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A B S T R A C T   

As urban populations grow, it’s imperative to evaluate and enhance the quality of pedestrian 
paths from the user’s perspective. Crowdedness, associated with discomfort and safety, is crucial 
in determining the overall walking quality and user experience. Previously utilized methods for 
measuring crowdedness, such as travel diaries and floating population surveys, were limited to 
collecting perceptual data from sporadic surveys with restricted spatial coverage. Similarly, 
methods based on CCTV or mobile service data have been used but present issues with blind spots 
and fail to consider pedestrian perspectives. Against this background, this study explores the 
feasibility of assessing crowdedness levels by measuring subjects’ physiological responses in a 
laboratory setting based on visual images of real and virtual environments. This study hypothe
sizes that the amount of people or vehicles passing by affects the electrodermal activity (EDA) of 
pedestrians, indicating the comfort level of using the environment. Experimental EDA data were 
measured using a wearable device while the subjects were watching videos showing different 
pedestrian traffic flows. Representative EDA signal features (e.g., skin conductance responses) 
were extracted after data pre-processing. Noticeable changes in EDA responses are observed when 
subjects countered specific environmental variations, such as differing volumes of passing people, 
on pedestrian paths. The findings suggest that EDA data can be instrumental in differentiating 
crowdedness levels on pedestrian paths. This study contributes to the body of knowledge by 
demonstrating the potential of EDA data to characterize the crowdedness experienced by pe
destrians. This aids in the development of a novel, quantitative method to gauge pedestrian path 
crowdedness and to discern contributing factors, such as path width.   

1. Introduction 

Due to rapid urbanization and population growth, interest in improving the management of the crowdedness of pedestrian paths 
continues to grow. The goal is to reduce the associated discomfort and safety concerns on these paths [1]. Thus, to achieve a 
walking-friendly environment, analyzing traffic volumes and the capacity of pedestrian paths is crucial because the crowdedness 
significantly impacts the walkability of an environment. The crowdedness has thus been a critical factor in determining pedestrian 
level of service (PLOS), which is an approach to assess the quality of pedestrian paths. PLOS [2]. The original version of PLOS, tailored 
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from the level of service in the transportation domain as a qualitative measure of road performance based on the ratio of traffic volume 
to road capacity [3], classified the different performances of pedestrian facilities from Grade A (best condition) to Grade F (worst 
condition) based on flow rate, average walking speed, occupied space, and other parameters (e.g., flow characteristics, physical el
ements of the constructed environment) [2]. The most recent version of PLOS considers many attributes, such as land use, population 
structure, and physical and environmental attributes of paths, and has a greater emphasis on users’ perceived comfort and safety, 
rather than mostly focusing on flow characteristics as in the early versions. Nevertheless, not only is the crowdedness of pedestrian 
paths still an important factor in determining PLOS and measuring path quality, but it also has a huge impact on user’s perceptions [4, 
5]. 

Many qualitative and quantitative measures have been used to measure the level of crowdedness experienced by pedestrians. 
National and local governments conduct household travel diary surveys and floating population surveys for statistical purposes, with 
many studies using the survey results to infer flow rates and levels of crowdedness in specific areas. Still, they are difficult to utilize for 
specific paths at an alley level [6–10]. Researchers have recently attempted to use computer vision technologies to automatically assess 
pedestrian flows from closed-circuit television (CCTV) videos. However, this approach also has several limitations because the CCTV 
coverage is limited, regardless of the number of devices deployed. Additionally, CCTV videos only provide images showing the 
crowdedness of an area; hence, capturing the feelings and subjective experiences of users regarding the level of crowdedness remains 
difficult. 

In recent years, wearable sensors capable of measuring human physiological responses to external stimuli have gained popularity in 
various fields of research. Physiological data enable the possibility of using these responses for assessing the level of crowdedness 
perceived by pedestrians. This is due to physiological data being regarded as an expression of autonomic nervous system activity in 
response to psychological and emotional stimuli, such as pedestrian flows. However, attempts to use human physiological sensing to 
assess pedestrian path crowdedness levels are scarce. 

Against this background, this study examines the potential of assessing the crowdedness of pedestrian paths based on electrodermal 
activity (EDA). As a first step, confirming that physiological data, such as EDA responses, vary when a subject is exposed to external 
stimuli (such as other pedestrians or fast-approaching vehicles) is required. Researchers suggest that physiological responses undergo 
meaningful changes when subjects are exposed to unfamiliar stimuli [11]. Previous research indicates the possibility of using phys
iological data, such as EDA, for assessing people’s experience in response to environmental conditions; however, this idea has not been 
rigorously tested in the context of the crowdedness of paths experienced by pedestrians. 

The ultimate goal of this research is to test the feasibility of using physiological data collected through EDA sensors to assess the 
level of crowdedness. Three objectives are involved. First, confirming that significant changes in EDA responses occur when a subject is 
exposed to particular types of environmental changes (such as the passage of different people) while controlling other variables (e.g., 
noise, illuminance, ambient temperature, physical obstructions, street amenities, and pedestrian movement) is necessary. In partic
ular, whether EDA changes in the real-world experiment are due to physiological variations caused by crowdedness or the physical 
movement of pedestrians, which are critical sources of EDA responses, is difficult to ascertain [12]. Moreover, real-world EDA data are 
extremely difficult to interpret when a subject is physically moving and simultaneously exposed to all stimuli. Therefore, a controlled 
laboratory setting is required before a real-world experiment is conducted to observe the relationship between crowdedness and 
physiological responses. Second, the possibility of observing significant EDA changes must be tested when the subject responds to 
environmental changes (e.g., various levels of crowdedness) while walking in the real world. Third and finally, the possibility of 
discriminating distinct levels of the crowdedness based on EDA as well as other physiological and movement data obtained by sensors 
must be confirmed. 

This study focuses on the first step described above, i.e., testing the hypothesis that changes in the condition of pedestrian paths 
(such as the number of pedestrians and vehicles passing by) affect EDA. Thus, the study aims to identify the physiological response 
signals against varying degrees of crowdedness as visualized in the videos. Concurrently, the effect of the movement of a subject in the 
laboratory setting is minimized to ensure that the variations in the detected physiological data are attributable to the experimental 
treatment. 

2. Literature review 

2.1. The importance of crowdedness in PLOS and pedestrian perception 

The initial version of PLOS by the Highway Capacity Manual (HCM) measures the satisfaction level of pedestrians using the 
transportation system based on factors such as density, speed, and the degree of road congestion [2,4]. It is divided into six levels 
(Levels A–F). Level A indicates the highest PLOS level, implying the least crowded and most comfortable condition. As the PLOS level 
descends to Level F, the PLOS index decreases [13]. The standard method for assessing the PLOS level relies on the average pedestrian 
space (m2/pedestrian). The supporting standards include pedestrian speed (m/s) and pedestrian unit flow rate (pedestrian/min/m) 
[4]. The modified versions of the PLOS assessment method consider not only pedestrian flow but also environmental factors that may 
affect comfort, convenience, safety, security, and economy in the walking environment. Nag et al. [13] reported that the PLOS criteria 
could primarily be divided into flow characteristics of pedestrian and vehicle traffic as well as physical elements and user perception of 
the constructed walking environment. Their study showed that the factors perceived by pedestrians (such as comfort, convenience, 
safety, absence of shade, automobile-only roads, bus stops, and number of vehicle lanes) could reduce satisfaction and affect 
decision-making. Further, Bloomberg & Burden [14] described three main factors affecting PLOS: sidewalk environment, pedestrian 
characteristics, and flow characteristics. Sidewalk environment components are related to the physical walking environment. 
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Pedestrian characteristics are related to socioeconomic information, behavior, physical ability, and pedestrian perception. Flow 
characteristics are related to pedestrian and vehicle traffic flow characteristics. In this regard, Vallejo-Borda et al. [5] have clarified the 
evolution of the PLOS concept, explaining that it was initially based predominantly on flow characteristics but has since evolved to 
include a variety of attributes, such as user perception. 

Georgiou et al. [4] identified three methods for analyzing the factors affecting PLOS based on reports in the literature (Table 1). 
First, quantitative methods measure the available space of transportation facilities and traffic characteristics based on speed and 
capacity. For example, the HCM proposed a methodology that considers pedestrian speed, pedestrian flow, and other quantitative 
criteria such as age, gender, group size, and purpose of movement [2]. Transport for London (TfL) published “Pedestrian Comfort 
Levels (PCLs)” for assessing pedestrian facilities (e.g., sidewalks and crossings) considering various factors (land type and impact of 
street facilities) [15]. Landis et al. [16] used stepwise multivariate regression analysis to confirm that PLOS derived from the traffic 
volume and speed of cars and pedestrians was a statistically significant factor for achieving user satisfaction. 

Second, qualitative methods measure PLOS in terms of safety, comfort, and accessibility. Jaskiewicz [17] introduced nine quali
tative measures to evaluate the goodness of pedestrian infrastructure, including the degree of finish of road edges, complexity of route 
network, building connections, space complexity, protruding components, awnings components, and physical components. Other 
factors include various roof lines, shock absorbers, tree shades, sidewalk construction and condition, vehicle speed, and lighting. 
Rahaman et al. [18] found that perceived safety, comfort, accessibility, public transportation service, and land use attractiveness were 
factors significantly affecting PLOS. Florez et al. [19] introduced the term “Quality of Pedestrian Level of Service (Q-PLOS).” The 
Q-PLOS model was aimed at reflecting the demand of pedestrians in infrastructure design. They showed that accessibility, comfort, 
reliability, convenience, security, safety, and sociality were the most influential characteristics. 

Third, mixed methods are employed for analyzing both quantitative and qualitative factors, which are in line with recent trends in 
PLOS measurement. For example, Hidayat et al. [20] used a mixed analysis model for assessing sidewalks based on pedestrian behavior 
in Jakarta and Bangkok. Among other quantitative variables, sidewalk comfort and pedestrian perceptions of street vendor activities 
were included in the assessment list. Christopolou et al. [21] also proposed a mixed model to analyze urban areas in Greece, 
considering not only pedestrian movement parameters but also traffic, environmental, and sidewalk parameters. Daniel et al. [22] 
developed a “pedestrian footpath level of service (FOOT-LOS)” model, considering all physical properties, location characteristics, and 
pedestrian properties for measuring the PLOS of pedestrian paths. More recent studies on the walkability and service quality of 
pedestrian paths have incorporated both objective and subjective measures by utilizing multivariate attributes [23,24], such as land 
use and street type affecting pedestrian perception [25], pedestrian comfort due to other pedestrians, physical environment, and 
ammenities [26], and the building characteristics and continuity of the path affecting pedestrian pleasantness [27]. These studies have 
revealed that factors influencing PLOS can be categorized as either quantitative or qualitative; although they function independently, 
there is also a degree of interaction between them. Moreover, user perception is acknowledged as a pivotal factor in the assessment of 
PLOS [28,29]. Rodriguez-Valencia et al. [30] demonstrated that user perception is a key predictor of pedestrian quality of service when 
comparing the explanatory power with other attributes. 

The review of PLOS-related literature indicated that the emphasis on how users experience and perceive pedestrian paths has been 
increasing. Additionally, pedestrian flow rate and crowdedness are consistently recognized as important quantitative factors in PLOS, 
even as other qualitative factors gain importance. In this respect, various methods have been devised to measure the crowdedness of 
paths, including the analysis of survey data, statistical data, location-based mobile service data, and videos. Methods for identifying 
floating populations using mobile communication signals or Wi-Fi probes were tested [31,32]. However, this technique was unable to 
identify pedestrian flows in small areas (such as alleyways) because the minimum area that the method could measure was wider than 
the normal size of alleys. Street view images have been used to approximate pedestrian volume [33]. A video recognition system was 
also tested to count the number of pedestrians passing by Kim et al. [34]’s study. However, this method was constrained by blind spots 

Table 1 
Factors affecting PLOS.  

Factors Factor description Example 

Quantitative Available space and traffic characteristics of 
infrastructure  

- Pedestrian speed  
- Pedestrian unit flow rate  
- Area type  
- Impact of street furniture  
- Lateral separation between pedestrians and motor vehicle  
- Overall condition of sidewalk 

Qualitative Safety, comfort, and accessibility  - Safety and security  
- Convenience and comfort  
- Mobility and infrastructure  
- Perceived pedestrian satisfaction  
- Socio-demographic characteristics (e.g., gender, age, occupation, and car 

ownership)  
- Trip characteristics 

Mixed Quantitative and qualitative characteristics are 
considered  

- Pedestrian perception of sidewalk comfort and street vendor activities  
- Environmental and sidewalk parameters (e.g., width, height, and ramp presence)  
- Physical attributes  
- Location characteristics  
- User attributes  
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in areas where CCTV cameras were not installed. In addition, only quantitative features (e.g., physical flow rate) were measured 
because it was challenging to obtain the crowdedness of paths as experienced by users using the aforementioned methods. 

Accordingly, the assessment of the crowdedness reflecting pedestrian perception is necessary to enhance the quality of pedestrian 
paths. To this end, understanding the effects of crowdedness on human perception is required. In this regard, Engelniederhammer et al. 
[11] found that the shorter the distance among pedestrians, the greater the invasion of personal space. Hall [35] defined personal space 
as a distance of 45–75 cm around an individual. Within this radius, a person can reach out and grab or hold another person. The 
invasion of private space is intrusive and can induce physiological responses, such as increased heart rate, sweating, and increased 
blood pressure [36]. A considerable distance from strangers reduces the likelihood of physical aggression and risk of disease trans
mission [37]. Many studies have investigated the shape and size of personal space. However, the results of these studies vary. For 
example, Newman and Pollack [38] found that personal space was more important at the rear (~120 cm) than at the sides and in front 
(~60 cm) of a person. In contrast, Hayduk found that personal space was more significant in front of a subject than at the rear; personal 
space was rated zero at the rear when subjects could not move their heads [39,40]. Engelniederhammer et al. [11] also defined 0–2 m 
as the range of personal space that has psychological and physiological effects when invaded by other people or objects. The personal 
space in these studies describes the personal space of test subjects while standing or sitting. Other pedestrians may also have a similar 
desire to maintain a certain comfortable distance from other people or objects [41]. In addition, the invasion of perceived personal 
space can cause pedestrians to cross a street faster than usual [42,43]. Kaya and Erkip [44] demonstrated that people in highly crowded 
environments exhibited more withdrawal behaviors than in environments with fewer people. This indicated that they were uncom
fortable and defensive because they felt that their personal space was not protected. 

2.2. Pedestrian experience based on physiological sensing data 

The EDA of pedestrians is an autonomic nervous system indicator that directly shows the activation of the sympathetic nervous 
system without the effect of the parasympathetic nervous system. It records electrical resistance changes in the skin [45] and measures 
electrical conductance as eccrine glands release sweat on the skin’s surface [45,46]. Events that are psychologically salient can be 
identified by observing skin conductance fluctuations linked to specific brain circuits [45,47]. Accordingly, the EDA has been widely 
tested as a tool to investigate a range of psychological states, such as stress, depression, anxiety, attention disorder, pain, and infor
mation processing [45,48–50]. 

Cacioppo et al. [48] reported that EDA signals have three components: skin conductance level, which is related to tonic activities; 
skin conductance response (SCR), which is related to phasic activities; and artifacts. Typically, a tonic response ranges between 2 and 
20 μS and represents a general trend in activation levels [51]. In analyzing EDA signals, the tonic level is typically removed for two 
reasons [51]. First, further clarification on how psychological events relate to tonic changes is required [51]. Second, EDA baselines are 
rarely consistent within or among individuals due to hydration status, recording site, eccrine sweat gland density at the recording site, 
and psychological state [51]. 

In contrast, SCRs are rapid responses superimposed on the tonic response that can be more directly linked to psychological events 
[52]. They typically have a predictable shape characterized by rise time, amplitude, and half-recovery time. In healthy adults, the rise 
time is typically 1–3 s; amplitude frequently varies. The minimum rise time and half-recovery time are set to be 0.01–0.05 μs and 2–10 
s, respectively [48]. 

Lee et al. [53] measured the stress experienced by pedestrians in a built environment by measuring the EDA and analyzed stress 
hotspots based on geographic information systems. LaJeunesse et al. [54] endeavored to quantify the performance of pedestrian fa
cilities from the perspective of pedestrians. The quantification was based on the physiological measurements of heart rate and EDA in 
various traffic situations to investigate the factors affecting the comfort of walking. They confirmed that the stress level of participating 
pedestrians was related to road conditions. Engelniederhammer et al. [11] investigated the emotional response of pedestrians residing 
in densely populated cities by measuring the EDA, skin temperature, and ambient temperature. They hypothesized that the high 
population density of a city led to the invasion of the entire personal space of a pedestrian, triggering emotional responses, particularly 
negative emotions such as stress and aggression. Their study found that pedestrians adversely reacted upon recognizing that a certain 
level of their personal space (a maximum of 2 m) was invaded while walking. 

Previous findings indicate the potential of utilizing EDA monitoring in assessing pedestrian responses, such as stress or discomfort. 
However, studies on measuring the level of crowdedness from pedestrian responses are limited. Therefore, this study aims to inves
tigate the possibility of assessing the crowdedness from a pedestrian’s subjective experience and feelings (e.g., stress and discomfort), 
which are affected by the level of congestion in pedestrian paths, based on the EDA data. 

3. Research design and methods 

The overall research process is as follows. First, a research site was selected, and videos of walking that visualized various levels of 
crowdedness on the selected pedestrian paths were created; the videos had two versions: real and virtual reality. The creation of real- 
world videos is necessary such that only the effect of changes in the level of crowdedness with minimal impact from other influencing 
factors (such as noise, illuminance, ambient temperature, and physical obstructions) can be observed. On the same pedestrian path, 
however, crowdedness is expected to vary depending on the time of day or surrounding conditions. Inevitably, this variation can lead 
to changes in several of the aforementioned variables and affect pedestrians. In view of this, virtual reality videos in which other 
influencing variables are perfectly controlled are used with real-world videos in this study. Second, the subjects watched both versions 
of videos representing various crowdedness levels; concurrently, the wearable device collected EDA data from the participants. Third, 
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the collected data were processed and analyzed using MATLAB-based Ledalab software to extract essential signal features. Finally, the 
processed EDA data were statistically analyzed and compared with the EDA responses to visual inputs representing different levels of 
crowdedness. 

3.1. Videos creation for different PLOS levels 

The research site is a narrow pedestrian path near Sinchon Station in Seoul, Korea. It is in a commercial area where few people are 
present in the morning; however, it is typically overly crowded during the day. Accordingly, the site is considered suitable for 
recording varying extents of congestion in the area. The path is approximately 419 m long. 

After selecting the research site, the authors recorded videos of walking using smartphones: iPhone 12 pro and gimbal (ATOM). The 
camera was fixed at eye level such that the recorded videos could stimulate the feeling of walking along the path. The videos were 
created to show different levels of crowdedness on the pedestrian path by recording them at different times of the day (e.g., quiet 
environment in the early morning and crowded space in the evening) to visualize various crowdedness levels. While collecting data 
using the recorded videos, the authors observed that external factors, such as noise, illumination, temperature, and changing ob
structions, possibly affected the results. The videos of virtual walking were produced using Lumion (virtual environment modeling 
software) to fully control these factors; accordingly, the videos can be used in the experiment. Fig. 1 displays real and virtual envi
ronment versions of videos designed to visualize various crowdedness levels, represented as pedestrian flow rates. The videos simu
lating low crowdedness levels were created to depict HCM’s initial version of PLOS Level A, focusing on flow characteristics. 
Meanwhile, the videos simulating high crowdedness levels were created to represent HCM’s initial version of PLOS Level B [2]. 
Crowdedness levels are distinguished based on the pedestrian unit flow rate (pedestrian/m/min), as illustrated in Fig. 1(see Fig. 2). 

3.2. Laboratory experiments 

The participants in the experiment were requested to watch videos showing a real-world walking environment and a virtual model 
of the same environment while wearing an EDA sensor in a laboratory setting. Each of the total 37 subjects watched the same four 
videos (two videos of the actual environment and two videos of the virtual environment) via a wide-screen monitor. Each video was 
approximately 3 min long with a 30-s break between two successive videos. The order of watching the videos was not determined in 
advance; it was randomized to control the priming effect [55]. The subjects in this study voluntarily participated and signed a consent 
form as required by the Institutional Review Board. The participants were healthy adults in the age range of 19–60 years. The EDA data 
were collected from the subjects using Empatica E4, a wearable physiological sensing device for research purposes. The required 
sample size was calculated using G*Power 3.1.9.7 software based on a significance level of 0.05, a power of 0.8, and a medium effect 
size of 0.5 for two-tailed Wilcoxon signed-rank tests [56]. At least two different crowdedness levels were considered; the calculated 
minimum sample size was 35. The 37 subjects who participated in the study were deemed suitable for the experiment; the dropout rate 
was also considered. 

3.3. EDA data processing and statistical analysis 

Ledalab [51] was used for EDA data processing in this study. First, the raw EDA data collected from the subjects were imported, and 
then these data and video timelines were synchronized. Second, a low-pass filter was applied to remove significant signal noise in the 

Fig. 1. Videos of walking used in the experiment.  
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data. Third, the EDA data were analyzed using decomposition methods. Continuous decomposition analysis (CDA) and discrete 
decomposition analysis (DDA) have been widely used in the decomposition of skin conductance data. Although DDA is useful for 
studying SCR-based physiological models, it requires more computational time than CDA [57]. The implementation of CDA benefits 
the analysis of all unbiased scores of phasic and tonic activities, providing more straightforward measures of phasic activities. 
Accordingly, CDA is recommended for analyzing large skin conductance data using Ledalab software [57]. In this study, the collected 
EDA data were decomposed by CDA into continuous signals of phasic activity (i.e., skin conductance response) and tonic activity (i.e., 
skin conductance level) [51,58]. The signal characteristics of the underlying sudomotor nerve activity could be retrieved by unbiased 

Fig. 2. Data collection and processing.  

Fig. 3. Boxplots of (a) SCR data; (b) ISCR data; (c) PhasicMax data; and (d) Tonic data.  
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scores of phasic and tonic activities; consequently, all analyses improved [51,59]. The signal characteristics of basal motor neuron 
activity are recovered using CDA by decomposing and analyzing the skin conduction data into continuous signals of step-by-step 
sensory activity [51,59]. Finally, four significant signal features (SCR, Integral of SCR (ISCR), PhasicMax, and tonic data) were 
extracted. The SCR is an average phasic change in the electrical conductivity of skin [60], reflecting stimulus-specific responses or 
non-specific responses [51]. The ISCR, which is integral to SCR, is the area of the phasic driver and is equal to the SCR multiplied by the 
size of the response window. The ISCR is useful because it includes information on both amplitude and frequency of significant SCRs. 
The maximum values of phasic activity are denoted as PhasicMax data. The mean tonic activities of decomposed components are the 
tonic data [51]. Although the number of significant SCRs representing frequency and the sum of amplitudes of significant SCRs can be 
calculated, they were excluded from the analysis because their values were sensitive to the pre-determined threshold and strongly 
associated with ISCR. 

Depending on the normality test result, non-parametric Wilcoxon signed-rank tests were implemented to compare EDA signal 
features under different PLOS conditions in virtual reality and real-world videos. For in-depth analysis, four significant features (SCR, 
ISCR, PhasicMax, and tonic data) were analyzed by dividing the data into 20-s segments. Then, values of signal features and the 
number of approaching people were compared. 

4. Results 

The descriptive statistics of EDA signal features (SCR, ISCR, PhasicMax, and tonic data) for each of the four videos (virtual-reality 
video showing low and high pedestrian flow rates as well as real-world videos showing low and high pedestrian flow rates) are shown 
in Fig. 3 and summarized in Table 2. The graphs in Fig. 3 indicate that the features associated with phasic activities, such as SCR, ISCR, 
and PhasicMax (excluding tonic data), show high values when flow rates are low in both virtual reality and real-world videos. 

Before determining whether the differences in EDA signal features between low and high flow rate samples are statistically sig
nificant, a normality test is performed. This test is conducted to determine whether the data satisfies the normality condition. Because 
the number of subjects is less than 300, the Shapiro–Wilk test is used. Test results in Table 3 show that the significance level of each 
dataset is 0.000, which does not exceed the significance level of 0.05. Thus, the data cannot be assumed as normally distributed. 

Accordingly, the Wilcoxon signed-rank test, a non-parametric statistical hypothesis test, was conducted to compare the EDA 
features between low and high pedestrian flow rate samples. Specifically, SCR, ISCR, PhasicMax, and tonic data were compared be
tween low and high pedestrian flow rate samples of the virtual reality and real-world videos. 

For the real-world videos, the significance level of the difference between low and high pedestrian flow rate samples is 0.492 for 
both SCR and ISCR data. This result indicates that for the SCR and ISCR data, the difference between low and high pedestrian flow rate 
samples is not statistically significant based on α = 0.05. Similarly, the difference between low and high pedestrian flow rate samples is 
insignificant for the PhasicMax and tonic data with significance levels of 0.994 and 0.769, respectively; Table 4 summarizes the results. 
Because the ISCR is an integral of SCR, the rank-based non-parametric test produces identical statistics between SCR and ISCR. 

For the virtual reality video, the significance of the difference between the low and high flow rate samples was 0.028 for both SCR 
and ISCR data, indicating a statistically significant difference between the two samples. Similar to the case of the real-world video, the 
difference between low and high pedestrian flow rate samples was insignificant for the PhasicMax and tonic data, with significance 
levels of 0.069 and 0.411, respectively. Table 5 summarizes these results. 

Engelniederhammer et al. [11] reported that pedestrians invaded the personal space of other pedestrians more frequently when the 
distance separating them was short. The invasion of private space was perceived as an intrusion and triggered physiological reactions, 
such as increased heart rate, sweating, and increased blood pressure [36]. Accordingly, the real-world and virtual reality videos where 
pedestrians and vehicles are shown to pass by personal space (1) within a 2-m radius or less and (2) within a 5-m radius or less are 
considered as videos related to events causing changes in EDA features. Engelniederhammer et al. [11] specified that when a 

Table 2 
Descriptive statistics of EDA signal features.  

EDA Signal Features Video Type Average Standard Deviation Median 

SCR Virtual, low flow rate 0.0627 0.1310 0.0024 
Virtual, high flow rate 0.0248 0.0486 0.0020 
Real, low flow rate 0.0293 0.0734 0.0022 
Real, high flow rate 0.0248 0.0460 0.0024 

ISCR Virtual, low flow rate 0.3760 0.7857 0.0144 
Virtual, high flow rate 0.1486 0.2913 0.0120 
Real, low flow rate 0.1762 0.4403 0.0136 
Real, high flow rate 0.1487 0.2760 0.0146 

Phasic Virtual, low flow rate 0.3569 0.7472 0.0076 
Virtual, high flow rate 0.1295 0.2448 0.0083 
Real, low flow rate 0.1599 0.3693 0.0077 
Real, high flow rate 0.1406 0.2554 0.0088 

Tonic Virtual, low flow rate 1.3776 2.2276 0.2492 
Virtual, high flow rate 1.3454 2.6306 0.2868 
Real, low flow rate 1.4633 2.8637 0.2011 
Real, high flow rate 1.3848 2.7572 0.2909  

H. Lee et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e35620

8

Table 3 
Normality test results of each dataset.  

Signal Features Video Type Shapiro–Wilk test 

Statistics Df Significance level 

SCR Virtual, low flow rate 0.539 37 0.000 
Virtual, high flow rate 0.555 37 0.000 
Real, low flow rate 0.430 37 0.000 
Real, high flow rate 0.554 37 0.000 

ISCR Virtual, low flow rate 0.539 37 0.000 
Virtual, high flow rate 0.555 37 0.000 
Real, low flow rate 0.430 37 0.000 
Real, high flow rate 0.554 37 0.000 

Phasic Virtual, low flow rate 0.544 37 0.000 
Virtual, high flow rate 0.585 37 0.000 
Real, low flow rate 0.478 37 0.000 
Real, high flow rate 0.578 37 0.000 

Tonic Virtual, low flow rate 0.613 37 0.000 
Virtual, high flow rate 0.511 37 0.000 
Real, low flow rate 0.518 37 0.000 
Real, high flow rate 0.511 37 0.000  

Table 4 
Wilcoxon signed-rank test results for real-world video data.   

SCR (Real Low–High Flow 
Rates) 

ISCR (Real Low–High Flow 
Rates) 

PhasicMax (Real Low–High Flow 
Rates) 

Tonic (Real Low–High Flow 
Rates) 

Total N 37 37 37 37 
Test statistic 397.000 397.000 351.000 371.000 
Standard error 66.285 66.285 66.285 66.285 
Standardized test 

statistic 
0.686 0.686 − 0.008 0.294 

Significance 0.492 0.492 0.994 0.769  

Table 5 
Wilcoxon test results for virtual reality video data.   

SCR (Virtual Low–High Flow 
Rates) 

ISCR (Virtual Low–High Flow 
Rates) 

PhasicMax (Virtual Low–High 
Flow Rates) 

Tonic (Virtual Low–High Flow 
Rates) 

Total N 37 37 37 37 
Test statistic 206.000 206.000 231.000 297.000 
Standard error 66.285 66.285 66.285 66.285 
Standardized test 

statistic 
− 2.195 − 2.195 − 1.818 − 0.822 

Significance 0.028* 0.028* 0.069 0.411 

*p < 0.05. 

Fig. 4. Personal space invasion of passing people and vehicles as shown in videos and indicated by EDA signal features.  
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pedestrian approached another within a radius of approximately 2 m, this approach had a psychological effect. Fig. 4 clearly shows 
that the SCR, ISCR, and PhasicMax values are high in less crowded areas. Moreover, considerable personal space invasion events occur 
in both virtual reality and real-world video versions (including videos showing low pedestrian flow rates). The SCR and ISCR data thus 
tend to have a higher increase when flow rates are low. This is possibly because of the more sensitive reaction of a pedestrian to 
personal space invasion (e.g., pedestrians approaching each other within a 2-m radius in a less-crowded environment). 

Fig. 5 shows the changes in EDA features and personal space invasion events in 20-s video segments. A significant increase in SCR, 
ISCR, and PhasicMax data is observed when the invasion of personal space event occurs within a 2-m radius in a less crowded 
environment (e.g., 20 s in Figs. 5(a) and 80 s in Fig. 5, (a) and (c)). Such increase is also observed when personal space invasion events 
within a 2-m radius frequently occur compared with events where pedestrians approach others within a 5-m radius (e.g., 40 s in Fig. 5 
(b) or 60 s in Fig. 5(d)). Hence, physiological activation has a high probability when the number of personal space invasion events 
occurring within a 2-m radius is high compared with the total number of pedestrians rather than the absolute number of people. 

5. Discussion 

5.1. Discussion on the results 

At distinct levels of crowdedness, statistically significant differences in EDA features (including SCR and ISCR) were observed while 
the subjects viewed the virtual reality videos. These differences were observed because other factors possibly affecting EDA data, such 
as vehicle noise, illuminance, and physical obstructions, were fully controlled in the virtual reality videos. However, the effect of 
viewing real-world videos was statistically insignificant, possibly because of several uncontrolled real-world factors, although the 
tendency for changes in EDA features is similar to that when viewing virtual reality videos. The EDA data are hypothesized to have a 
positive or negative relationship with crowdedness in pedestrian paths. However, more substantial evidence of a negative relationship 
between EDA (particularly phasic activity related to SCR) and level of crowdedness is shown by the results. In other words, the change 
in phasic EDA activity (such as SCR and ISCR, which are responses to specific and discontinuous stimuli) is relatively inconsiderable in 
a crowded walking environment because pedestrians may become more accustomed to the presence of numerous people and vehicles. 
In contrast, if a pedestrian or vehicle suddenly appears in a non-crowded environment and invades personal space, phasic SCR and 
ISCR data can increase, representing an immediate response toward unusual and unfamiliar external stimuli. In this regard, Engel
niederhammer et al. [11] proposed that the physiological responses of individuals significantly vary when confronted with an un
familiar stimulus (e.g., a person passes in an uncrowded area); their responses differ when they encounter a familiar stimulus (e.g., 
passing people in crowded areas). This is because the invasion of personal space by strangers causes discomfort, acting as an unfamiliar 
and disturbing stimulus that can cause anxiety, stress, or emotional arousal [11,61,62]. Such psychological changes stimulate the 
sympathetic nervous system and lead to subsequent changes in EDA, consistent with our findings. 

In contrast, tonic EDA activity is associated with the background level and represents a gradual change in skin conductance level. 
The change in tonic activity in response to crowdedness is thus insignificant in the results, indicating that viewing real-world and 
virtual reality videos tends to have similar statistical significance. 

In summary, the results of viewing virtual reality videos on phasic EDA activities, such as SCR and ISCR, showed the possibility of 
assessing the volume and density of pedestrians on a path by measuring physiological reactions. Moreover, although the scope of 
personal space varies among studies, the prominent EDA responses to personal space invasion (e.g., within a 2-m radius) may be useful 
for understanding the crowdedness of paths perceived by individuals. 

5.2. Contributions 

Although many qualitative and quantitative methods, such as survey-based or mobile-data-based ones, have been used to measure 
the level of crowdedness, the continuous collection and monitoring of the crowdedness of pedestrian paths in a wide range of areas at 
the alley level is difficult to perform. Additionally, previous methods do not consider how pedestrians respond and feel, which limits 
understanding the level of crowdedness experienced by pedestrians in terms of their comfort. In contrast, this study explores the 
collection of pedestrian physiological data using wearable sensors and then utilizes them to measure the level of crowdedness of paths 
from the perspective of human responses. This study thus demonstrates the feasibility of utilizing the physiological responses to 
varying levels of crowdedness considering pedestrian perception. Additionally, rather than simply increasing the number of physio
logical responses, such as EDA, in crowded areas, this study obtains a counterintuitive finding: passersby and vehicles in less crowded 
areas act as unfamiliar stimuli. These stimuli result in significant EDA responses, which are effective in providing a direction for EDA- 
based crowdedness measurement. Results show that EDA does not completely discriminate the level of crowdedness accurately. 
However, in predicting the level of crowdedness using machine learning algorithms by integrating sensor data, features related to 
phasic activity rather than tonic activity can be used as distinct features for crowdedness measurement. 

5.3. Limitations, future works, and expected applications 

The current study only compares human responses at two levels of crowdedness because real-world cases with extremely crowded 
situations are infrequently encountered. However, if the experiment is conducted using various levels of crowdedness, more significant 
results in the relationship between EDA and the level of crowdedness are to be expected. Advancements in instruments capable of 
accurate physiological data measurements, advanced signal processing, and sophisticated feature extraction can contribute to this 
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improved accuracy in distinguishing different levels of crowdedness. 
Future studies where subjects walk in various real-world environments with various levels of crowdedness must also be conducted. 

However, external environmental factors can detrimentally affect EDA; hence, they must be measured and controlled using envi
ronmental sensors. Moreover, a subject’s movements can influence EDA; hence, this impact must be adjusted by measuring movements 
using an embedded accelerometer. Data on human movement acceleration are also expected to support the assessment of different 
crowdedness levels. These data include various physical movement patterns (e.g., gait instability when avoiding other pedestrians) 
captured in crowded spaces. By conducting a user survey in the experiment, the analysis results of sensor data can be compared with 
the survey-based perception of pedestrians to improve the reliability of research results. 

With future works and further validation, the research outcome is expected to be used for the physiological sensing-based 
continuous measurement of the level of crowdedness at the alley level. Using this method, evaluating whether an existing walking 
path has an appropriate and effective width relative to pedestrian volume becomes possible. This may aid in modifying the walking 
environment and constructing a more walking-friendly pedestrian path in terms of effective width. Supplementing the research results 
with data obtained using various instruments, such as accelerometers and global positioning system sensors, is necessary to measure 
data more accurately. This is because EDA represents activities of the sympathetic nervous system that can be affected by several other 
factors, such as emotional arousal, cognitive workloads, and intensive movement [12]. In a future study, the authors intend to 
investigate the feasibility of using integrated EDA and acceleration signals. By capturing the physiological and behavioral responses of 
pedestrians in a congested area, the accuracy of assessing the level of crowdedness can be improved. The results of such a study will 
benefit the improvement of walking environments. The extent of walking involved can be considered as a means of not only managing 
crowdedness in a congested area but also as an effective strategy for surveilling lonesome paths. 

6. Conclusions 

A method for assessing the level of crowdedness in pedestrian paths was explored in this study by measuring the physiological 
signals of individuals through wearable sensors. The hypothesis was that vehicles and people passing by affect the EDA of pedestrians 
while walking on a street. To verify the foregoing, real-world videos of walking were taken, and virtual simulation videos were 

Fig. 5. Personal space invasion and EDA signal features over time: (a) virtual reality video (low flow rate); (b) virtual reality video (high flow rate); 
(c) real-world video (low flow rate); and (d) real-world video (high flow rate). 
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produced based on these videos. As subjects watched these videos, their EDAs were measured by wearable devices. Then, the EDAs 
were processed to extract four important signal features, SCR, ISCR, PhasicMax, and tonic data. The Wilcoxon signed-rank test was 
performed to confirm whether significant EDA changes occurred according to the extent of crowdedness. Results were significant when 
factors such as noise, illuminance, screen movement, and other real-world factors were controlled in the virtual reality videos. This 
study demonstrated that EDA can be one of the essential features in discriminating the level of crowdedness; however, relying solely on 
EDA to accurately measure crowdedness presented challenges. The main contribution of this study is identifying the potential and 
limitations of using EDA to understand human responses to crowdedness in pedestrian paths. In future research, the authors intend to 
integrate EDA and acceleration signals to enhance the feasibility of sensor-based assessment of crowdedness by capturing both 
physiological and behavioral responses of pedestrians. The research results are anticipated to aid in assessing the extent of walking 
involved in various narrow areas that may be CCTV blind spots. Such assessment can support constructing a more walking-friendly 
pedestrian path with effective width throughout a city. 
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https://doi.org/10.1016/j.sbspro.2014.12.124. 
[20] N. Hidayat, K. Choocharukul, K. Kishi, Pedestrian level of service model incorporating pedestrian perception for sidewalk with vendor activities, in: Proceedings 

of the Eastern Asia Society for Transportation Studies, vol. 8, Eastern Asia Society for Transportation Studies, 2011, https://doi.org/10.11175/ 
eastpro.2011.0.197.0. The 9th International Conference of Eastern Asia Society for Transportation Studies, 2011. 

[21] P. Christopoulou, M. Pitsiava-Latinopoulou, Development of a model for the estimation of pedestrian level of service in Greek urban areas, Procedia-Social and 
Behavioral Sciences 48 (2012) 1691–1701, https://doi.org/10.1016/j.sbspro.2012.06.1144. 

[22] B.D. Daniel, S.N.M. Nor, M.M. Rohani, J. Prasetijo, M.Y. Aman, K. Ambak, Pedestrian footpath level of service (FOOT-LOS) model for Johor Bahru, in: MATEC 
Web of Conferences, EDP Sciences, 2016, https://doi.org/10.1051/matecconf/20164703006. 

[23] F. Fonseca, G. Papageorgiou, S. Tondelli, P. Ribeiro, E. Conticelli, M. Jabbari, R. Ramos, Perceived walkability and respective urban determinants: insights from 
Bologna and Porto, Sustainability 14 (15) (2022) 9089, https://doi.org/10.3390/su14159089. 

[24] W. Gao, Y. Qian, H. Chen, Z. Zhong, M. Zhou, F. Aminpour, Assessment of sidewalk walkability: integrating objective and subjective measures of identical 
context-based sidewalk features, Sustain. Cities Soc. 87 (2022) 104142, https://doi.org/10.1016/j.scs.2022.104142. 

[25] S. Lee, M. Han, K. Rhee, B. Bae, Identification of factors affecting pedestrian satisfaction toward land use and street type, Sustainability 13 (19) (2021) 10725, 
https://doi.org/10.3390/su131910725. 

[26] L. Eboli, C. Forciniti, G. Mazzulla, M.G. Bellizzi, Establishing performance criteria for evaluating pedestrian environments, Sustainability 15 (4) (2023) 3523, 
https://doi.org/10.3390/su15043523. 

[27] C. Forciniti, L. Eboli, What makes a pedestrian path pleasant? Analysis of young pedestrians’ perceptions, Urban Science 7 (2) (2023) 44. 
[28] T. Ahmed, M. Moeinaddini, M. Almoshaogeh, A. Jamal, I. Nawaz, F. Alharbi, A new pedestrian crossing level of service (PCLOS) method for promoting safe 

pedestrian crossing in urban areas, Int. J. Environ. Res. Publ. Health 18 (16) (2021) 8813, https://doi.org/10.3390/ijerph18168813. 
[29] T. Campisi, G. Tesoriere, A. Skoufas, D. Zeglis, C. Andronis, S. Basbas, Perceived pedestrian level of service: the case of Thessaloniki, Greece, Transport. Res. 

Procedia 60 (2022) 124–131, https://doi.org/10.1016/j.trpro.2021.12.017. 
[30] A. Rodriguez-Valencia, G.A. Barrero, H.A. Ortiz-Ramirez, J.A. Vallejo-Borda, Power of user perception on pedestrian quality of service, Transport. Res. Rec. 

2674 (5) (2020) 250–258, https://doi.org/10.1177/0361198120914611. 
[31] H.-C. Kwak, J.Y. Song, J.K. Eom, K.T. Kim, A study on factors influencing floating population using mobile phone data in urban area, Journal of The Korean 

Society For Urban Railway 6 (4) (2018) 373–381, https://doi.org/10.24284/JKOSUR.2018.12.6.4.373. 
[32] J. Hou, E. Zhang, Y. Long, Measuring pedestrian flows in public spaces: inferring walking for transport and recreation using Wi-Fi probes, Build. Environ. 230 

(2023) 109999, https://doi.org/10.1016/j.buildenv.2023.109999. 
[33] L. Chen, Y. Lu, Q. Sheng, Y. Ye, R. Wang, Y. Liu, Estimating pedestrian volume using Street View images: a large-scale validation test, Comput. Environ. Urban 

Syst. 81 (2020) 101481, https://doi.org/10.1016/j.compenvurbsys.2020.101481. 
[34] J. Kim, D. Shin, J. Kim, C. Kwon, H. Byun, Optical flow based vehicle counting and speed estimation in CCTV videos, Journal of Broadcast Engineering 22 (4) 

(2017) 448–461, https://doi.org/10.5909/JBE.2017.22.4.448. 
[35] E.T. Hall, The Hidden Dimension (Anchor Books a Doubleday Anchor Book) by, Anchor, 1966. https://www.academia.edu/43785083/The_Hidden_Dimension_ 

Edward_Hall. 
[36] R.D. Middlemist, E.S. Knowles, C.F. Matter, Personal space invasions in the lavatory: suggestive evidence for arousal, J. Pers. Soc. Psychol. 33 (5) (1976) 541, 

https://doi.org/10.1037/0022-3514.33.5.541. 
[37] J. Troko, P. Myles, J. Gibson, A. Hashim, J. Enstone, S. Kingdon, C. Packham, S. Amin, A. Hayward, J.N. Van-Tam, Is public transport a risk factor for acute 

respiratory infection? BMC Infect. Dis. 11 (1) (2011) 1–6, https://doi.org/10.1186/1471-2334-11-16. 
[38] R.C. Newman, D. Pollack, Proxemics in deviant adolescents, J. Consult. Clin. Psychol. 40 (1) (1973) 6, https://doi.org/10.1037/h0033961. 
[39] L.A. Hayduk, The shape of personal space: an experimental investigation, Canadian Journal of Behavioural Science/Revue canadienne des sciences du 

comportement 13 (1) (1981) 87, https://doi.org/10.1037/h0081114. 
[40] L.A. Hayduk, S. Mainprize, Personal space of the blind, Soc. Psychol. Q. (1980) 216–223, https://doi.org/10.2307/3033624. 
[41] M. Costa, Interpersonal distances in group walking, J. Nonverbal Behav. 34 (2010) 15–26, https://doi.org/10.1007/s10919-009-0077-y. 
[42] R.J. Smith, E.S. Knowles, Attributional consequences of personal space invasions, Pers. Soc. Psychol. Bull. 4 (3) (1978) 429–433, https://doi.org/10.1177/ 

014616727800400314. 
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