out, then use the Cn symmetry to
“copy” its mass term to the other n/2 − 1 pairs, which gaps out all the
modes respecting the Cn symmetry. Last, for C3 symmetry, edge
modes must come in groups of six, with two sets of three edge modes
related by symmetry. We can take a pair of edge modes unrelated by
symmetry and gap these out and then use theC3 symmetry to copy the
resulting mass term to the other two pairs of edge modes.

Similar arguments can be applied when e1 is contained in a Cnv

axis. Here, 2-cells that can host 2dTIs lie away from the mirror planes,
so that edge modes come in groups of 2n related by Cnv symmetry.
Viewing Cnv as generated by a mirror reflection and Cn rotation, we
can start by gapping out a pair of neighboring edge modes related by
the mirror symmetry and then copying its mass term using the rota-
tional symmetry.

Gluing at 0-cells
In the analysis of the gluing condition in the above, we started with a
set of topological states on 2-cells and considered gluing these states
Song et al., Sci. Adv. 2019;5 : eaax2007 18 December 2019
together at 1-cells. In principle, thismay not be the end of the story; we
needed to consider gluing at 0-cells. That is, we needed to ensure that
there are no localized protected gapless states at 0-cells, which would
violate the gluing condition. However, there is a simple reason this
cannot occur: consider the set of gapped 1-cells that meet at a 0-cell.
We can lump these 1-cells together and view them as a single gapped
d = 1 system, with the 0-cell as its endpoint. Upon decomposing the
spectrum into irreducible representations of any site symmetry at the
0-cell, this d = 1 system divides into sectors that are either in class A
orAII. To have a protected gapless state on the 0-cell, the d= 1 system
would need to be topologically nontrivial, but class A and AII have a
trivial classification in d = 1.

Nontrivial example of equivalence operation
In the Results section, we discussed an equivalence operation involving
creating bubbles of 2dTI within each AU, which turns out to have a
trivial effect on the classification of time-reversal symmetric electronic
TCIs. To clarify the nature and role of this equivalence operation, here
we discuss an example without time-reversal symmetry where it does
modify the classification. We consider d = 3 insulators without time-
reversal symmetry with point group 1. Ignoring the inversion
symmetry, this is a system in symmetry class A. We choose the
2-skeletonX2 as the z = 0 plane, the 1-skeleton X1 as the z = y = 0 line,
and the 0-skeleton X0 as the point at the origin, as shown in Fig. 4A.
Phases constructed by decorating X0 with db = 0 building blocks are
atomic insulators, which are excluded from consideration; thus, we
need only to consider X1 and X2. The only internal symmetry on X1

and X2 is the charge conservation, which protects a ℤ-classification in
d = 2, corresponding to Chern insulators, and a trivial classification in
d = 1. Thus, to obtain the TCI classification, we only need to consider
topological crystals obtained by decorating X2 with Chern insulators.

First, we consider the gluing condition on X2. X2 decompose
into two 2-cells: e21 : z ¼ 0; x > 0; e22 : z ¼ 0; x < 0. We decorate
e21 with a Chern insulator with Chern number C (∈ℤ) and e22 with
a symmetric copy of this Chern insulator under inversion. Since
chirality remains unchanged under inversion, this copy has the
identical Chern number C, and the chiral boundary states of e21
and e22 cancel each other on the 1-skeleton X1. Therefore, the gluing
condition allows a ℤ classification on X2.

We now consider the equivalence operation. We create a bubble
of Chern insulator with Chern number 1 in the z > 0 region. Because
A B
z y

x

e22 e12

Fig. 4. Illustration of the effects of the equivalence operation in point group 1
without time-reversal symmetry. (A) The 2-cells: e21 : z ¼ 0; x > 0 and e22 : z ¼
0; x < 0. (B) The equivalence operation. When a bubble made of 2D Chern insu-
lator with Chern number 1 is created in z > 0, another Chern bubble with Chern
number −1 in z < 0 will be created because of the inversion symmetry. The arrows
represent the orientation of the Chern number. We enlarge these two bubbles
until they join with the z = 0 plane; then, the Chern number of the state on z = 0 will
be subducted by 2.
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of the inversion symmetry, another bubble will be created in the z < 0
region as shown in Fig. 4B. We enlarge the two bubbles respecting
the inversion symmetry, until the bottom surface of the z > 0 bubble
joins withX2 and the rest of the bubblemoves to infinity. At the same
time, the top surface of the z < 0 bubble also joins with X2. Therefore,
after this operation, the total Chern number on X2 is increased by 2,
which implies that the classification is reduced from ℤ to ℤ2.

This class A ℤ2 TCI has been discussed in (21, 47, 48).

Topological crystals, topological invariants, and H1(G, ℤ2)
In this section, we give a more detailed discussion of the ℤ2-valued
function of invariants d(g) characterizing a topological crystal. On
the basis of this discussion, we established a connection between the
classification C of TCIs and H1(Gc, ℤ2), which allows C to be com-
puted with the aid of standard computer algebra tools such as GAP
(49). In particular, we show that C and H1(Gc, ℤ2) have the same
number of generators.

In the text, we defined d(g) only for a ℤ2 TCI. It will be useful for
our present purposes to give a definition valid for an arbitrary
topological crystal. First, we introduce the notion of a ℤ2 coloring of
X2, which is given by associating a ℤ2 number to each 2-cell of X2 so
that each 2-cell is either colored and assigned 1, or empty and assigned
0. These ℤ2 numbers must be assigned to respect the crystalline
symmetry and satisfy a gluing condition, namely, for each 1-cell, an
evennumber of the 2-cellsmeeting theremust be colored.ℤ2 colorings
can be added using the ℤ2 addition law, and this makes ℤ2 colorings
into a group that we denote by ~C [we remark that ℤ2 colorings can be
viewed as elements of the homology group H2(X

2; ℤ2) satisfying a
symmetry condition, but we will not make use of this here.]

Next, we observe that there is a map from topological crystals
(elements of C) to ~C. We denote this map by p : C→~C. Empty cells of
the topological crystal map to empty cells in the ℤ2 coloring. Cells
decorated with 2dTI map to colored cells. Cells decorated with an
MCI state map to colored cells when the mirror Chern number is
odd and to empty cells when it is even (we used the convention that
the smallest possible mirror Chern number is 1; some authors use a
definition of mirror Chern number that is twice our definition).

Last, given a ℤ2 coloring of X2, we define d(g) as in the Results
section. That is, we arbitrarily choose one AU, let r be a point inside,
and define d(g) = 1 if a path connecting r to gr crosses an odd number
of colored 2-cells, while d(g) = 0 if the path crosses an even number
of colored 2-cells. The path should be chosen to avoid 0-cells and
1-cells but is otherwise an arbitrary continuous path.

We now establish some properties of d(g) quoted in the Results
section. First, we show that d(g) is independent of the path chosen to
connect r to gr and is, thus, a well-defined function mapping Gc to
ℤ2. Any two such paths are related by a finite number ofmoves, where
a segment of the path is passed through a 1-cell. The gluing condition
says that an even number of colored 2-cells meet at every 1-cell, so
these moves do not affect d(g). At this stage, we have not yet shown
that d is independent of the arbitrary choice of AU.

Next, we show that d is a homomorphism from Gc to ℤ2, that is,
d(g1g2) = d(g1) + d(g2). We compute d(g1g2) by considering a path
from r to g1g2r that first goes from r to g1r and then goes from g1r
to g1g2r. The number of colored 2-cells modulo 2 crossed by the
first segment is d(g1) by definition. The second segment is related
by symmetry to a path joining r to g2r, so d(g2) is the number of
colored 2-cells (modulo 2) crossed by the second segment. There-
fore, d(g1g2) = d(g1) + d(g2).
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Last, we show that d does not depend on the arbitrary choice ofAU.
Let d(g) be the function defined by choosing an AU with a point r
inside, and let d′(g) be the function defined by choosing a different
AU, which contains a point g0r for some g0 ∈ Gc. Then, d

′(g) is the
number of colored 2-cells (modulo 2) crossed by a path connecting
g0r to gg0r. By symmetry, this number is the same as for a path joining
r tog�1

0 gg0r, which shows thatd′ðgÞ ¼ dðg�1
0 gg0Þ. But this implies that

d′(g) = d(g) because d is a homomorphism and ℤ2 is Abelian.
Our construction of d gives a map D : ~C→H1ðGc;ℤ2Þ, where

H1(Gc, ℤ2) is viewed as the group of homomorphisms from Gc to
ℤ2. D is an isomorphism, so ~C≃H1ðGc;ℤ2Þ. It is easy to see that D
is injective. To see that D is surjective, we need to show that given
d : Gc → ℤ2, we can construct a corresponding ℤ2 coloring. Upon
arbitrarily choosing an AU, the 3-cells of ℝ3 are in one-to-one corre-
spondence with elements of Gc. We then color each 3-cell with the ℤ2
number d(g). Given a 2-cell, let g1 and g2 label the two 3-cells that
meet at the 2-cell. We then color the 2-cell with the ℤ2 number
d(g1) + d(g2). The resulting assignment of ℤ2 numbers to 2-cells is
clearly symmetric and satisfies the gluing condition and is, thus, a
ℤ2 coloring of X2. By construction, D maps this ℤ2 coloring to d.

Now that we have shown that ~C≃H1ðGc;ℤ2Þ, we would like to
show that C and ~C have the same number of generators. First, we
observed that C = CMCI × C2dTI, where CMCI is the classification of
MTCIs (i.e., topological crystals built from MCI states) and C2dTI is
the classification of ℤ2 TCIs. CMCI is a product of ℤ factors, and C2dTI
is a product of ℤ2 factors. We introduce a similar decomposition
~C ¼ ~CMCI � ~C2dTI , where ~CMCI is defined to be the subgroup of
ℤ2 colorings whose colored 2-cells lie in mirror planes, and ~C2dTI
is the subgroup of ℤ2 colorings where all 2-cells lying in mirror
planes are empty. Clearly ~C, ~CMCI , and ~C2dTI are all products of
ℤ2 factors. To prove that ~C ¼ ~CMCI � ~C2dTI , it is enough to show
that an arbitrary ℤ2 coloring c ∈~C can be written uniquely as c ¼
cmc�m for some cm ∈ ~CMCI and c�m ∈ ~C2dTI. Given c ∈ ~C, we consider a
1-cell e1 contained in a mirror plane. n 2-cells meet at e1, two of
which lie in the mirror plane, and n − 2 of which lie outside the
mirror plane. The n − 2 2-cells outside the mirror plane can be
grouped into pairs related by mirror reflection, so that the two 2-cells
in each pair are either both colored or both empty. It follows that the
two 2-cells contained in the mirror plane are also either both colored
or both empty. Therefore, we define a new ℤ2 coloring cm ∈ ~CMCI by
starting with c and replacing all colored 2-cells not lying in mirror
planes with empty cells. Similarly, if we replace all the colored 2-cells
within mirror planes with empty cells, then we obtain c �m ∈ ~C2dTI. It is
obvious that c ¼ cmc�m and that cm and c�m are unique.

Using the above discussion, we showed that the map p : C→~C
gives a one-to-one correspondence between generators of C and~C, so
the two groups have the same number of generators. First, restricting
p to C2dTI gives an isomorphism between C2dTI and ~C2dTI , so these
subgroups clearly have the same number of generators. Second,
we can take each ℤ factor of CMCI to be generated from a topological
crystal obtained by decorating the 2-cells of a mirror plane, as well as
all symmetry-equivalent mirror planes, with an MCI state of unit
Chern number. The above discussion implies that ~CMCI is generated
by ℤ2 colorings obtained by coloring all the 2-cells of set of symmetry-
equivalent mirror planes, and these generators are images of the CMCI

generators under p, giving a one-to-one correspondence between gen-
erators of CMCI and ~C2dTI .

These results make it a simple matter to compute the TCI classi-
fication C. First, we computeH1(Gc, ℤ2); this can be done using GAP
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(49). Then, we know that the number of ℤ factors in C is nM, the
number of symmetry-inequivalent sets of mirror planes. We then
obtain C from H1(Gc, ℤ2) by replacing nM of the ℤ2 factors with ℤ
factors. For a Gc crystallographic point group or space group, nM
can be obtained immediately from information tabulated in the In-
ternational Tables for Crystallography (50). The results of this pro-
cedure are presented in Table 1 for crystalline point groups, and in
Table 2 for space groups. As discussed in the Introduction, we note
that Khalaf et al. (36) have also obtained the results in these tables
via a mathematically equivalent procedure.

While useful, we emphasize that this largely automated procedure
is not a substitute for explicit real-space construction of topological
crystals for a given symmetry group of interest, as described in Re-
sults. The latter procedure not only results in the same group struc-
ture but also provides additional physical insight and a starting point
for further analysis, by giving an explicit real-space construction of
each of the TCI phases classified. We also obtained the results in
Table 2 by automating the explicit real-space constructions.
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