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High mobility group box-1 (HMGB1) plays an important role in various liver injuries. In the
case of acute liver injury, it leads to aseptic inflammation and other reactions, and also
regulates specific cell death responses in chronic liver injury. HMGB1 has been
demonstrated to be a good therapeutic target for treating liver failure. Quercetin (Que),
as an antioxidant, is a potential phytochemical with hepatocyte protection and is also
considered to be an inhibitor of HMGB1. However, the mechanism of its hepatoprotective
effects remains to be characterized. The present study explored whether the
hepatoprotective effect of Que antagonizes HMGB1, and subsequent molecular
signaling events. Our results indicated that Que protects L02 cells from D-
galactosamine (D-GaLN)-induced cellular damage by reducing intracellular reactive
oxygen species (ROS) production and apoptotic responses in the mitochondrial
pathway. Immunofluorescence and Western blot assays showed that HMGB1 was
involved in D-GaLN-induced L02 cell damage. Further research showed that after
transfection with HMGB1 short hairpin RNA (shRNA), cell viability was improved, and
intracellular ROS production and apoptosis were suppressed. When co-treated with Que,
the expression of HMGB1 was decreased significantly, the expression of proteins in the
corresponding signal pathway were further reduced, and the production of ROS and
apoptosis were further suppressed. Molecular docking also indicated the binding of Que
and HMGB1. Taken together, these results indicate that Que significantly improves D-
GaLN-induced cellular damage by inhibiting oxidative stress and mitochondrial apoptosis
via inhibiting HMGB1.
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INTRODUCTION

High mobility group box-1 (HMGB1) is an evolutionarily
conserved nuclear DNA-binding protein widely found in
eukaryotic cells, which has multiple conflicting functions (both
inflammatory and cell protective), depending on its location
(Kang et al., 2014; Musumeci et al., 2014). HMGB1 acts as a
damage-associated molecular pattern (DAMP) molecule, when it
is passively released after cell damage or actively secreted into the
extracellular space, it communicates the occurrence of injury and
inflammation to neighboring cells via the receptor for advanced
glycation end products (RAGE) or toll-like receptor 4 (TLR-4)
(Scaffidi et al., 2002; Huebener et al., 2015). HMGB1 contributes
to aseptic inflammation and other responses in acute liver injury,
playing a key role (Yang et al., 2017). It is also an important
hepatocyte DAMP, which regulates specific cell death responses
in chronic liver injury (Hernandez et al., 2018). Studies have
shown that serum HMGB1 levels in patients with acute or
chronic liver failure (ACLF) are significantly higher than those
in healthy controls and patients with chronic hepatitis B (CHB)
(Hu et al., 2017). Hepatocyte-derived HMGB1 is also involved in
liver fibrosis. Blocking HMGB1 can partially prevent the
consequences of mouse CCL4-induced liver fibrosis (Zhang
et al., 2018). Moreover, the experiment targeting HMGB1
demonstrated it was a good therapeutic target for liver failure
(LF) (Yamamoto and Tajima, 2017).
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HMGB1 release induced by hepatic ischemic injury involves
TLR-4-dependent reactive oxygen species (ROS) production and
calcium-mediated signaling (Zhang et al., 2014). Due to the
predominant role of hepatocytes in the biotransformation and
metabolism of xenobiotics, ROS production constitutes a severe
burden in liver pathophysiology in the progression of liver
diseases (Klotz and Steinbrenner, 2017). The oxidized HMGB1
mediates apoptosis, and the production of HMGB1 is also a
common downstream factor for multiorgan damage caused by
apoptosis (Bai et al., 2017; Petrovic et al., 2017).

Quercetin (Que) (3,5,7,3′,4′-pentahydroxyflavone) (Figure 1)
is a typical flavonol-type flavonoid commonly found in
vegetables, fruits, nuts, beverages, and traditional Chinese
herbs (Darband et al., 2018). Que has been reported to possess
a broad array of biological effects, including antioxidative, anti-
inflammatory, and anti-apoptotic effects (de Oliveira et al., 2016;
Zheng et al., 2017). It is now largely utilized as a nutritional
supplement and as a phytochemical remedy for a variety of
hepatic diseases like hepatitis, cirrhosis, acute liver failure,
alcoholic or non-alcoholic fatty liver disease, and fibrosis
(Miltonprabu et al., 2017; Li et al., 2018). Que has exhibited
strong defensive effects against apoptosis, inflammation, and
ROS generation in the liver of experimental animals exposed
to various hepatotoxicants (Zou et al., 2015; Wang et al., 2017).

As an antioxidant, Que is also considered to be an inhibitor of
HMGB1 (Li et al., 2016). However, it is not well known if the
A B

C D

FIGURE 1 | Protective effect of quercetin (Que) on D-galactosamine (D-GaLN)-induced cytotoxicity in L02 cells. (A) The chemical structure of Que. (B) Cells were
treated with different concentrations of D-GaLN (25, 30, 35, 40, 45, 50 mM) (C) or Que (25, 50, 100 mM) for 12 h. (D) Cells were pre-treated with Que (25, 50, 100
mM) for 12 h and then co-treated with D-GaLN (45 mM) for 12 h. A Cell Counting Kit-8 (CCK8) assay was used to analyze cell viability. Data are presented as the
mean ± SD,(*p < 0.05, **p < 0.01, n = 6);”ns” indicates not significant (p > 0.05).
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hepatoprotective effect of Que occurs through the antagonism of
HMGB1 and the ensuing molecular signaling events. Therefore,
the aim of this study was to investigate whether Que could
protect L02 cells by inhibiting HMGB1, in addition to examining
the underlying mechanism of Que, in order to provide a
theoretical basis for Que as a hepatoprotective drug
targeting HMGB1.
MATERIALS AND METHODS

Chemicals and Reagents
Quercetin was obtained from Sigma-Aldrich (St. Louis, USA; cat:
Q4951); its purity ≥ 95%. D-Galactosamine (D-GaLN; cat: G1639) and
dimethyl sulfoxide (DMSO; cat: D2650) were also obtained from
Sigma-Aldrich (St. Louis, USA). Anti-HMGB1 (cat: ab79823), anti-
TLR-4 (cat: ab13867), anti-NF-kB p65 (cat: ab32536), anti-iNOS (cat:
ab178945), anti-COX-2 (cat: ab179800), anti-Bcl-2 (cat: ab182858),
anti-caspase-9 (cat: ab202068), and anti-caspase-3 (cat: ab184787)
antibodies were obtained from Abcam (Shanghai, China).

Cell Culture and Treatment
Normal human hepatocytes (L02 cells) obtained from the Cell
Bank of Type Culture Collection of the Chinese Academy of
Sciences (Shanghai, China) were maintained in DMEM media
(HyClone, USA; cat: SH30243.01) supplemented with 10% (v/v)
fetal bovine serum (FBS) (ExCell Bio, China; cat: FSP500),
streptomycin at 37°C in a humidified atmosphere with 5%
CO2. A Que stock solution was prepared in DMSO and diluted
with culture media immediately prior to the experiment. Control
cells were treated with an equal amount of DMSO alone at a final
concentration of <0.1% (v/v).

Cell Viability Assay
To evaluate the IC50 of D-GaLN and the noncytotoxic
concentration of Que on L02 cells, the effects of D-GaLN and
Que on the viability of L02 cells were evaluated and counted
using a Cell Counting Kit-8 (CCK-8) assay (Dojindo
Laborator ies , Japan; cat : CK04) , according to the
manufacturer’s instructions. Briefly, cells were grown on 96-
well plates at a density of 1 × 104 for 12 h. After treatment with
Que and/or D-GaLN for the indicated time, the cells were
incubated with 10 ml of the CCK-8 solution. After incubation
at 37°C for 2 h in a humidified CO2 incubator, the absorbance
was monitored at 450 nm on a microplate reader (Thermo
Scientific, USA). The cell viability was calculated by comparing
the optical densities of samples to the control (media only) cells.
The optical density of the formazan formed in control cells was
taken as 100% viability.

TUNEL
The apoptotic response of L02 cells was identified using a
TUNEL assay and a Fluorescein In Situ Cell Death Assay Kit
(KeyGEN BioTECH, China; cat: KGA7072) according to the
manufacturer’s instructions. The cells were cultured in a 12-well
plate; after exposure to the desired experimental conditions, and
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L02 cells were fixed with 4% paraformaldehyde (PFA) for 30
min. After washing with PBS, 0.1% Triton X-100 was allowed to
permeate for 5 min. With further washing, the reaction was
carried out in a terminal deoxynucleotidyl transferase (TdT)
buffer with fluorescein-labeled dUTP. The sample was then
incubated with reagents at 37°C for 1 h in the dark with
sealing to avoid evaporation of the reagents. After washing
with PBS, the coverslips were mounted with an anti-
fluorescent quenching sealer containing DAPI. The images
were observed with a confocal laser scanning biomicroscope
(Leica TCS SP8).

Flow Cytometry Analysis of Apoptosis
The ratios of apoptotic cells were measured with an Annexin V-
FITC/PI Apoptosis Detection Kit (KeyGEN BioTECH, China;
cat: KGA108). Briefly, after exposure to the desired experimental
conditions, L02 cells were collected by trypsinization and
centrifugation. Then, the cells were resuspended at room
temperature and fixed in a solution of a binding buffer (195 ml
of annexin V-FITC, 5 ml of annexin FITC, and 10 ml of
propidium iodide (PI)) for 15 min in the dark. The
percentages of apoptotic cells were analyzed by flow cytometry
(BD LSR Fortessa). The apoptotic rate is the apoptotic cells/
all cells.

Measurement of ROS
Intracellular ROS production was measured using an ROS assay
kit (Beyotime, China; cat: S0033). The L02 cells were exposed to
the desired experimental conditions, and the positive control
group was incubated with Rosup for 30 min. The cells were then
incubated with 10 mM CFH-DA for 30 min at 37°C. Then, the
cells were collected and washed with serum-free DMEM, and
ROS levels were measured by flow cytometry (BD LSR Fortessa).

Western Blot
Whole cell lysis was obtained using a RIPA lysis buffer and
protease inhibitor according to the user’s protocol. Cytoplasmic
and nuclear proteins were isolated using nuclear and cytoplasmic
protein extraction kits (Beyotime, China; cat: P0028), according
to the manufacturer’s instructions. Protein concentration was
determined using a BCA protein assay kit. An equal amount of
protein (30 mg) was separated by 10% to 15% SDS-PAGE and
then electrotransferred onto a PVDF membrane. The membrane
was blocked with 5% skim milk for 1 h and then incubated
overnight at 4°C with the following antibodies: HMGB1, TLR4,
caspase-3, caspase-9, Bax, Bcl-2, NF-kB, p65, iNOS, and
COX-2. Then, the membrane was incubated with a secondary
antibody for 1 h at room temperature. After washing 3 times
with TBST, the reaction was detected with an enhanced
chemiluminescent reagent (NCM Biotech, China; cat: P10100).
A ImageQuantLAS4000 Chemiluminescence Imaging system
was used to visualize the target proteins (GE Co., USA) and
densitometry was performed using the Image J software version
1.80. Some results of western blot were presented in three
technical replicates, the repeatability has been confirmed by
independent experiments.
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Immunofluorescence
Cells were seeded in 12-well plates and after exposure to the
desired experimental conditions, were fixed in 4% PFA for 30
min, permeabilized in 0.5% Triton X-100 buffer for 20 min, and
blocked with 5% BSA for 30 min. They were then incubated with
a primary antibody (rabbit anti-human HMGB1 and rabbit anti-
human TLR-4) at 4°C overnight, with the secondary antibody
(FITC/TRITC-conjugated goat anti-rabbit IgG) incubated for 1
h. After being washed with PBST, slides were covered with an
anti-fluorescent quenching sealer containing DAPI. Images were
observed with a confocal laser scanning biomicroscope (Leica
TCS SP8).

RNA Interference
Short hairpin RNA (shRNA) was applied to silence HMGB1 at
the mRNA level, as well as at the protein level. The HMGB1 sh-
RNA (5′-GCT CAAGGAGAATTTGTAA-3′) plasmid vectors
(sh-HMGB1) were purchased from GeneCopoeia (Guangdong,
China) and transfected into L02 cells with a negative control (sh-
NC) using Lipofectamine™ 2000 (Invitrogen, Thermo Fisher
Scientific, Inc.; cat: 11668019). After transfection for 36 h,
qRT-PCR and immunoblotting assays were conducted to
estimate the transfection efficiency.

Real-Time PCR
To detect the expression of HMGB1 mRNA, total RNA was
extracted from the stably transfected cells using a RNAprep Pure
Cell/Bacteria Kit (Tiangen, Beijing, China; cat: DP430), and
cDNA was synthesized using a reverse transcriptase kit
(Tiangen, Beijing, China; cat: KR116-02). The HMGB1
forward and reverse primers were 5′-ATATGGCAAAAGCGG
ACAAG-3′ and 5′-GCAACATCACCAATGGACAG-3′. The b-
actin forward and reverse primers were 5′-TGGCACCCA
GCACAATGAA-3′ and 5′-CTAAGTCATAGTCCGCCTAG
AAGCA-3′. The melting curve data were analyzed to
determine PCR specificity. Relative fold expressions were
analyzed using the 2−DDCt method, using b-actin Ct values as
the internal reference in each sample.

Molecular Docking Simulations
Molecular docking method was used to study the binding mode
of Que and HMGB1. The software Ledock with Lepro tools and
the web server CB-Dock were used for performing molecular
docking simulations (Zhang and Zhao, 2016; Liu et al., 2019) was
obtained from the RCSB Protein Data Bank and a ligand file of
Que in the MOL2 was obtained from the ZINC database. For
LeDock, the receptor files were processed by the LePro tool. All
parameters were set to default for sampling by a combination of
simulated annealing and evolutionary optimization. Docking
scores were calculated by the default scoring function. Ligplot
software was used for 2D interaction visualization (Laskowski
and Swindells, 2011). For CB-Dock, the two files were uploaded
and submitted to the CB-Dock server. The result table listed Vina
scores, cavity sizes, docking centers, and sizes of predicted
cavities. Once a ligand in the table is selected, the structure in
the interactive 3D graphics is visualized.
Frontiers in Pharmacology | www.frontiersin.org 4
Statistical Analysis
All experiments were repeated three times. The results were
expressed as the mean ± standard deviation (SD). GraphPad 7.0
statistical software was utilized for the statistical analyses. p
values were computed by ANOVA with Tukey’s post hoc test.
p < 0.05 was regarded as statistically significant.
RESULTS

Que Protects L02 Cells Against d-GaLN-
Induced Injury
D-GaLN is a commonly used experimental drug for causing
hepatotoxic damage (Dejager and Libert, 2008; Gehrke et al.,
2018). The results (Figure 1B) indicate that D-GaLN
significantly reduced the viability of L02 cells in a dose-
dependent manner. Treatment with a concentration of 45
mM D-GaLN for 12 h lowered the cell viability to 52.92% ±
5.93%. Therefore, this concentration was used in subsequent
experiments. To investigate the protective effects of Que, the
results (Figure 1C) indicate that treatment with less than 100
mMQue did not result in significant cell death. Then, cells were
pretreated with 25 to 100 mM of Que for 12 h and then with 45
mM D-GaLN. The results (Figure 1D) showed that 25, 50, and
100 mM of Que significantly attenuated D-GaLN-induced cell
death. The protective effects of 50 and 100 mM were
significantly higher than those of 25 mM. Although there was
no statistical difference, the cell viability of 50 mM was higher
than that of 100 mM. Therefore, it was determined
that pretreatment with 50 mM Que for 12 h followed by
incubation with 45 mM D-GaLN for 12 h was the optimal
condition for the following experiments.

Que Reduces L02 Cell Damage by
Inhibiting ROS and Apoptosis
We analyzed the ROS production in L02 cells by measuring the
DCF fluorescence intensity. The results (Figures 2A–C)
indicated that D-GaLN significantly increased intracellular
ROS accumulation, while intracellular ROS in the Que group
(Figure 2D) was significantly reduced compared to the
D-GaLN group.

Next, to determine the effect on apoptosis, we used a TdT-
mediated dUTP nick end labeling (TUNEL) assay to observe the
apoptosis caused by D-GaLN and calculate the apoptotic rates
with annexin V-FITC/PI. D-GaLN significantly caused apoptosis
in L02 cells (Figure 3) and increased apoptotic rates (Figures
4A, B). However, compared with the D-GaLN group, Que
significantly reduced the increased apoptosis rate (Figure 4C).
We further used Western blot to examine the effects of D-GaLN
and Que on the expression of Bcl-2, Bax, caspase-9, and caspase-
3 proteins in L02 cells (Figure 5). The results show that D-GaLN
significantly increased the expression of Bax, ratio of cleaved
caspase-9 and cleaved caspase-3, but decreased the expression of
Bcl-2 in L02 cells. Compared with the D-GaLN group, Bax, ratio
of cleaved caspase-9 and cleaved caspase-3 were decreased in the
Que group, while Bcl-2 expression was increased. These results
May 2020 | Volume 11 | Article 608
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showed that Que can weaken D-GaLN-induced oxidative stress
damage and apoptosis in L02 cells.

HMGB1 Aggravates d-GaLN-Induced L02
Cell Damage
Previous studies have reported that HMGB1 aggravates damage to
hepatocytes, while HMGB1 is also involved in apoptosis (Zhao
et al., 2017; Wu et al., 2018). Thus, we investigated the effects of
Que on HMGB1, also the expression of its receptor (TLR-4) by
Western blot and immunofluorescence (IF). Figure 6 showed the
Frontiers in Pharmacology | www.frontiersin.org 5
increased expression of HMGB1 due to D-GaLN stimulation.
Western blot also confirmed that due to the stimulation of
D-GaLN, the total amount of HMGB1 and the ratio of HMGB1
in cytoplasm of L02 cells were increased. Moreover, the expression
of TLR-4 in the D-GaLN group was significantly increased (Figures
8B, C), IF showed that TLR-4 was abundantly expressed in the
cytoplasm and accumulated around the nucleus (Figure 8A).
These indicated that the expression of HMGB1 was increased
due to the stimulation of D-GaLN, which also affected the
expression and distribution of its TLR-4 receptor.
FIGURE 3 | Cell apoptosis was identified by (TdT-mediated dUTP nick end labeling) TUNEL analysis in L02 cells. Green fluorescence represents TUNEL-positive
cells. Scale bar: 25 mm. All nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue fluorescence).
A B C D

E F G

FIGURE 2 | Flow cytometric analysis of the intracellular reactive oxygen species (ROS) levels in L02 cells. (A) Control group; (B) Rosup group; (C) Cells treated with
D-GaLN (45 mM) alone; (D) Cells pre-treated with Que (50 mM) and then treated with D-GaLN (45 mM); (E) Cells pre-treated with sh-HMGB1 and then treated with D-
GaLN (45 mM); (F) Cells pre-treated with sh-HMGB1 and Que (50 mM) and then treated with D-GaLN (45 mM); (G) Statistical results of ROS. Data are presented as
the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01); “ns” indicates not significant (p > 0.05).
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Thus, we investigated the function of HMGB1 in cell injury
by D-GaLN. Cells were transfected with short hairpin RNAs
(shRNA) targeting HMGB1. The sh-HMGB1 could achieve a
reduction of ~50% for HMGB1 expression (Figures 7A, B). As
shown in Figure 6, sh-HMGB1 downregulated the expression of
Frontiers in Pharmacology | www.frontiersin.org 6
HMGB1. And the expression of TLR-4 receptors in L02 cell
injury caused by D-GaLN was also decreased (Figure 8). The
results of CCK-8 (Figure 7C), TUNEL (Figure 3), and flow
cytometry (Figures 2E and 4D) showed that sh-HMGB1
attenuated the loss of cell viability, inhibited intracellular ROS
A

B

C D

E

FIGURE 5 | Effect of Que on the expression of D-GaLN-induced apoptosis-related proteins. (A, B, D, E) The relative expression levels of Bax/b-actin, Bcl-2/b-actin,
ratio of cleaved caspase-9, and ratio of cleaved caspase-3. The data on quantified protein expressions were normalized by related b-actin (fold change of control);
(C) Representative immunoblots for the Bax, Bcl-2, caspase-9, caspase-3, and b-actin proteins. Data are presented as the mean ± SD of three technical replicates
(**p < 0.01).
A B C

D E F

FIGURE 4 | The apoptotic rate of L02 cells was evaluated by flow cytometry after staining with annexin V-FITC/PI. (A) Control group; (B) Cells treated with D-GaLN
(45 mM) alone; (C) Cells pre-treated with Que (50 mM) and then treated with D-GaLN (45 mM); (D) Cells pre-treated with sh-HMGB1 and then treated with D-GaLN
(45 mM); (E) Cells pre-treated with sh-HMGB1 and Que (50 mM) and then treated with D-GaLN (45 mM); (F) The results of the apoptotic rate. Data are presented as
the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01).
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accumulation and apoptosis in D-GaLN-stimulated L02 cells.
Consequently, HMGB1 seemed to be related to the injury caused
by D-GaLN and may be involved in oxidative stress and
apoptosis processes.

Silencing of HMGB1 Enhances the Effect
of Que on d-GaLN-induced L02 Cells
The results of the CCK8 assay (Figure 7C), TUNEL (Figure 3),
and flow cytometry (Figures 2F, G and 4E, F) confirmed that
compared with Que and sh-HMGB1 alone, co-treatment with
Que and sh-HMGB1, cell viability, ROS accumulation, and
apoptosis were significantly ameliorated. We further examined
changes in the expression of HMGB1 (Figure 6), when co-
Frontiers in Pharmacology | www.frontiersin.org 7
treated with Que and sh-HMGB1, the total amount of HMGB1
and the ratio of HMGB1 in the cytoplasm of L02 cells were
decreased significantly. After silenced HMGB1, we analyzed
changes in protein expression of related pathways by Western
blot. Sh-HMGB1 significantly downregulated the expression of
TLR-4, NF-kB-p65, iNOS, and Cox-2, similar to Que (Figure 8).
Compared with Que and D-GaLN alone, when co-treated with
Que and sh-HMGB1, the inhibition of TLR-4 receptor
expression and other pathway proteins were significantly
enhanced (Figure 8). These results indicated that Que
attenuated D-GaLN-induced L02 cell damage by suppressing
ROS generation and apoptosis, which may be controlled by the
inhibition of HMGB1.
A

B

C D

FIGURE 6 | Effect of Que on D-GaLN-induced HMGB1 expression. (A) Immunofluorescence staining of HMGB1 expression under different treatment conditions.
Scale bar: 25 mm; Arrows indicate the HMGB1. (B) Representative immunoblots for the HMGB1 in the nucleus, Histone H3, HMGB1 in the cytoplasm, and b-actin
proteins. (C, D) Total HMGB1 and ratio of HMGB1 in cytoplasm under different exposure conditions by Western blot assay. The data on HMGB1 expression in the
cytoplasm were normalized by related b-actin proteins, HMGB1 in the nucleus were normalized by related Histone H3 proteins (fold change of control). Data are
presented as the mean ± SD of three technical replicates(*p < 0.05, **p < 0.01).
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Structural Details of the Interaction
Between HMGB1 and Que
To better understand the molecular mechanism of Que on
HMGB1, molecular docking studies on Que were performed.
Molecular docking assays showed that Que can bind to the active
pocket of HMGB1 crystal structure (Figure 9A) and form two
stable hydrogen bonds with the Gly7 and Asp12 amino residues
of HMGB1 (Figure 9B). Logarithms of free binding energy
calculated by Ledock and CB-Dock were −6.23 and −7.1 kcal/
mol. The interaction between Que and HMGB1 may affect the
conformation of HMGB1, thereby inducing its downstream
signal transduction.
DISCUSSION

D-GaLN is a commonly used experimental drug that causes
hepatotoxicity, and its mechanism involves GSH depletion and
affecting RNA synthesis (Gehrke et al., 2018). Studies have also
Frontiers in Pharmacology | www.frontiersin.org 8
confirmed that D-GaLN alone leads to the potent intracellular
generation of ROS in HepG2 cells (Bak et al., 2018) which can
induce oxidative stress in the accumulation of ROS in
hepatocytes in vitro and in vivo (Gonzalez et al., 2009; Wen
et al., 2018). By inducing caspase-3 activation and DNA
fragmentation in hepatocytes, D-GalN causes hepatocyte
apoptosis (Lin et al., 2009). Mitochondria are the source and
target of ROS (Zorov et al., 2014), and excessive production of
ROS leads to the apoptosis of hepatocytes (Hong et al., 2018),
and D-GaLN causes apoptosis in a manner closely related to this
pathway. The results of this experiment showed that D-GaLN
affected the viability of L02 cells, causing ROS accumulation and
mitochondrial apoptosis.

HMGB1 acts as a DAMP factor, playing an important role
in various liver injuries (Geng et al., 2015). It has a
significantly greater increase than chronic hepatitis,
particularly in severe liver injury (Zhou et al., 2011).
However, previous studies have mostly focused on the role
of HMGB1 as a pro-inflammatory factor (Wang et al., 1999),
A B

C

FIGURE 7 | The effect of Que on the viability of L02 cells after silenced HMGB1. The sh-HMGB1 was transfected into L02 cells, and its transfection efficiency was
confirmed at (A) the mRNA level, by qRT-PCR; (B) and the protein level, by Western blot assay; (C) after silenced HMGB1, the CCK8 assay was used to analyze the cell
viability of L02 cells under different exposure conditions. Data are presented as the mean ± SD (*p < 0.05, **p < 0.01, n = 3); “ns” indicates not significant (p > 0.05).
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but in addition to inflammation, excessive apoptosis is also an
important mechanism of cell death in liver failure (Komarov
et al., 2016). Blocking HMGB1 can inhibit caspase-3
activation, thereby reducing apoptosis (Tan et al., 2018).
Recent studies have shown that apoptotic cells activate
Frontiers in Pharmacology | www.frontiersin.org 9
macrophages to release HMGB1 (Velegraki et al., 2013).
HMGB1 interacts with phosphatidylserine on the surface of
apoptotic neutrophils, thereby inhibiting the clearance of
neutrophils by macrophage phagocytic cells (Liu et al.,
2008). By binding to DNA, late-stage apoptotic cells can
A

B

C

FIGURE 8 | The effect of Que on the HMGB1 signaling pathway. (A) Immunofluorescence staining of TLR-4 receptor expression under different treatment
conditions. Scale bar: 75 mm; (B, C) the TLR-4, NF-kB P65, iNOS, and COX-2 protein expression levels were evaluated by Western blot assay. The data on
quantified protein expressions were normalized by related b-actin proteins. (fold change of control). Data are presented as the mean ± SD of three technical
replicates (*p < 0.05, **p < 0.01).
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release HMGB1 (Shi et al., 2018); the release of HMGB1 was
also present in cells with late apoptosis (Pisetsky, 2014) After
being released, caspase-3 can be activated by the HMGB1–
TLR4 pathway, resulting in apoptosis (Zhang et al., 2019).

Meanwhile, there is also evidence to confirm that HMGB1
is essential for oxidative stress (Tang et al., 2011). In vitro,
recombinant HMGB1 leads to the TLR-4-dependent
act ivat ion of NADPH oxidase and increased ROS
production (Zhang et al., 2015). TLR-4-dependent ROS
production and calcium-mediated signaling are involved in
the HMGB1 release induced by liver ischemia (Tsung et al.,
2007). Further, the mitochondria play an important role in
apoptosis by relocating intermembrane mitochondrial
proteins, such as Bcl-2 and Bax (Bhola and Letai, 2016). The
induction of ROS can regulate mitochondrial membrane
po t en t i a l , l e ad ing to apop tos i s in i t i a t i on in the
mitochondrial pathway (Sinha et al., 2013). Therefore, we
hypothesize that HMGB1-mediated apoptosis is caused by the
mitochondrial release of apoptotic proteins caused by ROS.
To the best of our knowledge, the results of this experiment
have demonstrated, for the first time, that HMGB1
participated in D-GaLN-induced L02 cell injury. In the
injured L02 cells, the expression of its TLR-4 receptor and
signaling pathway factors also increased accordingly.
Moreover, after silenced HMGB1, ROS production and
apoptosis were significantly improved. Therefore, HMGB1 is
closely related to the occurrence of oxidative stress and
mitochondrial apoptosis.

Que is a commonly used dietary supplement flavonoid
(D’Andrea, 2015); it can alleviate acute liver injury induced by
lipopolysaccharide (LPS)/D-GalN through anti-inflammatory,
Frontiers in Pharmacology | www.frontiersin.org 10
antioxidative, and anti-apoptotic activity (He et al., 2019).
Que also prevents oleic acid-induced ROS production and
mitochondrial damage in HepG2 hepatocytes (Rafiei et al.,
2019) and can protect against oxidative stress by inhibiting the
iNOS/NF-kB pathway (Bahar et al., 2017). Meanwhile, Que is
also a potential inhibitor of HMGB1 (Musumeci et al., 2014).
In this experiment, we demonstrated that Que protects L02
cells from damage caused by D-GaLN. Moreover, we
confirmed for the first time that the protective effect of Que
on L02 cells is produced by inhibiting HMGB1 and
subsequent oxidative stress and mitochondrial apoptosis
mediated by the associated signaling pathway. And
molecular docking showed that the high affinity of Que and
HMGB1 is related to the hydrogen bonding with Gly7
and Asp12 res idues . This b ind ing may affec t the
conformation of HMGB1, thereby inducing its downstream
signal transduction.
CONCLUSION

In conclusion, our current results indicate that HMGB1 was
involved in D-GaLN-induced L02 cell injury. However, Que can
inhibit HMGB1 to protect L02 cells from D-GaLN-mediated
damage. This protective effect is associated with the inhibition of
oxidative stress and mitochondrial apoptosis mediated by
HMGB1. Further, molecular docking showed that hydrogen
bonding with Gly7 and Asp12 residues are involved in the
binding of Que and HMGB1. Therefore, our experimental
results provide a theoretical basis for using Que as a
hepatoprotective drug targeting HMGB1.
A B

FIGURE 9 | The structural details of the interaction between HMGB1 and Que were obtained by the docking method. (A) Surface representation of HMGB1-Que
complex. (B) The interaction zone with Que showed the residues of interactions.
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