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A B S T R A C T   

Neurodegenerative diseases (ND) are heterogeneous disorders of the central nervous system that share a chronic 
and selective process of neuronal cell death. A computational approach to investigate shared genetic and specific 
loci was applied to 5 different ND: Amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Multiple sclerosis (MS), and Lewy body dementia (LBD). The datasets were analyzed separately, 
and then we compared the obtained results. For this purpose, we applied a genetic correlation analysis to 
genome-wide association datasets and revealed different genetic correlations with several human traits and 
diseases. In addition, a clumping analysis was carried out to identify SNPs genetically associated with each 
disease. We found 27 SNPs in AD, 6 SNPs in ALS, 10 SNPs in PD, 17 SNPs in MS, and 3 SNPs in LBD. Most of them 
are located in non-coding regions, with the exception of 5 SNPs on which a protein structure and stability 
prediction was performed to verify their impact on disease. Furthermore, an analysis of the differentially 
expressed miRNAs of the 5 examined pathologies was performed to reveal regulatory mechanisms that could 
involve genes associated with selected SNPs. In conclusion, the results obtained constitute an important step 
toward the discovery of diagnostic biomarkers and a better understanding of the diseases.   

1. Introduction 

Neurodegenerative diseases are chronic disorders affecting the cen-
tral nervous system, causing a progressive loss of neuronal function [1]. 
These disorders manifest with a wide range of symptoms and signs, 
including problems with memory, movement, coordination, speech, and 
other cognitive and motor functions. They often have a degenerative and 
progressive course, with no effective treatments currently available to 
reverse their condition [1]. The mechanisms underlying the onset of 
neurodegenerative diseases are not always fully understood, but involve 
a multiplicity of factors [2]. These diseases are often characterized by 
the accumulation of specific proteins and anatomical fragility and 
exhibit several fundamental processes associated with progressive 
neuronal dysfunction and cell death [3]. Among these are proteotoxic 
stress, alterations of the ubiquitin-proteasome, 

autophagosome/lysosome systems, oxidative stress and neuro-
inflammation [3]. 

The most common and studied neurodegenerative diseases include 
Amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkin-
son’s disease (PD), Multiple sclerosis (MS), and Lewy body dementia 
(LBD). Each of these diseases has unique clinical, neurobiological and 
pathological characteristics. 

The similarities in pathological and molecular mechanisms among 
neurodegenerative diseases are also present at the genetic level. Previ-
ous studies applied Genome-wide association studies (GWAS) on pairs of 
neurodegenerative diseases to investigate genetic correlations, or over-
lap [4,5]. However, the genetic variants responsible for these mecha-
nisms are not yet clear. 

ALS is a deadly neurodegenerative disease that affects approximately 
one person in 350, with an average age of onset between 50 and 60 
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years. Cases of juvenile ALS (before the age of 25) and early-onset ALS 
(before the age of 45) represent a small percentage (~1% and ~10%) of 
all patients [6]. Upper and lower motor neuron degeneration causes 
progressive paralysis, ultimately leading to respiratory failure within 
3–5 years of disease onset [6]. ALS is a complex and heterogeneous 
disorder, with patients exhibiting variable clinical features and pro-
gression patterns [6]. Currently, the diagnostic criteria and available 
therapies are limited, since the complexity of ALS requires a multidis-
ciplinary approach and the development of targeted therapies [6]. 

3 drugs were approved by the FDA. Riluzole, the first drug approved 
in 1995, acts mainly on glutamate presynaptic release reducing excito-
toxic neuronal cell death [7]. It can decrease the progression of ALS, 
extended the survival time of ALS patients. However, the drug cannot 
reduce the damage to motor neurons [8]. 

Edaravone, approved by FDA in 2015, regulates oxidative stress 
process. However, some clinical trials showed contradictory results in 
America and Europe. Recent studies reported inconsistent benefits on 
survival in Italy and Germany, compared to America [9–11]. 

This difference may be due to genetic components based on ethnic 
origins. 

AMX0035, third drug recently approved by FDA in 2022, acts on 
mitochondria and endoplasmic inhibitor decreasing neuronal death 
[12]. A phase 3 PHOENIX trial is occurring in the United States and 
Europe and it will offer more knowledge into safety and efficacy of 
AMX0035. NCT05021536 [13]. 

Recent multi-omics studies have highlighted genomic, tran-
scriptomic, proteomic and metabolomic alterations in neuronal cells 
involved in ALS. At the genomic level, genome-wide association studies 
(GWAS) have been conducted and have identified numerous causal and 
susceptibility genes in ALS [14,15]. These genes encode proteins 
involved in the cytoskeleton, mitochondrial metabolism, autophagy, 
proteostasis, and other cellular processes. In particular, the SOD1, 
EPHA4, KIFAP3 and UNC13A genes appear to influence disease pro-
gression and survival of ALS patients [14]. Furthermore, at the proteo-
mic level, it is widely known that the accumulation of misfolded 
cytoplasmic proteins in degenerating motor neurons represents a hall-
mark of the disease [15]. Among the main proteins involved in this 
process, there is TDP-43, which translocates into the cytoplasm under 
stress conditions or when it presents mutations. TDP-43 aggregates are 
present in most cases of ALS, including in patients with pathogenic 
variants of C9ORF72 [15]. This mutation in C9orf72 causes nuclear loss 
and cytoplasmic aggregation of TDP-43. A recent study demonstrated a 
correlation between C9orf72 and components of Ran-GTPase cycle [16], 
involved in the regulation and activation of nucleocytoplasmic transport 
[17]. In vitro studies found that TDP-43 can create amyloid like fibrils 
that are typical of patient brains [18–20]. These aggregations can bind 
native TDP-43 in healthy cells and spread to the central nervous system 
suggesting a potential mechanism for the propagation of pathology 
[18–20]. 

AD is a progressive, incurable neurodegenerative disease character-
ized by a gradual decline in cognition, memory and thinking. It is the 
most common form of dementia, accounting for about 60–70% of total 
cases, usually with an onset in adulthood over the age of 65 [21,22]. To 
date, the disease is estimated to affect more than 40 million people 
worldwide, with an exponential increase expected in the coming de-
cades [21,22]. Currently, the therapeutic approaches available for AD 
offer modest results in symptomatic improvement and a definitive 
curative therapy does not yet exist [23]. This limitation is due to a lack 
of comprehensive understanding of the cause and progression of AD 
[23]. Immunotherapy is considered the new frontier of the medicine and 
the most effective treatment of AD [24]. 

Monoclonal antibodies, aducanumab and lecanemab recently 
approved by FDA for the therapy of AD, are designed against Aβ plaques 
and oligomers [25]. 

Aducanumab was approved by FDA on 7 June 2021. However, post- 
approval studies will be completed in October 2023 as clinical trials 

have given controversial results [26]. 
Lecanemab was approved by FDA in January 2023. Given the 

adverse events associated with the therapy, longer trials are required to 
demonstrate the efficacy of the drug [27]. A study integrating tran-
scriptomic, proteomic and epigenomic analyses in AD using postmortem 
human brain samples, revealed high expression of transcription- and 
chromatin-related genes, including histone acetyltransferase activity for 
H3K27ac and H3K9ac, and H3K122ac loss [28]. Interestingly, Gene 
Ontology analysis of genes targeted by H3K122ac revealed pathways 
associated with purine/guanosine triphosphate catabolic processes. In 
addition, the authors suggested a positive circuit in AD where H3K9ac 
gain at CREBBP grows CBP expression, thus activating histone acetyla-
tion in the epigenome [28]. 

Chung et al. investigated genomics and transcriptomics data and 
found a correlation between AD and SNPs in MGMT (O6-methyl-
guanine-DNA methyltransferase), which is implicated in DNA damage 
repair process amongst among women lacking POE ε4 allele in sporadic 
AD [29]. A recent integrative multi-omics approach of genome-wide and 
transcriptomic studies identified several genes and genetic variants 
related to lipid metabolism [30]. In addition, the authors proposed a 
neuroprotective rôle of modulators of S1P metabolism in AD treatment 
[30]. 

PD is also a chronic and progressive neurodegenerative disease that 
affects the nervous system, in particular, it affects the nerve cells 
responsible for the production of dopamine in the brain. There is 
currently no specific cure for PD, but numerous studies have been con-
ducted over the years to discover new therapies. 

Among the last efficacy drugs approved by FDA in treating PD there 
are safinamide, istradefylline and pimavanserin [31]. Safinamide, 
approved in 2017 by FDA, is a derivative of benzylamino and MAO-B 
inhibitor, with different modes of action. [32] Istradefylline, is the 
first non-dopaminergic drug approved by FDA (2019), and acts on 
adenosine A2A receptor antagonist. [33]. Pimavanserin, approved in 
2016 by FDA is an antagonist of 5-hydroxytryptamine (HT)2 A receptor 
[34]. Numerous GWASs have been conducted over the years, exceeding 
24 analyzes since 2009, identifying a total of 78 associated loci [35]. A 
recent GWAS study used a fine-mapping approach to carefully examine 
74 of these loci. 2 specific SNPs were identified: rs7294619, located at 
the LRRK2 locus, which affects LRRK2 expression via a specific micro-
glial cell control element, and rs4771268, located at the MBNL2 locus, 
which affects a regulatory control of MBNL2 specifically in oligoden-
drocytes [36]. 

MS is a chronic disease involving the central nervous system and is 
characterized by inflammation, demyelination and neuronal degenera-
tion [37]. 

Like other neurodegenerative diseases, it is a multifactorial disease 
due to complex interactions of genetic, environmental, infectious, and 
possibly vascular factors. From a genetic point of view, although MS is 
not considered a hereditary disease, genetic variations that increase the 
risk of developing it have been identified and, the most consistent data is 
the association between the disease and the HLA-DR15 and HLA alleles 
-DQ6 [38]. From an environmental point of view, decreased exposure to 
sunlight was associated with an increased risk, probably due to the 
reduced production of vitamin D [39]. There is no definitive curative 
therapy for MS. However, there are treatment approaches that can help 
manage symptoms, slow disease progression and improve the quality of 
life of MS patients. These treatments include immunomodulatory drugs 
that aim to reduce inflammation in the central nervous system, physical 
and rehabilitation therapies aimed at maintaining mobility and pro-
moting general well-being. [40]. The newest drugs are Briumvi and 
Ponvory [41]. 

Briumvi, approved by FDA in 2022, is a glycoengineered anti-CD20 
monoclonal antibody. Given the importance of B cells in MS, it acts via 
their depletion. 

Ponvory, approved by FDA in 2021, is an iminothiazolidinone de-
rivative. It binds to S1P1 receptor promoting its degradation [42]. 
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A recent multi-omics approach combining methylation and gene 
expression identified more than 200 genetic regions that may influence 
susceptibility to MS. Notably, two independent genome segments 
(lincRNAs: RP11–326C3.13 and TNFSF14) were identified, that show 
significant associations with multiple genomic features across different 
levels of omics analyses [43]. 

LBD is a neurodegenerative disease that represents a form of de-
mentia with characteristics similar to AD, with an earlier onset and also 
related to PD. Patients with LBD have a wide range of cognitive, motor, 
and autonomic symptoms [44]. The main feature of the disease is the 
presence of abnormal accumulations of a protein called alpha-synuclein, 
known as Lewy bodies, within brain cells. These accumulations form in 
specific areas of the nervous system and brain, damaging neuronal cells. 
Because of symptomatic similarities to other forms of dementia, LBD is 
often misdiagnosed or underdiagnosed [45]. In addition, it has vari-
ability both between patients and over time within the same individual, 
making it a complex disease to treat. Available treatments may aim to 
alleviate specific symptoms but may aggravate others, further compli-
cating disease management [44]. 

To date, there are not drugs approved by FDA [46,47]. 
The aim of our study is to investigate separately 5 neurodegenerative 

diseases, including ALS, AD, PD, MS, and LBD using a computational 
approach. To our knowledge there are few works that use the same 
procedures for different neurological pathologies in a single study, 
making the results more comparable [48]. Specifically, the genetic 
correlations between the different diseases and phenotypes derived from 
the UK Biobank (UKBB), affecting the lifestyle and medical history of the 
participants, will be explored. Subsequently, a clumping analysis will be 
performed to identify independent loci, i.e., SNPs present in the genome 
that are genetically associated with the specific diseases under analysis. 
The relevant SNPs in the coding regions of the genes will be subjected to 
analysis to evaluate how they influence the structural stability of the 
proteins. Finally, we will perform an analysis to identify differentially 
expressed microRNAs (miRNAs) obtained from miRNA expression 

profiles of patients affected by the 5 diseases studied. We will evaluate 
their possible interactions with genes deriving from the initial datasets 
or directly with the analyzed SNPs. Through this approach, our study 
aims to better understand the genetic and molecular mechanisms un-
derlying neurodegenerative diseases. The results obtained could 
contribute to the discovery of diagnostic biomarkers, to the under-
standing of the pathogenic mechanisms of diseases and potentially open 
new perspectives for the development of targeted and personalized 
therapies. 

2. Material and methods 

2.1. Workflow 

Fig. 1 briefly shows the various steps of our study. We analyzed 
GWAS of 5 neurological diseases ALS, AD, PD, MS, and LBD. After a 
quality control step, we performed a genetic correlation analyses be-
tween the neurological diseases and human traits derived by UKBB in 
order to observe the phenotypes most correlated with the diseases. A 
clumping analysis was carried out to identify SNPs implicated in each 
neurological disease. The genes present in the SNPs identified for each 
disease were analyzed and their biological processes were studied by 
functional annotation. Structural stability predictions analysis was 
performed on the SNPs in the coding regions of the genes to evaluate 
how they influence the structural stability of the protein. In the last step, 
we collected miRNA expression profiles of the 5 neurological diseases 
and we identified differentially expressed miRNAs for each disease. We 
studied their possible interactions with SNPs and genes deriving from 
the previous steps. 

2.2. Data collection 

In this study we collected GWAS summary statistics and miRNA 
expression profiles from different public repositories. 

Fig. 1. The figure shows the summary scheme of this study. Starting from 5 datasets of genome-wide association study (GWAS) profiles of patients with neuro-
degenerative diseases: Amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple sclerosis (MS), and Lewy body dementia 
(LBD) the study was conducted using a multi-omics approach to analyze possible biomarkers and identify new or known drug targets. 

F. Maselli et al.                                                                                                                                                                                                                                  



Computational and Structural Biotechnology Journal 21 (2023) 5395–5407

5398

GWAS summary statistics of 5 different neurodegenerative diseases: 
ALS, MS and LBD datasets were downloaded from the GWAS catalog 
(Accessed on May 2022; https://www.ebi.ac.uk/gwas/docs/about); AD 
dataset from the GWAS Atlas, (Accessed on May 2022; https://atlas.ctgl 
ab.nl/documentation) and finally the PD dataset from the IEU Open-
Gwas project (Accessed on May 2022; https://gwas.mrcieu.ac.uk/about 
/). The 5 datasets are all derived from European cohorts and have par-
ticipants of both sexes. 

ALS dataset consists of 152,268 individuals, including 29,612 cases 
and 122,656 controls. Summary statistics of AD contain 71,880 cases 
and 383,378 control. PD dataset includes 33674 cases and 449056 
controls. MS cohorts is composed of 4888 cases and 10395. The number 
of cases was 2591 and 4027 for LBD. 

GWAS phenotype samples were collected from the UK Biobank 
(UKBB), with a wide range of phenotypic information. The phenotypic 
data was not from the same patients of the GWAS with the neurode-
generative diseases. UKBB recruited approximately 500,000 partici-
pants aged 40–69 years, of both sexes, and from the United Kingdom, 
who provided informed consent and answered questions about their 
health, lifestyle, and sociodemographic aspects. All the summary sta-
tistics used in this study are downloaded from the United Kingdom 
Biobank database (Accessed on May 2022; http://www.nealelab.is/u 
k-biobank). The number of partecipants for each phenotype can be 
visualized in: Catalogues (ox.ac.uk). 

Four different datasets of miRNAs related to the 5 neurodegenerative 
diseases under study were downloaded from Gene Expression Omnibus 
(Accessed on May 2022; https://www.ncbi.nlm.nih.gov/geo/). The 
datasets are GSE120584 (AD and LBD), GSE52917 (ALS), GSE16658 
(PD) and GSE17846 (MS). 

2.3. Quality control 

The goal of this step is to eliminate low-quality data that may 
compromise the results of the analysis. Quality Control includes the 
removal of samples with low DNA quality, removal of markers with low 
genotyping rates, correction of population structure, and correction of 
any confounding effects. This minimizes false positives and false nega-
tives, improving the accuracy of the analysis and the reliability of the 
results [49]. 

In particular, we considered for further analyses only phenotypes 
with SNP-heritability z > 4 for neurological diseases and UKB pheno-
types. In addition, SNPs with a minor allele frequency (MAF) < 1% were 
removed. 

2.4. Genetic correlation 

To estimate the genetic correlation (GC) between two traits from 
GWAS summary statistics, we used the GitHub package LDSC (Accessed 
on May 2022; LD Score: https://github.com/bulik/ldsc). To perform 
LDSC analysis, it is necessary to use genetic data from a large number of 
individuals representative of a given population [50,51]. We used as 
representative samples to calculate genetic linkage disequilibrium and 
apply LDSR analysis accurately, data of individuals of European ancestry 
from the 1000 Genomes Project [50,51]. We tested genetic correlations 
between neurological diseases and UKBB traits with SNP-based herita-
bility z score > 4 [50,51]. We considered statistically significant genetic 
correlations as those obtaining a 5% False Discovery Rate (FDR) 
correction (FDR Q value < 0.05). 

Two different correlations were calculated: i) among the five 
neurodegenerative diseases, ii) between each neurodegenerative disease 
and the phenotypes from the UKBB. 

2.5. Clumping procedure 

Clumping analysis was conducted for the 5 neurodegenerative dis-
ease datasets after quality control. Clumping analysis is able to select 

relevant SNPs for each neurological disease. The analysis was conducted 
using PLINK 1.9 [52]. We used the datasets individually as each dataset 
can be influenced by batch effects, namely experimental and data pro-
cessing conditions can hide the biological effect of interest [53]. 

From clumping analysis, we obtained the SNPs independently asso-
ciated with the neurodegenerative disease phenotypes. We considered 
only SNPs with a p-value < 5 × 10–8 and filtered out the others. In 
GWAS studies, a significance threshold of 5 × 10 − 8 is commonly used 
as a reference value of a genome wide association. This threshold is 
based on a Bonferroni correction for 1 million independent tests, which 
is a standard approximation for the number of independent SNPs in the 
human genome [54,55]. 

EnsDb.Hsapiens.v79 and biomaRt were used to obtain the genes 
associated with each SNP. Once the genes containing SNPs were iden-
tified, DAVID functional annotation analyses were conducted (Accessed 
on 22 September 2023; https://david.ncifcrf.gov/summary.jsp). 

2.6. Protein structure analysis 

Starting from the SNPs obtained from the previous analysis, we 
focused on SNPs found in coding regions. Protein stability studies and 
analyzes were conducted following the MAVISp (Multi-layered Assess-
ment of VarIants by Structure for Proteins) protocol [56]. MAVISp can 
be applied to single three-dimensional (3D) structures of proteins and 
their complexes (simple mode) or to an ensemble of conformations 
(ensemble mode) [56]. 

The framework is designed in a modular way so that we can apply to 
our studies all the modules or only a selection of them and each module 
relies on Python scripts, often supported by specific virtual environ-
ments [56]. For our case studies, we used the simple mode, since we 
focused on the static structure of each protein under investigation. The 
first step is collecting the data to analyze. Variants and information for 
each protein were retrieved using ClinVarMiner and Cancermuts [57, 
58]. 

2.6.1. Structure Selection 
We used the Structure Selection module of MAVISp to retrieve 

models from the AlphaFold2 database to use as initial structure for 
calculations of the effects of the variants on the protein structural sta-
bility [56] . Its primary objective is to address the challenge of predicting 
three-dimensional protein structures from protein sequences. The 
resulting protein predictions obtained are accompanied by a confidence 
metric. This confidence metric is applied for each protein residue and is 
called the predicted local distance difference test (pLDDT). The pLDDT is 
an indicator that assesses the level of consistency of the prediction with 
respect to an experimental context, based on the local distance differ-
ence test [59]. 

pLDDT = Cα(lDDT − Cα)

The model confidence is expressed on a scale ranging from 0 to 100. 
Confidence levels are categorized as follows: Very High (pLDDT > 90), 
Confident (90 > pLDDT > 70), Low (70 > pLDDT > 50), and Very Low 
(pLDDT < 50) (Accessed on May 2022; https://alphafold.ebi.ac.uk/). 

For our analysis, we used a trimming strategy to obtain the best 
structural coverage and minimize the number of low confidence regions 
by going to trim and not considering protein residues with a confidence 
level less than 70 (pLDDT > 70). 

2.6.2. Stability energy calculation 
Following the trimming of proteins according to the predictive 

confidence level provided by AlphaFold, the next step involves calcu-
lating the change in folding free energy (ΔΔG), which is used to describe 
the thermodynamic stability of a protein or molecule during the process 
of folding or conformational change between the mutated variants and 
the wild-type protein. For this purpose, two distinct software programs, 
MutateX and RosettaDDGpredictions, were employed [60,61]. Missense 
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mutations, which involve substitutions of amino acids, can significantly 
impact protein stability. Understanding the molecular effects of protein 
mutations is crucial for comprehending biological processes and facili-
tating interventions such as structure-based drug development or tar-
geted mutagenesis [60,61]. 

The MAVISp protocol employs a consensus approach that combines 
the outcomes from both methods. Mutations exhibiting a stability 
change greater than 3 kcal/mol are considered destabilizing at the 
cellular level. Variants with ΔΔG values ranging from − 2 kcal/mol to 
2 kcal/mol are deemed neutral, while mutations with ΔΔG values below 
− 3 kcal/mol are classified as stabilizing according to both methods 
[62]. After conducting the analyses with MutateX and RosettaDDGpre-
diction, the results obtained from both softwares were compared [60, 
61]. 

2.7. miRNA analysis 

Four miRNA datasets of the 5 neurodegenerative diseases were 
downloaded from Gene Expression Omnibus (GEO): GSE52917 (ALS), 
GSE120584 (AD and LBD), GSE16658 (PD) and GSE17846 (MS). 

In the initial step, we selected the GEO datasets and specified the 
miRNA groups to be compared for each dataset, representing control 
and pathological cases. For the analysis, we utilized the force normali-
zation option available in the Options tab of GEO2R, which applies 
quantile normalization to the expression data, ensuring that all selected 
samples exhibit an identical value distribution (Accessed on May 2022; 
https://www.ncbi.nlm.nih.gov/geo/geo2r/). GEO2R employs the 
Limma (linear models for microarray data) package to perform the 
statistical analysis and calculate fold changes and p-values for each 
gene. By utilizing this tool, we were able to sort and filter the results 
based on statistical significance, thereby identifying miRNAs that were 
significantly upregulated or downregulated between control and path-
ological cases. The statistical significance of the results was determined 
considering FDR < 0.05 for all datasets. A log fold change (logFC) 
threshold of 1 and − 1 was used to identify upregulated and down- 
regulated miRNAs. For the LBD dataset we used |logFC| > 0.5 as no 
differentially expressed miRNAs were obtained with the logFC > 1. 

After identifying the differentially expressed miRNAs for each of the 
five neurodegenerative diseases, we used the miRSystem to conduct 
further analyses [44]. This database integrates seven well-known 
miRNA target gene prediction programs, including DIANA, miRanda, 
miRBridge, PicTar, PITA, rna22, and TargetScan [63]. Results are ob-
tained using prediction algorithms that assess the complementarity be-
tween the miRNA and the binding site within the target gene. To ensure 
greater confidence in predicted target genes, we only included those that 
had been validated and had a minimum count of 3. This threshold was 
established to provide a good confidence margin in predictive analysis. 
Next, we perofmed an intersection between the target genes identified 
for each miRNA and the genes obtained from the clumping analysis and 
by this examination of the overlap between the two sets of genes, we 
identified the genes common to the two analyses. 

3. Results 

3.1. Quality control 

We downloaded from the GWAS Catalog, GWAS Atlas and IEU 
OpenGwas project databases the summary statistics of the five neuro-
degenerative diseases. All five datasets are found to have a Z-score 
greater than 4. Table 1 shows the number of SNPs for each neurode-
generative disease before and after quality control. Regarding UKB, 957 
traits passed quality control. 

3.2. Genetic correlation 

Genetic correlation was performed using LD score method. LD score 

of a SNP is the sum of LD r2 calculated with all other SNPs [64]. 
First, we calculated genetic correlations between neurodegenerative 

diseases. The obtained results that achieved an FDR < 0.05 are shown in  
Table 2. 

Only some diseases were correlated to each other. It can be noted 
that MS has no significant genetic correlation with the other diseases. 

In addition, we calculated the genetic correlation for each disease 
with 957 phenotypes downloaded from the UKBB, that passed quality 
control. These analyses are useful to understand whether diseases are 
influenced by a range of habits and lifestyle characteristics. We found: 
46 significant phenotypes correlate with ALS, 65 with AD, 48 with PD, 
and 46 with MS. In contrast, no significant genetic correlations between 
phenotypes and LBD were found. Fig. 2 shows Venn diagram between 
phenotypes and neurological diseases. 

By examining the Venn diagram, it is evident that there are no 
common phenotypes with significant correlations among all neurode-
generative diseases. However, there are 4 common phenotypes among 
ALS, AD and PD, and 5 common phenotypes among AD, MS and PD. 

Nine phenotypes are correlataed with ALS and AD. Among them the 
most relevant are: "Dried fruit intake" "Duration screen displayed", "FI3 
word interpolation", "Fluid intelligence score", "Qualifications", "Time 
spent using computer" and "Time spent watching television (TV)". 

Five phenotypes exhibit correlations in both ALS and PD. Among 
them: "Age started wearing glasses or contact lenses" "Dried fruit intake" 
"Qualifications" and "Time spent watching television (TV)". 

There are no phenotypes that show correlations in both ALS and MS. 
Fifteen phenotypes demonstrate correlations in both AD and PD. The 
most relevant to the study are: namely "Age at first live birth", "Age 
completed full-time education", "Age first had sexual intercourse", 
"Attendance or disability or mobility allowance", "Average total house-
hold income before tax", "Body mass index (BMI)", "Cereal type Muesli", 
"Dried fruit intake", "Leg fat", "Qualifications", and "Smoking status 
current". Interesting to note the correlation between BMI and leg fat. Ten 
phenotypes show correlations in both AD and MS. Among them: "Body 
mass index (BMI)", "Frequency of tiredness or lethargy in the last 2 
weeks", "Leg fat", "Long-standing illness disability or infirmity", "Other 
serious medical condition or disability diagnosed by doctor", and "Tak-
ing other prescription medications". 

Lastly, 16 phenotypes exhibit correlations in both PD and MS. Spe-
cifically, to note are: "Arm fat", "Body mass index (BMI)" "C reactive 
protein (quantile)", "Leg fat", "Mouth or teeth dental problems", "Waist 

Table 1 
Total number of SNPs before and after quality control for each neurodegener-
ative disease. Amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Multiple sclerosis (MS), and Lewy body dementia 
(LBD).  

Diseases Pre-quality control Post-quality control 

ALS  10461755  7054478 
AD  13367299  9736043 
PD  17891936  8571928 
MS  7968107  7915405 
LBD  7843595  7513830  

Table 2 
Genetic correlation with False Discovery Rate (FDR) and standard deviation (sd) 
among neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS), Alz-
heimer’s disease (AD), Parkinson’s disease (PD), Multiple sclerosis (MS), and 
Lewy body dementia (LBD).  

Diseases Genetic correlation (sd) FDR 

ALS Vs AD  -0.289 (0.103)  0.025 
ALS Vs LBD  0.440 (0.194)  0.047 
ALS Vs PD  0.156 (0.064)  0.037 
PD Vs AD  -0.208 (0.078)  0.025 
PD Vs LBD  0.612 (0.176)  0.005  
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circumference", "Weight" and "Whole body fat mass". Many of these 
phenotypes appear to involve characteristics related to body mass. mos. 

Table Supplementary 1 shows the main phenotypes associated with 
the neurological diseases. 

3.3. Gene selection 

Through clump analysis, we successfully identified SNPs that showed 
independent associations with one or more of the five neurodegenera-
tive diseases studied. Then, genes containing the statistically significant 
SNPs obtained were identified. 

We identified 27 genes in AD, 6 genes in ALS, 10 genes in PD, 3 genes 
in LBD, and 18 genes in MS (Table Supplementary 2). There are no 
independently associated SNP-carrying genes shared among all five 
diseases (Fig. 3). 

Clump’s analysis showed that only 5 SNPs were located within the 
coding regions of specific genes (KIF5A, CFAP410, PILRA, CYP2R1, and 
TMEM175), while most of the identified SNPs were located in the 
intronic regions or regions following (downstream) or preceding (up-
stream) the coding sequences of the genes. Although these regions do 
not directly encode the protein sequence, the presence of a SNP in these 
areas can be of critical importance. This is because these regions may 
contain regulatory elements that play a crucial role in protein synthesis. 
Therefore, variations present in these noncoding regions can also in-
fluence gene expression and have significant functional implications. 

3.4. Functional annotation 

Knowing the functional annotation of genes containing the SNPs 

under analysis can offer greater biological insights and help generate 
directly testable hypotheses. We reported the results in the 
Table Supplementary 3. 

Regarding ALS-related genes, among others there are biological 
processes focused on the antiport (CLCN3, SLC9A8) and differentiation 
(SLC9A8 and UNC13A). 

Focusing on the genes related to AD, one of the biological processes 
obtained is the host-virus interaction (CD2AP, BIN1, CR1, PILRA). The 
identified genes have also significant roles in the endocytosis (BIN1, 
PICALM, and SORL1) and complement pathway (CLU and CR1). 

Most of the biological processes associated with PD are involved in 
apoptosis (BAG3) and endocytosis (HIP1R). 

The biological processes involved in MS are implicated among others 
in transcription (ERG, L3MBTL3, MAZ, AND GFI1) and immunity 
(CD86, IL2RA and HLA-DRB1). 

Finally, regarding the biological processes of LBD identified by our 
analysis it is possible to observe a significant relevance in the cholesterol 
metabolism (APOE), and differentiation (BIN1). 

3.5. Protein structure analysis 

Although most GWAS identify SNPs associated with diseases in non- 
coding regions, those SNPs in protein-coding regions can influence the 
protein sequence [65,66]. We conducted an analysis to reveal whether 
the presence of SNP associated with neurological diseases, which causes 
a missense mutation, can cause conformational changes in the corre-
sponding protein structure. 

3.5.1. Protein description 
The proteins analyzed are: KIF5A, CFAP410, PILRA, CYP2R1, and 

TMEM175 (Table 3). 
The Uniprot code for the KIF5A protein is Q12840. A SNP identified 

in our analysis is SNP rs113247976, which leads to P986L and P986R 
mutations. This SNP is considered one of the potential causes of ALS 
[67]. The Uniprot code for the CFAP410 protein is O43822. SNP iden-
tified in the above analysis is rs113247976, which leads to the V58L 
mutation and is considered one of the possible causes of ALS. The Uni-
prot code for the PILRalpha protein is Q9UKJ1. SNP identified is SNP 
rs1859788, which leads to the R78G mutation and is considered one of 
the potential causes of AD. The Uniprot code for the CYP2R1 protein is 
Q6VVX0. SNP identified is SNP rs202122669, which leads to the P36L 
mutation and is associated with PD. The Uniprot code for the TMEM175 
protein is Q9BSA9. SNP identified is SNP rs34311866, resulting in the 
M393T mutation, and it is considered one of the possible causes of PD. 

We analyzed 4 out of 5 proteins through the simple mode steps of the 
MAVISp protocol [56]. As the fifth protein (i.e., TMEM175), is a trans-
membrane protein and all of its domains are located in an intermem-
brane zone, the pipeline for its analysis has yet to be optimized to deal 
with transmembrane proteins and no results are available at the 
moment. 

Fig. 2. The number of common and non-common phenotypes present in the 
statistically significant correlations among the 4 diseases. 

Fig. 3. Upset plot shows the intersection of genes found in Lewy body dementia 
(LBD), Amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Multiple 
sclerosis (MS) and Alzheimer’s disease (AD). 

Table 3 
SNPs of the 5 neurodegenerative disease datasets present in coding regions. In 
the table for each SNP are defined: the associated genes, the associated neuro-
degenerative disease, the Uniprot name of the protein encoded by the associated 
gene and the missense mutation caused by the SNP (wild type amino acid, po-
sition, mutated amino acid).  

SNPs (rsID) Associated 
gene 

Associated Illnesses Uniprot 
Entry 

Mutations 

rs113247976 KIF5A Amyotrophic lateral 
sclerosis 

Q12840 P986L 
P986R 

rs75087725 CFAP410 Amyotrophic lateral 
sclerosis 

O43822 V58L 

rs1859788 PILRA Alzheimer’s disease Q9UKJ1 R78G 
rs202122669 CYP2R1 Parkinson’s disease Q6VVX0 P36L 
rs34311866 TMEM175 Parkinson’s disease Q9BSA9 M393T  
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3.5.2. Retrieval of variants and information 
Using the ClinVarMiner and CancerMuts tools, we conducted an 

analysis to retrieve variants and information related to each protein. 
Specifically, the variants of interest under study found on ClinVarMiner 
were identified, which included KIF5A and CYP2R1 mutations. How-
ever, regarding PILRA and CFAP410, the mutations of interest were not 
available or investigated on ClinVarMiner, so they were manually 
entered. 

Then, using CancerMuts, we downloaded and retrieved all relevant 
information, including REVEL pathogenicity scores and other annota-
tions regarding the protein context in which these mutations are found. 

Regarding KIF5A (P986L and P986R), the acquired data reveal the 
presence of the mutation within the amino acid region from 986 to 990 
aa, which harbors an interaction motif with USP7 (Ubiquitin Specific 
Protease 7), which has been identified and documented in the ELM 
database. In addition, the data indicate that the region affected by the 
mutation exhibits features of the disorder. 

In the case of CYP2R1 (P36L), the region that is affected by the 
mutation is characterized as a region of conformational disorder. In 
addition, by analyzing the information collected, it was found that at the 
location of the mutation, specifically in amino acid 36, a cleavage site is 
present. Using the ELM database, an anchor motif for Mitogen-Activated 
Protein Kinase (MAPK) was present at the mutation location. Also, be-
tween amino acids 34 and 36, there is a retention or recovery signal 
containing two arginine residues in the protein, which is involved in 
protein retention or recovery within specific cellular compartments. 

Information was obtained regarding the mutation identified in 
PILRA (R78G) indicating its location within a structurally ordered re-
gion. Lastly, for CFAP410 (V58L), no further information was obtained 
during the analysis. 

3.5.3. Structure Selection 
Protein structures were identified using the AlphaFold2 model. The 

protein predictions obtained are accompanied by a calculated confi-
dence metric applied to each protein residue. The stability of the protein 
structure is assessed by the confidence level represented by the pLDDT 
value. Each confidence level is associated with a specific color, as 
highlighted in the figures of the four proteins under study (Figs. 4–7). 
Regions colored blue indicate a high confidence level (pLDDT > 90), 
while regions colored blue indicate good confidence (90 > pLDDT >
70). Regions colored yellow indicate low confidence (70 > pLDDT >
50), while regions colored orange indicate very low confidence (pLDDT 
< 50). In addition, the amino acid of interest that is subject to mutation 
was highlighted with a red-colored ball. Each graphic representation 
below illustrates the three-dimensional model of the proteins under 
study, which is essential for determining the regions to be eliminated in 
order to retain only the portion of the protein structure with a high 
degree of reliability for subsequent analysis. 

As evident from the figure, the mutated amino acid in KIF5A, spe-
cifically proline 986, is located in a region characterized by a low 

structural confidence level. For the purpose of subsequent analysis, this 
low-confidence region would be removed, thus disrupting the study of 
the mutation in question and preventing further detailed investigation. 

Regarding the CFAP410 protein, the mutation of interest is located at 
the level of the amino acid Valine at position 58. The image clearly 
shows that the amino acid is located in a highly reliable and high- 
confidence region. Accordingly, the protein was trimmed taking into 

Fig. 4. This figure represents the structural prediction of the KIF5A protein, 
where the different colors present correspond to the associated confidence 
level. The red sphere represents the amino acid Proline at position 986 involved 
in the mutation (P986L/P986R). 

Fig. 5. This figure represents the structural prediction of the CFAP410 protein, 
where the different colors present correspond to the associated confidence 
level. The red sphere represents the amino acid Valine at position 58 involved 
in the mutation (V58L). 

Fig. 6. This figure represents the structural prediction of the PILRA protein, 
where the different colors present correspond to the associated confidence 
level. The red sphere represents the amino acid Arginine at position 78 involved 
in the mutation (R78G). 

Fig. 7. This figure represents the structural prediction of the CYP2R1 protein, 
where the different colors present correspond to the associated confidence 
level. The red sphere represents the amino acid Proline at position 36 involved 
in the mutation (P36L). 
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account only the portion between amino acid 1 and amino acid 147 for 
subsequent analysis. 

In PILRA, the mutation of interest is located at the level of the amino 
acid Arginine at position 78. Again, as in the previous case, the amino 
acid is located in a highly reliable region with a high confidence level. 
We took into account for subsequent analysis the portion between amino 
acid 32 and amino acid 153. 

In relation to the last protein under study, CYP2R1, the mutated 
amino acid is proline at position 36. It is located within a region char-
acterized by high reliability. In this circumstance, it was decided not to 
perform truncation of the protein, as this approach would not result in a 
significant loss of precision and would allow complete analysis of the 
protein. 

3.5.4. Stability Energy Calculation 
After selecting the protein structure cut, we proceeded to calculate 

the change of folding free energy (ΔΔG) by comparing the mutated 
variants with the wild-type protein. To perform this calculation, we used 
both MutateX and RosettaDDGpredictions software. Next, we focused on 
mutations caused by the SNPs in the three different proteins with high- 
confidence predictive structure, which are CFAP410, PILRA and 
CYP2R1. 

Focusing on the analysis of the results obtained through MutateX, we 
initially generated, using the ddg2density tool, a density plot repre-
senting all the calculated differences in ΔΔG. This density plot is the first 
step in the analysis, as it allows us to determine the scale of the ΔΔG 
values used in creating the heatmap. By plotting the density plot for all 
three proteins (Fig. 8), we observed that the majority of the ΔΔG values 

vary approximately from about − 3 to about 10. 
Next, we used the ddg2heatmap tool to generate a heatmap of the 

calculated ΔΔG mutation values. The wild-type amino acids are repre-
sented on the y-axis and the mutated amino acids on the x-axis. We used 
as value bounds those previously obtained from the density map, and 
values outside this range were fitted to the bounds of the range itself. 
These out-of-range values should simply be interpreted as "very desta-
bilizing", with a reddish colour, or as "very stabilizing", with a bluish 
colour. The heatmap colors range on a blue to red color scale with green, 
yellow and orange in the central area representing different energy 
stability scores. Below we report the heatmaps of the proteins only in the 
area of the respective amino acids of interest. A cut-off value of ΔΔG 
> 3 kcal/mol was considered for destabilizing mutations. 

As regards the CFAP410 protein, in the heatmap (Fig. 9), it is high-
lighted that the substitution of the amino acid Valine in position 58 with 
Leucine does not produce significant variations in the free energy ac-
cording to MutateX prediction. This mutation is represented by the blue 
color in the heat map and results in a highly stabilizing mutation. 
Indeed, the value of ΔΔG for this mutation is − 1.70 kcal/mol. This 
result shows that the mutation of valine to leucine does not impact the 
structural stability of the protein, as there is no significant change in 
stability. In the context of this mutation, the two amino acids are 
essentially identical as they belong to the apolar amino acid category 
and have very similar side chains. Consequently, it is reasonable to 
expect that this mutation would not result in significant changes in the 
structure or stability of the protein. 

Focusing on the PILRA protein, within the thermographic represen-
tation (Fig. 10), it can be seen that the replacement of the amino acid 

Fig. 8. Plots a, b and c represent the calculated density and individual energy values identified under the x-axis. Graph a represents the density relative to CFAP410, 
graph b represents the density relative to PILRA, and graph c represents the density relative to CYP2R1. 
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Arginine at position 78 with Glycine does not induce significant changes 
in free energy. It should be considered that however that in MutateX 
analyses mutations at Glycine are not reliable because the backbone is 
not relaxed. This mutation is also represented by blue color in the heat 
map, indicating a highly stabilizing mutation. The value of ΔΔG for this 
mutation is 0.10 kcal/mol. It is of relevance to point out that glycine 
represents the smallest amino acid from a structural point of view. This 
implies that its presence at position 78, replacing arginine, would hardly 
cause spatial occupancy that could result in destabilizing changes. This 
result suggests that the mutation of arginine to glycine does not affect 
the structural stability of the protein, as no significant alterations in 
stability are found. 

Finally, focusing on the CYP2R1 protein, it is evident from the heat 
map (Fig. 11) that also in this situation the alteration of the mutation, in 
this case, proline in position 36 with leucine, does not determine a 

destabilization of the free energy. This, like the previous one, is also a 
highly sensitive case as MutateX struggles even with the amino acid 
proline as they are not reliable since the backbone is not relaxed. Again, 
the color associated with this mutation corresponds to a shade of blue, 
indicating a highly stabilizing effect. In fact, the ΔΔG value for this 
mutation is 0.83 kcal/mol, slightly higher than the mutations previously 
analyzed in the other proteins, but still confirming a very stabilizing 
mutation. 

Analyzing the results obtained through RosettaDDGpredictions, a 
remarkable similarity with the values calculated through MutateX is 
observed. In the case of the V58L mutation in CFAP410, the value of 
ΔΔG obtained is − 1.95 kcal/mol, differing only by 0.25 from the result 
obtained by MutateX. For the R78G mutation in PILRA, the value of ΔG 
obtained is − 0.45 kcal/mol, differing by 0.55 from the result obtained 
with MutateX. Finally, for the P36L mutation in CYP2R1, the value of 

Fig. 9. The figure represents a heat map of the CFAP410 protein, in which the amino acids from amino acid 38 to amino acid 74 are displayed. Within this sequence, 
the amino acid 58 of interest, corresponding to valine, is specifically identified. 

Fig. 10. The figure represents a heat map of the PILRA protein, in which the amino acids from amino acid 63 to amino acid 93 are displayed. Within this sequence, 
the amino acid 78 of interest, corresponding to valine, is specifically identified. 
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ΔΔG obtained is 1.10 kcal/mol, a difference of 0.27 from the result 
obtained with MutateX. 

By comparing the results obtained with MutateX and those obtained 
with RosettaDDGprediction, it is possible to state that all three muta-
tions analyzed do not cause significant changes in the protein confor-
mation. Consequently, it can be inferred that these mutations are not 
structurally involved as a possible cause of neurodegenerative diseases. 

3.6. miRNA analysis 

In this step, we conducted an analysis on the differentially expressed 
miRNAs. Differential expressed miRNAs were reported in 
Table Supplementary 4. Regarding the ALS dataset, 7 up-regulated 
miRNAs, and 4 down-regulated miRNAs were identified. The differen-
tial expression analysis in AD revealed 2 up-regulated miRNAs and no 
down-regulated miRNAs. 

In contrast, no up-regulated miRNAs and 8 down-regulated miRNAs 
were identified in the PD. Related to MS, 30 up-regulated miRNAs and 7 
down-regulated miRNAs were identified. 

Finally, we found 5 up-regulated miRNAs and 5 down-regulated 
miRNAs for LBD dataset. 

3.7. miRNA-gene interaction 

After identifying the differentially expressed miRNAs for each of the 
5 diseases, we used the miRSystem software to find the interactions 
occurring between these miRNAs and the genes we previously identi-
fied. These genes carry SNPs, which were statistically associated with 
one of the diseases under study by the previous clumping analysis. 

The idea is that the presence of SNPs in an oncogene or a tumor 
suppressor (targets of miRNA) might influence gene regulation and 
change the capability to bind the miRNAs [68,69]. 

Only interactions were found in PD and MS and listed in the Table 4. 
The results highlight the potential role of miRNAs in regulating gene 

expression of identified target genes. This interaction between miRNAs 
and genes may have important functional implications and play a crucial 
role in the regulation of critical biological processes. In addition, such 
interactions may contribute to disease onset, providing a deeper un-
derstanding of the molecular mechanisms involved. 

4. Discussion 

In the present study, we used GWAS from UKBB to explore 5 
neurodegenerative diseases liability in the context of different human 
traits and diseases. Genetic correlation analysis showed that ALS shows 
a negative correlation with AD and a positive correlation with LBD and 
PD. PD correlates with AD, and LBD. 

In addition, the 5 neurodegenerative diseases are correlated with 
traits associated to different domains. ALS correlates with different 
phenotypic groups belonging to mental health and well-being, activity, 
health and physical conditions, social and recreational habits, fluid in-
telligence, education and qualifications, sexuality, and diet. AD corre-
lates with traits belonging to diseases and medical conditions, fluid 
intelligence, education and qualifications, anthropometric measure-
ments, employment status, activity, diet, housing and lifestyle, and 
sexuality. PD genetic correlations were related to: anthropometric 
measurements, diseases and medical conditions, diet, biological and 
clinical indicators, education and qualifications, sexuality, and housing 
and lifestyle. MS genetic correlations were related to different pheno-
typic groups: anthropometric measurements, biological and clinical in-
dicators, diseases and medical conditions, and lifestyle. 

Fig. 11. The figure represents a heat map of the CYP2R1 protein, in which the amino acids from amino acid 1 to amino acid 52 are displayed. Within this sequence, 
the amino acid 36 of interest, corresponding to valine, is specifically identified. 

Table 4 
The table presents a list of identified Up-regulated or Down-regulated miRNAs 
related to the genes they interact with for Parkinson’s and Multiple Sclerosis. In 
addition, the last column provides the rsID name of the SNPs present within the 
target gene.  

Diseases miRNA miRNA Up/Down- 
regulated 

Gene- 
target 

SNP-target 

Parkinson hsa-miR- 
19b 
hsa-miR- 
19a 

Down-regulated 
Down-regulated 

SYT11 rs35749011 

Multiple 
Sclerosis 

hsa-let-7b 
hsa-let-7c 
hsa-let-7d 
hsa-let-7e 
hsa-let-7 g 

Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 

CD86 rs2681424 

hsa-miR- 
613 
hsa-miR- 
130b 
hsa-miR- 
625 
hsa-miR- 
499–5p 

Up-regulated 
Up-regulated 
Up-regulated 
Down-regulated 

ERG rs2836425 

hsa-miR- 
132 
hsa-miR- 
20b 
hsa-miR- 
212 

Up-regulated 
Up-regulated 
Down-regulated 

L3MBTL3 rs4364506 

hsa-miR- 
145 

Up-regulated CLEC16A rs6498168 

hsa-miR- 
499–5p 

Down-regulated EVI5 rs6689470  

hsa-miR- 
223 

Up-regulated RGS1 rs7535818  
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Through a clumping analysis we investigated the genetic overlap 
existing in the 5 neurological diseases. It revealed that 3 genes, namely 
HLA-DRB1, TMEM175, and BIN1, exhibit a shared association with two 
diseases. The gene HLA-DRB1, a component of the human Major His-
tocompatibility Complex (MHC) Class II [70], harbors two distinct SNPs, 
namely rs3104373 associated with MS and rs6931277 associated with 
AD. Similarly, the TMEM175 gene, encoding the Transmembrane Pro-
tein 175 [71], contains two distinct SNPs, namely rs34311866 associ-
ated with PD and rs6599388 associated with LBD. Likewise, the BIN1 
gene, known as Bridging Integrator 1, encodes a protein involved in 
diverse cellular functions, including intracellular vesicle trafficking and 
membrane formation [72]. This gene also encompasses two distinct 
SNPs, namely rs4663105 associated with AD and rs6733839 associated 
with LBD. The latter is a crucial process for the transmission of signals 
between nerve cells (neurons) in synapses. It involves the formation, 
anchoring, fusion and recycling of synaptic vesicles that contain neu-
rotransmitters, the chemical molecules responsible for communication 
between neurons [73]. 

Notably, in our analysis we did not find APOE in AD dataset while we 
found it in LBD dataset. Apolipoprotein E (APOE4) is the common 
known genetic risk factor for AD, but only 7% of cases are due to APOE4, 
suggesting the role of other genetic factors with higher frequency in AD 
pathogenesi [74,75]. 

Interestingly, only 5 SNPs identified in our study were located within 
the coding regions of specific genes (KIF5A, CFAP410, PILRA, CYP2R1, 
and TMEM175). In the next step, we evaluated if SNPs can alter the 
structural stability and the intermolecular interactions of the proteins, 
modifying the protein activity and influencing the possible formation of 
neurodegenerative diseases [65,66]. As MAVISp protocol has yet to be 
optimized to deal with transmembrane proteins, no analysis for 
TMEM175 was performed. 

After the protein structure cut, we calculated ΔΔG by comparing the 
mutated variants with the wild-type protein. This analysis showed that 
mutations in the 3 proteins do not impact the structural stability of the 
proteins and these mutations could not be structurally involved as a 
possible cause of neurodegenerative diseases. 

Finally, we evaluated a potential implication in the regulation of 
genes containing SNPs derived from clumping analyis, by miRNAs. 

Differential expression analysis generated a list of differentially 
expressed miRNAs for the 5 neurodegenerative diseases compared with 
control samples. 

We investigated the interactions between differentially expressed 
miRNAs and the genes that carry SNPs obtained with clumping analysis. 
Only interactions in PD and MS were found. We can note that, in PD, the 
interaction of the down-regulated miR-19a and miR-19b with the SYT11 
gene could play a role in the pathogenetic process. Down-regulation of 
these two miRNAs suggests reduced activity in PD, with possible con-
sequences for biological processes involved in disease formation. Simi-
larly, in the context of MS, the interaction between up-regulated and 
down-regulated miRNAs (Table 4) and the CD86, ERG, L3MBTL3, 
CLEC16A, EVI5, and RGS1 genes could represent a significant advance 
in understanding the complex dynamics of the disease. This interaction 
suggests that altered expression of these miRNAs may influence bio-
logical processes related to MS, opening new perspectives for under-
standing the disease. 

Our study has some limitations to consider. Like the majority of 
GWAS study, we explored genetic data derived from individuals of Eu-
ropean ancestry due to the lack of big cohorts from other ancestry 
groups. Therefore, further studies should be performed to confirm our 
results and demonstrate the generalizability of the associations ob-
tained. In addition, the genetic correlation analysis could be influenced 
by the number of partecipants for each phenotype of UKBB data. 

Another limitation of our study is related to the mapping of SNPs to 
genes by proximity. Indeed, it has been revealed that SNPs may some-
times involve distant genes [76,77]. 

Our in silico analysis found relevant genes associated with SNPs 

identified, that could be also regulated by differentially expressed 
miRNAs. but, a limitation of this study is the lack of a large cohort of 
matched miRNA-mRNA expression data for each disease to perform a 
transcriptional analysis to support the influence of miRNAs on genes. 

Last, miRNA-expression profiles for each neurological disease are 
derived by different body fluids (serum, whole blood, PBMSs) as public 
datasets from the same tissue are not easily available. This could lead to 
conflicting results due different miRNA expression levels based on the 
different tissues. In addition, some of the original publications related to 
miRNA datasets indicated that there was blood contamination in the 
serum, and because of that the upregulated miRNAs could be unreliable 
[78]. 
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