
Research Article
Treatment of Acute Lymphoblastic Leukemia from
Traditional Chinese Medicine

Ya-Li Hsiao,1 Pei-Chun Chang,1 Hung-Jin Huang,2

Chia-Chen Kuo,1 and Calvin Yu-Chian Chen1,2

1 Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
2 School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan

Correspondence should be addressed to Calvin Yu-Chian Chen; ycc929@MIT.edu

Received 3 January 2014; Accepted 7 January 2014; Published 22 May 2014

Academic Editor: Fuu-Jen Tsai

Copyright © 2014 Ya-Li Hsiao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acute lymphoblastic leukemia (ALL) is a cancer that immature white blood cells continuously overproduce in the bone marrow.
These cells crowd out normal cells in the bone marrow bringing damage and death. Methotrexate (MTX) is a drug used in
the treatment of various cancer and autoimmune diseases. In particular, for the treatment of childhood acute lymphoblastic
leukemia, it had significant effect. MTX competitively inhibits dihydrofolate reductase (DHFR), an enzyme that participates in the
tetrahydrofolate synthesis so as to inhibit purine synthesis. In addition, its downstream metabolite methotrexate polyglutamates
(MTX-PGs) inhibit the thymidylate synthase (TS). Therefore, MTX can inhibit the synthesis of DNA. However, MTX has
cytotoxicity and neurotoxinmay causemultiple organ injury and is potentially lethal.Thus, the lower toxicity drugs are necessary to
be developed. Recently, diseases treatments with Traditional Chinese Medicine (TCM) as complements are getting more and more
attention. In this study, we attempted to discover the compounds with drug-like potential for ALL treatment from the components
in TCM. We applied virtual screen and QSAR models based on structure-based and ligand-based studies to identify the potential
TCM component compounds. Our results show that the TCM compounds adenosine triphosphate, manninotriose, raffinose, and
stachyose could have potential to improve the side effects of MTX for ALL treatment.

1. Introduction

Dihydrofolate reductase (DHFR) is essential in cellular
metabolism and cell growth. It catalyzes the conversion of
dihydrofolate into tetrahydrofolate which is a carrier for the
methyl group. The methyl group carried by tetrahydrofolate
is required for de novo synthesis of varieties of essential
metabolites including amino acids, lipids, pyrimidines, and
purines. Methotrexate (MTX), a folate antagonist, arrests cell
growth by competitively binding to DHFR, thereby, blocking
de novo synthesis of nucleotide precursors and inhibiting
DNA synthesis [1]. MTX has been found to be useful as
an antineoplastic and immunosuppressive agent because it
inhibits the proliferation of rapidly dividing malignant [2].

MTX tightly binding on DHFR is one of the most widely
used drugs in cancer treatment and is especially effective

in the treatment of acute lymphocytic leukemia [3]. In
addition, its folate analogue is widely used in the treatment of
acute lymphoblastic leukemia (ALL) [4], ovarian cancer [5],
osteosarcoma [6], rheumatoid arthritis [7], psoriasis [8], and
inflammatory bowel disease [9] and for prevention of graft-
versus-host disease after transplantation [10].

In the cells, MTX acts by inhibiting two enzymes. First, as
an analog of folate, MTX is a powerful competitive inhibitor
with 1000-fold more potent than the natural substrate of
DHFR. DHFR is responsible for converting dihydrofolate
(FH2) to their active form tetrahydrofolate (FH4), which is
a substrate of thymidylate synthase (TS). Second, MTX is
converted to activemethotrexate polyglutamates (MTX-PGs)
by folylpolyglutamate synthase [11, 12]. The polyglutamated
forms of MTX inhibit TS directly. Due to these inhibitions,
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Table 1: Experimental pIC50 values for DHFR inhibitors [40].

Name R1 R2 X R3 pIC50
1 CH3 CH3 CH2 H 4.71
2 CH3 CH3 CH2 4-CH3 4.6091
3∗ CH3 CH3 CH2 4-OCH3 4.2306
4 CH3 CH3 CH2 4-F 4.6615
5∗ CH3 CH3 CH2 4-Cl 4.5243
6 CH3 CH3 CH2 3,4-diCl 4.8928
7∗ CH3 CH3 –O-CH2– H 7.1612
8 CH3 C2H5 –O-CH2– H 6.8097
9∗ H c-Pr –O-CH2– H 6.2612
10 –(CH2)3– –O-CH2– H 6.8729
11 – (CH2)4– –O-CH2– H 6.762
12 – (CH2)5– –O-CH2– H 5.7471
13 – (CH2)6– –O-CH2– H 5.2733
14 – (CH2)4– –O-CH2CH2– H 7.5086
15 – (CH2)5– –O-CH2CH2– H 8.0458
16 – (CH2)4– –O-(CH2)3-O– H 7.699
17 – (CH2)5– –O-(CH2)3-O– H 7.4949
18 CH3 CH3 –O-(CH2)3-O– H 8.2218
19 CH3 CH3 –O-(CH2)4-O– H 7.5686
20 CH3 C2H5 –O-(CH2)3-O– H 8.0969
21 H c-Pr –O-(CH2)3-O– H 8.1549
22 – (CH2)4– –O-(CH2)3-O– H 8.699
23∗ – (CH2)4– –O-(CH2)4-O– H 7.3768
24 – (CH2)5– –O-(CH2)3-O– H 8.1549
25 – (CH2)5– –O-(CH2)4-O– H 6.8069
26 –(CH2)6– –O-(CH2)3-O– H 7.9586
27 –(CH2)5– –O-(CH2)3-O– F 7.8239
28 –(CH2)5– –O-(CH2)3-O– Cl 7.8539
29 –(CH2)5– –O-(CH2)3-O– NO2 7.8239
30 –(CH2)5– –O-(CH2)3-O– Me 7.7447
31 –(CH2)5– –O-(CH2)3-O– t-Bu 7.6576
32 –(CH2)5– –O-(CH2)3-O– OMe 8.2218
33∗ –(CH2)5– –O-(CH2)3-O– CN 8
34 –(CH2)5– –O-(CH2)3-O– COCH3 7.8861
35 –(CH2)5– –O-(CH2)3-O– SO2NH2 8.2218
36∗ –(CH2)4– –O-(CH2)3-O– F 8
37 –(CH2)4– –O-(CH2)3-O– Cl 8.1549
38 –(CH2)4– –O-(CH2)3-O– NO2 8.0969
39∗ –(CH2)4– –O-(CH2)3-O– Me 8
40 –(CH2)4– –O-(CH2)3-O– t-Bu 7.7696
41 –(CH2)4– –O-(CH2)3-O– OMe 7.9586
42 –(CH2)4– –O-(CH2)3-O– CN 8.0969
43 –(CH2)4– –O-(CH2)3-O– COCH3 8.0458
44∗ –(CH2)4– –O-(CH2)3-N(Me)– H 7.3872
45 –(CH2)4– –O-(CH2)3– H 7.4949
MTX 8.5229
∗test set.

the cells will not be capable of de novo synthesis of purines
and thymidylate, and thus DNA synthesis will be inhibited
[13].
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Figure 1: Inhibitionmechanism ofMTX inDNA synthesis pathway.
MTX: methotrexate; FPGS: folylpolyglutamate synthetase; MTX-
PGs: methotrexate polyglutamates; DHFR: dihydrofolate reduc-
tase; TS: thymidylate synthase; FH4: tetrahydrofolate; FH2: dihy-
drofolate;Methylene-THF: 5,10-methylenetetrahydrofolate;Methyl-
THF: 5-methyltetrahydrofolate; dUMP: deoxyurindine-5-mon-
ophosphate; dTMP: deoxythymidine-5-monophosphate; MTRR:
methionine synthase reductase; SHMT: serine hydroxymethyltrans-
ferase.

The primary action of MTX is inhibition of the enzyme
DHFR, which converts dihydrofolate (FH2) to tetrahydro-
folate (FH4) [11, 14]. MTX-PGs exert a stronger inhibition
of DHFR and TS [15–17]. Thus, through direct inhibition
by MTX and due to lack of FH4 and accumulation of
FH2, deoxythymidine monophosphate synthesis and purine
de novo synthesis is blocked, which eventually lead to
leukemic cell death, bone marrow suppression, gastroin-
testinal mucositis, liver toxicity, and, rarely, alopecia [14,
15, 18, 19]. In fact, both MTX and natural folates undergo
polyglutamylation catalyzed by the enzyme folylpolyglutamyl
synthase. The MTX-PGs ensure intracellular retention and,
furthermore, increase the affinity for the MTX-sensitive
enzymes [16, 18, 20] (Figure 1).

However, MTX may lead to acute renal cytotoxicity [21]
which is serious and potentially fatal in the spinal canal and
may occur after the administration of neurotoxicity [22–25]
and hematological toxicity [26] caused by animal somatic
cells and human bone marrow chromosomal lesions [27]
which led to the hematopoietic system abnormalities [28],
gastrointestinal toxicity [29] made multiorgan dysfunction
[30], nephrotoxicity [31] made renal failure [31, 32], and
hepatotoxicitymade liver fibrosis [33]. Higher concentrations
of long-chain MTX-PGs have been in the risk of gastroin-
testinal and hepatic toxicity [12, 34, 35]. Thus, the lower
toxicity drugs are necessary to be developed. Recently, the
increasing numbers of mechanisms of different diseases have
been clarified to detect the helpful target protein for diseases
treatment [36–49], and diseases treatments with traditional
Chinese medicine (TCM) as complements are getting more
and more attention. The compounds extracted from tradi-
tional Chinese medicine have displayed their potential as



Evidence-Based Complementary and Alternative Medicine 3

Table 2: DHFR and TS docking score of TCM candidates.

Index TCM candidate DHFR docking score TS docking score
1 Adenosine triphosphate 226.6790 186.2170
2 Methyl 6-O-digalloyl-beta-D-glucopyranoside (II) 162.6260 154.1730
3 Methyl 4,6-di-O-galloyl-beta-D-glucopyranoside 153.7500 148.2880
4 Methyl 6-O-digalloyl-beta-D-glucopyranoside 151.7650 158.0350
5 Manninotriose 129.7870 114.6030
6 Forsythiaside 129.6030 27.9940
7 Isoacteoside 124.5900 30.6190
8 Rehmannioside B 119.9930 79.2920
9 Rehmannioside A 116.4330 71.3970
10 Raffinose 115.4940 134.2120
11 Cistanoside C 112.4270 —
12 Methyl 3,3,6-tri-O-galloyl-beta-D-glucopyranoside 109.9470 20.7830
13 Stachyose 107.0940 8.5760
14 Chlorogenic acid 103.8080 —
15 Jionoside D 103.5050 39.3430
16 Isochlorogenic acid 102.9470 —
17 Jionoside C 102.3940 —
18 Rutin 101.1310 78.816
∗ MTX 97.0960 —
∗∗ MTX-PGs — 69.671
∗control.
∗∗Methotrexate polyglutamate.

Table 3: Predicted pharmacokinetic properties of TCM candidates and MTX.

Index TCM candidate Pharmacokinetic properties
Absorption Solubility Hepatotoxicity PPB

1 Adenosine triphosphate 3 2 1 0
2 Chlorogenic acid 3 4 1 0
3 Cistanoside C 3 2 1 2
4 Forsythiaside 3 2 1 0
5 Isoacteoside 3 2 1 0
6 Isochlorogenic acid 3 4 1 0
7 Jionoside C 3 3 1 2
8 Jionoside D 3 2 1 2
9 Manninotriose 3 3 0 0
10 Methyl 4,6-di-O-galloyl-beta-D-glucopyranoside 3 2 1 0
11 Methyl 6-O-digalloyl-beta-D-glucopyranoside 3 2 1 0
12 Methyl 6-O-digalloyl-beta-D-glucopyranoside (II) 3 2 1 0
13 Methyl 3,3,6-tri-O-galloyl-beta-D-glucopyranoside 3 0 1 0
14 Raffinose 3 3 0 0
15 Rehmannioside A 3 4 1 0
16 Rehmannioside B 3 4 1 0
17 Rutin 3 1 1 2
18 Stachyose 3 1 0 0
Control MTX 3 3 1 1
1Absorption (Human intestinal absorption), there are four prediction levels: 0 (good absorption), 1 (moderate absorption), 2 (poor absorption), 3 (very poor
absorption).
2Solubility, there are gour prediction levels: 0 (extremely low), 1 (very low, but possible), 2 (low), 3 (good), 4 (optimal), 5 (too soluble), 6 (warning).
3Hepatotoxicity, there are four prediction levels: 0 (nontoxic), 1 (toxic).
4PPB (Plasma protein binding), there are there prediction levels: 0 (binding is <90%), 1 (binding is >90%), 2 (binding >95%).
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Table 4: Partial Least Square (PLS) analysis for CoMFA and CoMSIA models.

Cross Validation Non-cross Validtion Fraction
ONC 𝑞

2
𝑟
2 SEE 𝐹 S E H D A

CoMFA
7 0.5250 0.9630 0.2590 136.2760 0.7970 0.2030 — — —

CoMSIA
S 36 0.6350 0.9890 0.3040 19.6900 1.0000 0.0000 0.0000 0.0000 0.0000
E — — — — — — — — — —
H 2 0.6130 0.7760 0.5940 72.7070 0.0000 0.0000 1.0000 0.0000 0.0000
D 7 0.4180 0.7160 0.7130 13.3480 0.0000 0.0000 0.0000 1.0000 0.0000
A 1 0.0810 0.1600 1.1380 8.1640 0.0000 0.0000 0.0000 0.0000 1.0000
SE 37 0.6050 0.9890 0.3250 16.7260 0.9980 0.0200 0.0000 0.0000 0.0000
SH 2 0.5970 0.7790 0.5910 73.9120 0.3880 0.0000 0.6120 0.0000 0.0000
SD 36 0.6670 0.9890 0.3020 19.9580 0.6350 0.0000 0.0000 0.3650 0.0000
SA 30 0.7020 0.9890 0.2340 39.7820 0.7480 0.0000 0.0000 0.0000 0.2520
EH 7 0.6270 0.9540 0.2860 110.4680 0.0000 0.0500 0.9500 0.0000 0.0000
ED 7 0.4130 0.7090 0.7210 12.9020 0.0000 0.0180 0.0000 0.9820 0.0000
EA 2 0.0760 0.1830 1.1350 4.6860 0.0000 0.2000 0.0000 0.0000 0.8000
HD 2 0.5780 0.7940 0.5690 81.1680 0.0000 0.0000 0.7220 0.2780 0.0000
HA 2 0.5890 0.7910 0.5740 79.5410 0.0000 0.0000 0.7450 0.0000 0.2550
DA 9 0.4300 0.7290 0.7160 10.4430 0.0000 0.0000 0.0000 0.7800 0.2200
SHE 8 0.5850 0.9690 0.2400 139.5820 0.3570 0.0440 0.6000 0.0000 0.0000
SED 38 0.6500 0.9890 0.3490 14.1810 0.6340 0.0010 0.0000 0.3650 0.0000
SEA 31 0.7030 0.9880 0.2430 35.7980 0.7420 0.0110 0.0000 0.0000 0.2470
SHD 22 0.5780 0.9890 0.1830 89.3410 0.3070 0.0000 0.4490 0.2430 0.0000
SHA 2 0.5800 0.7950 0.5680 81.4850 0.3130 0.0000 0.4980 0.0000 0.1900
SDA 30 0.7170 0.9890 0.2320 40.3890 0.5640 0.0000 0.0000 0.2910 0.1450
EDA 11 0.4240 0.7380 0.7250 8.4650 0.0000 0.0200 0.0000 0.7640 0.2150
EHA∗ 11 0.5770 0.9800 0.1990 148.9890 0.0000 0.0630 0.6910 0.0000 0.2460
HAD 2 0.5550 0.8020 0.5580 85.2150 0.0000 0.0000 0.6150 0.2080 0.1770
SEHD 23 0.5970 0.9890 0.1870 81.1730 0.2940 0.0230 0.4520 0.2310 0.0000
SEHA 23 0.5970 0.9800 0.1880 80.4080 0.3000 0.0420 0.4620 0.0000 0.1960
SEDA 31 0.7110 0.9890 0.2420 36.1870 0.5640 0.0050 0.0000 0.2840 0.1470
SHDA 5 0.5630 0.9290 0.3470 102.3970 0.2600 0.0000 0.3980 0.1920 0.1510
EHDA∗ 12 0.6070 0.9820 0.1940 143.5670 0.0000 0.0500 0.5880 0.2040 0.1580
SEHDA 23 0.6120 0.9890 0.1880 80.3300 0.2690 0.0340 0.4020 0.1630 0.1330
OCN: Optimal number of components.
SEE: Standard error of estimate.
F: F-test value.
∗Prediction model.
S: Steric.
H: Hydrophobic.
D: Hydrogen bond donor.
A: Hydrogen bone acceptor.
E: Electrostatic.

lead compounds against tumors [50–54], stroke [55–58], viral
infection [59–63], metabolic syndrome [64–66], diabetes
[67], inflammation [62], and other diseases [68, 69]. For this
trend, we attempted to discover the compounds with drug-
like potential and lower toxicity for ALL treatment from the
components in traditional Chinese medicine.

2. Materials and Methods

2.1. Virtual Screening. The receptors, human dihydrofolate
reductase (DHFR) and human thymidylate synthase (TS)
proteins were downloaded from Protein Data Bank of 1U72
(PDB ID: 1U72) [70] and 1HVY (PDB ID: 1HVY) [71].
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Table 5: Experimental and predicted pIC50 values of 45 DHFR inhibitors using the constructed CoMFA and CoMSIA models.

DHFR inhibitors no. Experimental pIC50 CoMFA CoMSIA EHDA CoMSIA EHA
Predicted Residual Predicted Residual Predicted Residual

1 4.710 4.652 0.0580 4.481 0.229 4.532 0.178
2 4.609 4.606 0.0031 4.635 −0.026 4.662 −0.053
3∗ 4.231 4.576 −0.3454 4.333 −0.102 4.407 −0.176
4 4.662 5.027 −0.3655 4.698 −0.037 4.701 −0.039
5∗ 4.524 4.571 −0.0467 4.807 −0.283 4.797 −0.273
6 4.893 4.476 0.4168 4.723 0.170 4.651 0.242
7∗ 7.161 6.810 0.3512 7.287 −0.126 7.359 −0.198
8 6.810 6.529 0.2807 6.722 0.088 6.723 0.087
9∗ 6.261 6.495 −0.2338 6.270 −0.009 6.240 0.021
10 6.873 6.648 0.2249 6.808 0.065 6.832 0.041
11 6.762 6.793 −0.0310 6.686 0.076 6.645 0.117
12 5.747 5.749 −0.0019 5.767 −0.020 5.705 0.042
13 5.273 5.346 −0.0727 5.245 0.028 5.279 −0.006
14 7.509 7.454 0.0546 7.494 0.015 7.522 −0.013
15 8.046 8.322 −0.2762 8.056 −0.010 8.052 −0.006
16 7.699 8.127 −0.4280 8.130 −0.431 8.110 −0.411
17 7.495 7.670 −0.1751 7.871 −0.376 7.820 −0.325
18 8.222 8.079 0.1428 8.130 0.092 8.105 0.117
19 7.569 7.561 0.0076 7.581 −0.012 7.609 −0.040
20 8.097 8.207 −0.1101 8.105 −0.008 8.240 −0.143
21 8.155 8.007 0.1479 8.242 −0.087 8.215 −0.060
22 8.699 8.127 0.5720 8.130 0.569 8.110 0.589
23∗ 7.377 7.636 −0.2592 7.325 0.052 7.318 0.059
24 8.155 7.670 0.4849 7.871 0.284 7.820 0.335
25 6.807 7.113 −0.3061 6.902 −0.095 6.824 −0.017
26 7.959 7.987 −0.0284 7.887 0.072 7.975 −0.016
27 7.824 7.763 0.0609 7.981 −0.157 7.955 −0.131
28 7.854 7.839 0.0149 7.906 −0.052 7.850 0.004
29 7.824 7.843 −0.0191 7.824 0.000 7.827 −0.003
30 7.745 7.914 −0.1693 7.736 0.009 7.733 0.012
31 7.658 8.069 −0.4114 7.665 −0.007 7.654 0.004
32 8.222 8.005 0.2168 7.848 0.374 7.814 0.408
33∗ 8.000 8.100 −0.1000 7.978 0.022 8.010 −0.010
34 7.886 7.455 0.4311 7.947 −0.061 7.811 0.075
35 8.222 7.981 0.2408 8.208 0.014 8.237 −0.015
36∗ 8.000 8.173 −0.1730 8.130 −0.130 8.139 −0.139
37 8.155 8.180 −0.0251 8.170 −0.015 8.187 −0.032
38 8.097 8.122 −0.0251 8.097 0.000 8.097 0.000
39∗ 8.000 7.990 0.0100 8.007 −0.007 8.054 −0.054
40 7.770 7.683 0.0866 7.832 −0.062 7.697 0.073
41 7.959 8.223 −0.2644 7.883 0.076 7.907 0.052
42 8.097 7.974 0.1229 8.040 0.057 8.150 −0.053
43 8.046 7.996 0.0498 8.052 −0.006 8.061 −0.015
44∗ 7.387 7.542 −0.1548 7.567 −0.180 7.590 −0.203
45 7.495 7.449 0.0459 7.484 0.011 7.516 −0.021
∗test set.
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Table 6: Predicted bioactivity (pIC50) of MTX and TCM candidates using MLR, Bayesian, SVM, CoMFA and CoMSIA models.

Name MLR Bayesian SVM CoMFA CoMSIA EHDA∗ CoMSIA EHA∗∗

Adenosine triphosphate 6.4559 5.8145 8.7175 7.9640 7.8600 7.8350
Methyl 6-O-digalloyl-beta-D-glucopyranoside (II) 27.5044 5.1810 8.0157 6.9800 6.6030 5.5170
Methyl 4,6-di-O-galloyl-beta-D-glucopyranoside 27.7317 5.4868 8.4131 7.5490 6.5980 5.9300
Methyl 6-O-digalloyl-beta-D-glucopyranoside 26.7188 5.2477 7.8936 6.8980 6.6620 5.6840
Manninotriose 29.1034 5.1934 5.9247 7.6470 6.2450 5.3700
Forsythiaside 29.9821 5.3595 8.5713 7.7140 8.0830 7.8950
Isoacteoside 27.6319 6.3265 8.1255 7.6550 7.7990 7.5430
Rehmannioside B 26.7291 4.3032 7.3293 6.9990 6.8000 5.8300
Rehmannioside A 30.3632 4.4182 9.3324 6.7480 5.8070 4.6750
Raffinose 32.8592 5.1647 8.4766 6.9350 5.9620 4.2830
Cistanoside C 26.1802 5.7174 8.2029 7.6060 8.0200 7.9640
Methyl 3,3,6-tri-O-galloyl-beta-D-glucopyranoside 30.7405 6.0369 8.3193 6.7670 6.3240 6.6300
Stachyose 40.5491 5.9779 8.5055 7.4300 5.6830 4.4510
Chlorogenic acid 17.3951 4.2335 7.8897 7.8080 7.9640 7.7680
Jionoside D 26.0421 5.5238 8.2089 7.5080 7.4900 7.2820
Isochlorogenic acid 16.1484 4.4196 7.4839 7.1990 6.3590 6.4480
Jionoside C 23.7203 5.6640 8.2741 7.7600 7.0800 6.9110
Rutin 30.3096 5.6910 8.2465 6.5720 8.0190 7.6830
The pIC50 experimental values of MTX was 8.5229.
∗EHDA model of CoMSIA.
∗∗EHA model of CoMSIA.

We adopted the traditional Chinese medicine formulas that
treat acute lymphoblastic leukemia from database “Shanghai
Innovative ResearchCenter of Traditional ChineseMedicine”
(http://www.sirc-tcm.sh.cn/en/index.html) [72].The compo-
nent compounds of these formulas were integrated with the
herbs data from the TCMDatabase@Taiwan [73] and became
the ALL disease-specific compound library. Virtual screening
of candidates from the compound library was conducted
using the LigandFit Module of DS 2.5 under the Chemistry
at HARvard Macromolecular Mechanics (CHARMm) force
field. DockScore was selected as output values. Candidates
were ranked according to DockScore and pharmacokinetic
characteristics including absorption, solubility, blood brain
barrier (BBB), and plasma protein binding (PPB) were
predicted by ADMET protocols for each candidate.

2.2. 2D-Quantitative Structure Activity Relationship (2D-
QSAR) Models. In this study, 45 candidates (Figure 2) with
known experimental pIC50 values [74] that have inhibitory
activities toward DHFR were used in the QSAR studies
(Table 1). The 45 known inhibitors were randomly divided
into a training set of 36 candidates and a test set of 9 candi-
dates.The chemical structures of these candidateswere drawn
by ChemDraw Ultra 10.0 (CambridgeSoft Inc., USA) and
transformed to 3D molecule models by Chem3D Ultra 10.0
(CambridgeSoft Inc., USA). Molecular descriptors for each
candidate were calculated using the DS 2.5 CalculateMolecu-
lar Property Module. Genetic function approximation (GFA)
model was used to select representative descriptors that
correlated (𝑟

2
> 0.8) to bioactivity (pIC50) which were used
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Figure 2: Chemical structure of DHFR inhibitors [40].

to construct 2D-QSAR models. The training set was used to
construct multiple linear regression (MLR), support vector
machine (SVM), and Bayesian network (BN)models.The test
set was used to test the accuracy of these models.

2.2.1. Multiple Linear Regression (MLR) Model. Multiple
linear regression [75] attempts to model the relationship
between two or more explanatory variables and a response
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Figure 3: The experimental flowchart.

variable by fitting a linear equation to observed data. The
model was built in the form of equation as follows:

pIC
50

= 𝑎
0
+ 𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥
𝑛
, (1)

where 𝑥
𝑖
represents the 𝑖th molecular descriptor and 𝑎

𝑖
is its

fitting coefficient. The generated MLR model was validated
with test dataset. The square correlation coefficients (𝑅

2
)

between predicted and actual pIC50 of the training set was
used to verify accuracy of themodel.This buildingmodel was
applied to predict the pIC50 values of the TCM candidates.

2.2.2. Support Vector Machine (SVM) Model. SVM imple-
ment classification or regression analysis with linear or non-
linear algorithms [76]. The algorithm identifies a maximum-
margin hyper-plane to discriminate two class training sam-
ples. Samples on the margin are called the support vectors.
Lagrange multipliers and kernels were introduced to form
the final pattern separating regression model. In this study,
LibSVM [77–79] package was selected to build our regression
SVMmodel.The selected kernel was theGaussian radial basis
function kernel equation:

𝐾(𝑥
𝑖
, 𝑥
𝑘
) = exp[





𝑥
𝑖
− 𝑥
𝑘






2

2𝜎
2

] . (2)

Cross-validation of the SVM model was also conducted
following the default settings in LibSVM [80]. The generated
regression SVM model was validated with test dataset. The
square correlation coefficients (𝑅

2
) between predicted and

actual pIC50 of the training set was used to verify accuracy
of the model. This building model was applied to predict the
pIC50 values of the TCM candidates.

2.2.3. Bayesian Network Model. We used the Bayes Net
Toolbox (BNT) inMatlab (https://code.google.com/p/bnt) to
create Bayesian network model [81] by the training data set.
After data discretization, we applied linear regression analysis

for each pIC50 category in the training dataset. For the 𝑖th
pIC50 category with 𝑛 candidates, let 𝑦

𝑖𝑗
and 𝑥

𝑖𝑗𝑝
represent

the pIC50 value and the 𝑝th descriptor value in the 𝑗th
ligand, respectively. The regression model of the data sets
{𝑦
𝑖𝑗
, 𝑥
𝑖𝑗1
, . . . , 𝑥

𝑖𝑗𝑝
}
𝑛

𝑗=1
is formulated as

𝑦
𝑖
= 𝑋
𝑖
𝛽
𝑖
+ 𝜀
𝑖
, (3)

where

𝑦
𝑖
=

[

[

[

[

[

𝑦
𝑖1

𝑦
𝑖2

...
𝑦
𝑖𝑛

]

]

]

]

]

, 𝑋
𝑖
=

[

[

[

[

[

𝑥
𝑖11

⋅ ⋅ ⋅ 𝑥
𝑖1𝑝

𝑥
𝑖21

⋅ ⋅ ⋅ 𝑥
𝑖2𝑝

...
...

...
𝑥
𝑖𝑛1

⋅ ⋅ ⋅ 𝑥
𝑖𝑛𝑝

]

]

]

]

]

, (4)

and 𝛽
𝑖
and 𝜀
𝑖
are the regression coefficients and error term

in the 𝑖th pIC50 category. We used ordinary least squares to
estimate the unknown regression coefficient 𝛽

𝑖
:

̂
𝛽
𝑖
= (𝑋
𝑇

𝑖
𝑋
𝑖
)

−1

𝑋
𝑇

𝑖
𝑦
𝑖
. (5)

The Banjo (Bayesian network inference with Java objects)
is software for structure learning of static Bayesian networks
(BN) [82]. It is implemented in Java.We used training dataset
to discover the relationships in the BN structure among the
descriptors and the pIC50 by the Banjo package. After that,
we used test data to assess the accuracy of our algorithm. For
the test data 𝐷, the pIC50 category (𝑘) is predicted by the
following formula:

𝑘 =

𝑛arg max
𝑖=1

𝑃 (𝑖 | 𝐷) , (6)

where 𝑖 represented the 𝑖th category of pIC50 and 𝑛 repre-
sented the total number of the pIC50 categories.Themarginal
probability 𝑃(𝑖 | 𝐷) can be calculated by BNT module.
Finally, the pIC50 value is calculated as follows:

pIC50 = 𝑋
𝑘

̂
𝛽
𝑘
. (7)



8 Evidence-Based Complementary and Alternative Medicine

(1)

H2N

N
N

NN

HO

HO
P

P

P

O

O

OOO

O

OH

OH

OH

OH

(4)

HO

HO

HO

O
O

O

O

O

O

OH
OH

OH

OHHO

(2)

HO

HO

HO

O
O

O
O

O

O

OH

OH

OH

OH

OH

(3)

HO

HO

HO

HO

O

O

O

O

O

O

OH

OH

OH

OH

(5)

HO

HO

HO
HO

HO

HO

O
O

O

O
O

OH

OH

OH

OH

OH

(9)

OO

OOOO

HO

HO

HO

HO

OH

OH

OH
OH

OH

(7)

O

O

O

O O

O
HO

HO

HO

OH OH

OH

OH

OH

OH

(6)
HO

HO

HO
OH

OH

OH
OH OH

OH
O O O O

O

O

(8)

HO

HO

HO

OH
OH

OH

OH

O

O
O

O
OH

O

O

OH

(10)

OH
OH

OH

OH

OH
OH

HO

HO HO

HO

HO

O O
O

O
O

(a)

Figure 4: Continued.
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Figure 4: (a)-(b) The chemical scaffolds of MTX, MTX-PGs, and TCM candidates for acute lymphoblastic leukemia treatment.
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Figure 5: Docking pose of MTX and TCM candidates with DHFR for (a), (b), (c), (d), and (e). Docking pose of MTX-PGs with TS for (f),
(g), (h), (i), and (j). TCM candidates are shown in cyan.The cofactors are shown in purple. In H-bond interactions, nitrogen atoms are shown
in blue, hydrogen atoms are shown in gray, oxygen atoms are shown in magenta, hydrogen bonds are shown in red dotted line, pi bonds are
shown in orange solid line. (a)MTX, (b) and (g) adenosine triphosphate, (c) and (h)manninotriose, (d) and (i) raffinose, (e) and (j) stachyose,
and (f) MTX-PGs.

The square correlation coefficients (𝑅2) between pre-
dicted and actual pIC50 of the training set were used to verify
accuracy of the model. This building model was applied to
predict the pIC50 values of the TCM candidates.

2.3. 3D-Quantitative Structure Activity Relationship (3D-
QSAR) Models. Comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices
analysis (CoMSIA) were performed by Sybyl-X 1.1.1 (Tripos
Inc., St. Louis, MO, USA) for DHFR inhibitors. Lennard-
Jones potential and Coulomb potential were employed
to calculate steric and electrostatic interaction energies.
The two 3D-QSAR models were further evaluated by cross-
validated correlation coefficient (𝑞2) and non-cross-validated
correlation coefficient (𝑟2). The correlation between the force
field and biological activities was calculated by partial least
squares (PLSs) method.

The flowchart for the entire experimental procedure for
TCM candidates screening is illustrated in Figure 3.

3. Results and Discussion

3.1. Virtual Screening. The virtual screening was performed
by the LigandFitModule ofDS 2.5 in force field of CHARMm.
The receptor binding sites were defined by the binding posi-
tion ofMTX onDHFR protein and by the binding position of
MTX-PGs on TS protein. The compounds from our library
were docked into the two receptors. In this protocol, the
receptors were fixed, and the ligands that complement the
binding sites were flexible in energy minimization process.
The control compound used in this study was MTX which
contains aromatic and heterocyclic rings (Figure 4).

The top eighteen results from DHFR docking score are
tabulated in Table 2. The TS docking score for the eighteen
candidates are also tabulated in Table 2. All the eighteen
TCM candidates had higher Dock Scores than the control
methotrexate (MTX) and MTX-PGs. Chemical scaffolds of
MTX, MTX-PGs, and the eighteen TCM candidates are
shown in Figure 4. Adsorption, solubility, hepatotoxicity, and
plasma protein binding were assessed to evaluate pharma-
cokinetic properties of the selected candidates (Table 3).
Considering the factor of hepatotoxicity, we selected the
TCM compounds adenosine triphosphate, manninotriose,
raffinose, and stachyose for advanced study. MTX and TCM
candidates had very poor absorption for human intestine.
Binding strength of the ligands to carrier proteins in the blood
stream is indicated by the plasma protein binding (PPB)
value [21]. MTX has more than 90% for PPB but adenosine
triphosphate, manninotriose, raffinose, and stachyose were
less than 90% for PPB.

Ligand-receptor interactions during docking are shown
in Figures 5 and 6. MTX docked on DHFR (Figure 5(a))
through four hydrogen bondings of Glu30, Gln35, Lys68,
and Arg70. Adenosne triphosphate formed three H-bonds
with Glu30, Gln35, and Arg70 (Figure 5(b)). Manninotriose
formed H-bond with Arg28 (Figure 5(c)). Raffinose formed
H-bonds with Asn64 and NDP (Figure 5(d)). Stachyose
formed H-bonds with Lys63, Asn64, and Lys68 (Figure 5(e)).
MTX-PGs docked on TS (Figure 5(f)) by single H-bond
with Arg50. Adenosne triphosphate, manninotriose, and
stachyose docked onTS (Figures 5(g), 5(h), and 5(j)) by single
H-bond with Arg50. Raffinose docked on TS by single H-
bond with Met309 (Figure 5(i)).
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Figure 6: The Ligplot analysis of hydrophobic interactions between DHFR and TCM candidates and between TS and TCM candidates. (a)
MTXwith DHFR, (b) and (g) adenosine triphosphate with DHFR and TS, (c) and (h) manninotriose with DHFR and TS, (d) and (i) raffinose
with DHFR and TS, (e) and (j) stachyose with DHFR and TS, and (f) MTX-PGs with DHFR and TS. Bonds: ligand bonds, nonligand bonds,
hydrogen bonds, and hydrophobic are shown in purple, orange, olive green, and brick red, respectively. Atoms: nitrogen, oxygen, carbon, and
sulfur are shown in blue, red, black, and yellow, respectively.

Analysis of hydrophobic interactions showed that MTX
docking onDHFRwasmore stable than the TCM candidates.
Comparing with chemical structures of the TCM candidates,
it could be attributed to the larger size for MTX docking on
DHFR (Figures 6(a), 6(b), 6(c), 6(d), and 6(e)). However, the
TCM candidates docking on TS weremore stable thanMTX-
PGs due to hydrophobic interactions (Figures 6(f), 6(g), 6(h),
6(i), and 6(j)).

3.2. Bioactivity Prediction Using QSAR Models. QSAR mod-
els were constructed using known DHFR inhibitors [40]
and applied for predicting molecular properties of the
TCM ligands. Molecular descriptors associated with bioac-
tivity including BD Count, Num RotatableBonds, CHI V 1,
IAC Mean, JX, JY, SC 3 C, Jurs FNSA 1, Jurs RPCS, Jurs
SASA, and Shadow Xlength were used to construct MLR
model, SVMmodel, and Bayesian network model.

Our MLR model was as follows.
GFATempModel 1 = 31.623 + 2.5173 ∗ HBD Count −

0.47471∗Num RotatableBonds − 1.7664∗CHI V 1− 12.997
∗ IAC Mean − 45.669 ∗ JX + 36.62 ∗ JY + 0.11612 ∗ SC 3 C +
18.941 ∗ Jurs FNSA 1 − 4.8012 ∗ Jurs RPCS + 0.029451 ∗

Jurs SASA − 0.084377 ∗ Shadow Xlength.
In CoMFAmodel, the steric fields were the primary con-

tributing factor. In CoMSIA, various factors were considered
and modeled. The optimum CoMSIA models were “EHA
model” and “EHDA model” based on high 𝑞

2, high 𝑟
2, and

low SEE values (Table 4). The “EHA model” was consisting
of electrostatic field and hydrophobic and hydrogen bond
acceptor. The “EHDA model” was consisting of electrostatic
field and hydrophobic and hydrogen bond donor, and hydro-
gen bond acceptor. The CoMFA model and CoMSIA model
of EHDA and of EHA were with ONC of 7, 11, and 12,
respectively.
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Figure 7: Correlation of observed and predicted activity (pIC50) using 2D-QSAR models and 3D-QSAR models. MLR, Bayesian network,
and SVM were 2D-QSAR model. CoMFA, CoMSIA EHDA, and CoMSIA EHA were 3D-QSAR model.
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Figure 8: The CoMFA contour maps for DHFR. (a) MTX, (b) adenosine triphosphate, (c) manninotriose, (d) raffinose, and (e) stachyose.
Green and yellow contours denote regions favoring and disfavoring steric fields, respectively. Blue and red contours denote regions favoring
and disfavoring electrostatic fields, respectively.

Experimental and predicted pIC50 values of 45 DHFR
inhibitors using CoMFA and CoMSIA models are shown in
Table 5. Residuals calculated from the differences between
observed and predicted pIC50 values ranged between
−0.3655 and 0.4311 for the CoMFA, between −0.411 and 0.589
for the CoMSIA with “EHA model,” and between −0.431 and
0.569 for CoMSIA with “EHDA model.”

The correlations between the predicted and actual bioac-
tivity for DHFR inhibitors are shown in Figure 7. The 𝑅

2

values are 0.936 for MLR, 0.734 for Bayesian network, 0.884

for SVM, 0.957 for CoMFA, 0.977 for CoMSIA with EHA
model, and 0.978 for CoMSIA with EHDA model implicate
high correlation. High correlation coefficients validated the
reliability of the constructed CoMFA and CoMSIA models.
The predicted bioactivity values of TCM candidates by 2D-
QSAR and 3D-QSAR models are listed in Table 6.

3.3. The Contour Maps of CoMFA and CoMSIA Models.
Ligand activities of MTX and the TCM candidates can be
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Figure 9: The CoMSIA contour maps of EHA model for DHFR. (a) MTX, (b) adenosine triphosphate, (c) manninotriose, (d) raffinose, and
(e) stachyose. Blue and orange contours denote regions favoring and disfavoring electrostatic fields, respectively. Yellow and white contours
denote regions favoring and disfavoring hydrophobic fields, respectively. Green and red contours denote regions favoring and disfavoring
H-bond acceptor fields, respectively.

predicted based on the 3D-QSAR contour map, includ-
ing features in steric field, hydrophobic field, and H-bond
donor/acceptor characteristics. MTX and the TCM candi-
dates contoured well to the steric features of the CoMFA
in Figure 8. CoMSIA map provides more information with
regard to bioactivity differences for “EHA model” and
“EHDA model” in Figures 9 and 10, respectively. From the
consistent results observed among the 3D-QSAR models
validations, we inferred that adenosine triphosphate, man-
ninotriose, raffinose, and stachyose of TCMcandidatesmight
have good biological activity for DHFR.

Contour to steric favoring and hydrophobic favoring
regions was observed for adenosine triphosphate, man-
ninotriose, raffinose, and stachyose. Consistent with the
docking pose contour (Figures 8, 9, and 10), we propose that
the four TCM candidates maymaintain bioactivity for DHFR
under dynamic conditions in physiological environments.

4. Conclusion

DHFR andTS proteins are key regulators in de novo synthesis
of purines and thymidylate. Inhibiton of these proteins
has the potential for treating acute lymphoblastic leukemia.
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Figure 10:TheCoMSIA contourmaps of EHDAmodel for DHFR. (a)MTX, (b) adenosine triphosphate, (c)manninotriose, (d) raffinose, and
(e) stachyose. Blue and orange contours denote regions favoring and disfavoring electrostatic fields, respectively. Yellow and white contours
denote regions favoring and disfavoring hydrophobic fields, respectively. Green and red contours denote regions favoring and disfavoring
H-bond acceptor fields, respectively. Cyan and purple contours denote regions favoring and disfavoring H-bond donor fields, respectively.

In this study, we applied virtual screen and QSAR models
based on structure-based and ligand-based methods in order
to identify the potential TCM compounds. The TCM com-
pounds adenosine triphosphate, manninotriose, raffinose,
and stachyose could bind on DHFR and TS specifically and
had lowhepatotoxicity.TheseTCMcompounds had potential
to improve the side effects of MTX for ALL treatment.
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a male with XX/XY mosaicism,” BioMedicine, vol. 3, no. 2, pp.
102–104, 2013.

[45] D.-Y. Lin, F.-J. Tsai, C.-H. Tsai, and C.-Y. Huang, “Mechanisms
governing the protective effect of 17𝛽-estradiol and estrogen
receptors against cardiomyocyte injury,” BioMedicine, vol. 1, no.
1, pp. 21–28, 2011.

[46] C.-H. Wang, W.-D. Lin, and F.-J. Tsai, “Craniofacial dysmor-
phism, what is your diagnosis?” BioMedicine, vol. 2, no. 2, pp.
49–50, 2012.

[47] C. C. Lee, C.-H. Tsai, L. Wan et al., “Increased incidence of
Parkinsonism among Chinese with 𝛽-glucosidase mutation in
central Taiwan,” BioMedicine3, no. 2, pp. 92–94, 2013.

[48] F.-J. Tsai, “Biomedicine brings the future nearer,” BioMedicine,
vol. 1, no. 1, p. 1, 2011.

[49] F.-J. Tsai, “Rare diseases: a mysterious puzzle,” BioMedicine, vol.
3, no. 2, p. 65, 2013.

[50] Y. A. Tsou, K. C. Chen, S. S. Chang, Y. R. Wen, and C.
Y. Chen, “A possible strategy against head and neck cancer:
in silico investigation of three-in-one inhibitors,” Journal of
Biomolecular Structure & Dynamics, vol. 31, no. 12, pp. 1358–
1369, 2013.

[51] Y. A. Tsou, K. C. Chen, H. C. Lin, S. S. Chang, and C. Y. C.
Chen, “Uroporphyrinogen decarboxylase as a potential target
for specific components of traditional Chinese Medicine: a
virtual screening and molecular dynamics study,” PLoS ONE,
vol. 7, no. 11, 2012.

[52] S. C. Yang, S. S. Chang, H. Y. Chen, and C. Y. C. Chen,
“Identification of Potent EGFR Inhibitors from TCM
Database@Taiwan,” PLoS Computational Biology, vol. 7,
no. 10, 2011.

[53] C.-Y. Chen and C. Y.-C. Chen, “Insights into designing the
dual-targeted HER2/HSP90 inhibitors,” Journal of Molecular
Graphics and Modelling, vol. 29, no. 1, pp. 21–31, 2010.

[54] H.-J. Huang, K.-J. Lee, H. W. Yu et al., “Structure-based and
ligand-based drug design for HER 2 receptor,” Journal of
Biomolecular Structure & Dynamics, vol. 28, no. 1, pp. 23–37,
2010.

[55] W. Ieongtou, S. S. Chang, D. Wu et al., “Molecular level
activation insights from a NR2A/NR2B agonist,” Journal of
Biomolecular Structure & Dynamics, 2013.

[56] K.-C. Chen and C. Yu-Chian Chen, “Stroke prevention by
traditional Chinese medicine? A genetic algorithm, support
vectormachine andmolecular dynamics approach,” SoftMatter,
vol. 7, no. 8, pp. 4001–4008, 2011.

[57] K.-C. Chen, K.-W. Chang, H.-Y. Chen, and C. Y.-C. Chen,
“Traditional Chinese medicine, a solution for reducing dual
stroke risk factors at once?” Molecular BioSystems, vol. 7, no. 9,
pp. 2711–2719, 2011.

[58] T.-T. Chang, K.-C. Chen, K.-W. Chang et al., “In silico phar-
macology suggests ginger extracts may reduce stroke risks,”
Molecular BioSystems, vol. 7, no. 9, pp. 2702–2710, 2011.

[59] H. J. Huang, Y. R. Jian, and C. Y. Chen, “Traditional Chinese
medicine application in HIV: an in silico study,” Journal of
Biomolecular Structure &Dynamics, vol. 32, no. 1, pp. 1–12, 2014.

[60] C.-H. Lin, T.-T. Chang, M.-F. Sun et al., “Potent inhibitor
design against H1N1 swine influenza: structure-based and
molecular dynamics analysis for M2 inhibitors from traditional
Chinese medicine database,” Journal of Biomolecular Structure
& Dynamics, vol. 28, no. 4, pp. 471–482, 2011.

[61] T.-T. Chang, M.-F. Sun, H.-Y. Chen et al., “Screening from the
world’s largest TCM database against H1N1 virus,” Journal of
Biomolecular Structure & Dynamics, vol. 28, no. 5, pp. 773–786,
2011.

[62] S.-S. Chang, H.-J. Huang, and C. Y.-C. Chen, “Two birds
with one stone? Possible dual-targeting H1N1 inhibitors from
traditional Chinese medicine,” PLoS Computational Biology,
vol. 7, no. 12, Article ID e1002315, 2011.

[63] C. Y. Chen, Y. H. Chang, D. T. Bau et al., “Ligand-based dual
target drug design for H1N1: swine flu—a preliminary first
study,” Journal of Biomolecular Structure & Dynamics, vol. 27,
no. 2, pp. 171–178, 2009.



Evidence-Based Complementary and Alternative Medicine 21

[64] K. C. Chen, S. S. Chang, H. J. Huang et al., “Three-in-one
agonists for PPAR-alpha, PPAR-gamma, and PPAR-delta from
traditional Chinesemedicine,” Journal of Biomolecular Structure
& Dynamics, vol. 30, no. 6, pp. 662–683, 2012.

[65] P.-C. Chang, J.-D. Wang, M.-M. Lee et al., “Lose weight with
traditional Chinese medicine? Potential suppression of fat
mass and obesity-associated protein,” Journal of Biomolecular
Structure & Dynamics, vol. 29, no. 3, pp. 471–483, 2011.

[66] H. J. Huang, K. J. Lee, H. W. Yu et al., “A novel strategy for
designing the selective PPAR agonist by the “Sum of Activity”
model,” Journal of Biomolecular Structure & Dynamics, vol. 28,
no. 2, pp. 187–200, 2010.

[67] K. C. Chen, S. S. Chang, F. J. Tsai, and C. Y. Chen, “Han
ethnicity-specific type 2 diabetic treatment from traditional
Chinese medicine?” Journal of Biomolecular Structure &
Dynamics, vol. 31, no. 11, pp. 1219–1235, 2013.

[68] W. I. Tou, S. S. Chang, C. C. Lee, and C. Y. Chen, “Drug
design for neuropathic pain regulation from traditional Chinese
medicine,” Scientific Reports, vol. 3, p. 844, 2013.

[69] K. C. Chen, Y. R. Jian, M. F. Sun et al., “Investigation of silent
information regulator 1 (Sirt1) agonists from Traditional Chi-
nese Medicine,” Journal of Biomolecular Structure & Dynamics,
vol. 31, no. 11, pp. 1207–1218, 2013.

[70] V. Cody, J. R. Luft, andW. Pangborn, “Understanding the role of
Leu22 variants in methotrexate resistance: comparison of wild-
type and Leu22Arg variant mouse and human dihydrofolate
reductase ternary crystal complexes with methotrexate and
NADPH,” Acta Crystallographica Section D: Biological Crystal-
lography, vol. 61, no. 2, pp. 147–155, 2005.

[71] J. Phan, S. Koli, W. Minor, R. B. Dunlap, S. H. Berger, and
L. Lebioda, “Human thymidylate synthase is in the closed
conformation when complexed with dUMP and raltitrexed, an
antifolate drug,” Biochemistry, vol. 40, no. 7, pp. 1897–1902, 2001.

[72] Shanghai Innovative Research Center of Traditional Chinese
Medicine (SIRC/TCM), S.I.R.C.o.T.C.M., Add:No.1 Building,
439 Chunxiao Road,Zhangjiang Hi-tech Park,Shanghai, 2012.

[73] C. Y.-C. Chen, “TCM Database@Taiwan: the world’s largest
traditional Chinese medicine database for drug screening In
Silico,” PLoS ONE, vol. 6, no. 1, Article ID e15939, 2011.

[74] X. Ma, G. Xiang, C.-W. Yap, and W.-K. Chui, “3D-QSAR Study
on dihydro-1,3,5-triazines and their spiro derivatives as DHFR
inhibitors by comparative molecular field analysis (CoMFA),”
Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 9, pp.
3194–3197, 2012.

[75] B. K. Slinker and S. A. Glantz, “Multiple linear regression:
accounting formultiple simultaneous determinants of a contin-
uous dependent variable,” Circulation, vol. 117, no. 13, pp. 1732–
1737, 2008.

[76] V. Vapnik, “Pattern recognition using generalized portrait
method,” Automation and Remote Control, vol. 24, pp. 774–780,
1963.

[77] O. Ivanciuc, “Applications of support vector machines in chem-
istry,”Reviews in Computational Chemistry, vol. 23, pp. 291–400,
2007.

[78] V. Vapnik, The Nature of Statistical Learning Theory, Springer,
1995.

[79] C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[80] R. Burbidge, M. Trotter, B. Buxton, and S. Holden, “Drug
design by machine learning: support vector machines for

pharmaceutical data analysis,” Computers and Chemistry, vol.
26, no. 1, pp. 5–14, 2001.

[81] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis,
“Advances to Bayesian network inference for generating causal
networks from observational biological data,” Bioinformatics,
vol. 20, no. 18, pp. 3594–3603, 2004.

[82] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using
Bayesian networks to analyze expression data,” Journal of
Computational Biology, vol. 7, no. 3-4, pp. 601–620, 2000.


