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Abstract: Personalised medicine is the future and hope for many patients, including those with
cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a
good prognosis. MicroRNA mediated gene regulation is a promising area of development for new
diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a
frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such
as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control
and response to treatment, which we summarise in this perspective in response to lack of recent
review publications in this field. We further performed a correlation-based analysis of microRNA
and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs
hits with opposite expression profiles to genes involved in immune response in bladder cancer,
and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the
functions of these microRNAs to bladder cancer and assess if they are good candidates for person-
alised medicine therapeutics and diagnostics. The discussed functions include regulation of gene
expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation
and angiogenesis, initiation and development of cancer, genome instability and tumour-associated
inflammatory reaction.

Keywords: miRNA; microRNA; bladder cancer; noncoding RNAs; immune checkpoints; immuno-
logical synapse

1. Introduction

Traditionally, cancer patients have been prescribed their medications based on the
tissue of origin, but also symptoms and signs of their disease, according to the rule “one
size fits all” [1]. Personalised medicine is a leading medical model proposing customisation
of healthcare [1,2]. According to this strategy, treatment and all medical procedures should
be tailored to the particular patient, especially to their genetic makeup, not only the disease.
Thus, stratified medicine is a concept based on identifying subgroups of patients having
distinct characteristics, mechanisms of disease or responses to treatment [3].

Not only the treatment is tailored in this concept, it also requires very precise diag-
nostic tests, able to identify a subgroup of patients which will benefit from the treatment
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or those patients whose health might be at risk when given certain drugs. Particularly
prominent diagnostic procedures include genomics-based molecular methods, with the aid
of imaging and analytical/bioinformatical tools. Development of molecular personalised
medicine requires interdisciplinary teams composed of medical and biological specialities.
It requires a good understanding of human organism complexity, environmental exposures,
genomic interactions and the disease process itself [1].

Unfortunately, precision medicine is being implemented very slowly in cancer manage-
ment. The need for good biomarkers is more urgent than ever. For example, platinum-based
chemotherapy and/or cystectomy remain the major clinical interventions undertaken for
bladder cancer patients. However, the only factors considered for the selection of therapy
are the disease progression and responsiveness to chemotherapy [4,5]. Given the incredible
progress in immunotherapy, the need for clinically useful biomarkers and molecular meth-
ods for patient stratification is obvious, as only approximately 50% of the patients respond
to chemotherapy. Another group responds well to checkpoint inhibitors (in most cases
15–30%; depending on the drug and trial, it can be up to 46%) to give some examples [4].

MicroRNAs (miRNAs, miRs) are abundant small non-coding RNAs composed of
22–24 nucleotides [6,7]. They play an important role in post-transcriptional gene suppres-
sion [8] and have been reported to be involved in cellular processes, such as differentiation,
morphogenesis and tumorigenesis [8,9]. miRNAs usually target the 3’unranslated region
(UTR) of the mRNA and less frequently the 5’UTR or the coding sequence of their target
mRNA [9]. Thus, miRNAs regulate gene expression, and each miRNA molecule targets tens
to hundreds of mRNAs [6]. Furthermore, some mRNA targets might be combinatorically
affected by several different miRNA molecules, increasing the complexity and precision of
post-transcriptional regulation, and fine-tuning the expression level of genes [6]. Aberrant
miRNA expression is found in a variety of cancers, including bladder cancer, suggesting
that they may have roles as oncogenes or tumour-suppressor genes [8]. Half of all the
miRNA genes are located in genomic regions known to be associated with cancer or in frag-
ile sites often altered in human cancers [9]. These observations clearly show the importance
of miRNAs function in cancer.

Selected groups of specific miRNAs are commonly altered in particular cancers, and
recent data have shown that miRNA expression profiles of tumours are able to discriminate
between different types of cancer [10]. Thus, miRNA profiles might be more useful for
cancer diagnosis and prognosis [11], whereas profiles based only on mRNA have been
proven to be generally unreliable, to date [10]. Several miRNA:mRNA interactions have
been proven to be important for cancer pathogenesis so far, with let-7 miRNA family being
the most well-studied [12]. The family of miR let-7 regulates RAS oncogenes, among others,
and the expression of let-7 is reduced in several tumours, including lung cancer [12].

At the moment, there are no reliable molecular biomarkers for bladder cancer progno-
sis, treatment, response or progression, despite advances achieved through novel check-
point therapies [13,14]. Significant effort has been invested in unravelling predictive
biomarkers for the response to immune checkpoint inhibition in many cancers, including
bladder cancer, melanoma or lung cancer [13,15]. PD-1/PD-L1 expression in tumour cells
and in the tumour microenvironment, genetic alterations, mutational load in tumour cells,
epigenetic changes, miRNAs expression, pre-existing immunity and its enhancement dur-
ing treatment by the tumour-infiltrating immune cells were associated with better outcomes
and were shown to be predictors for immune checkpoint inhibition. However, further
studies are required to assess their predictive power and facilitate the implementation into
the clinic [13,15]. In this paper, we present results from a comprehensive bioinformatical
analysis of the correlation between the expression of 21 genes known to be involved in the
immunological synapse and miRNAs in bladder cancer. We also added three transcription
factors discovered in our previous work [16] to be positively correlated with the expression
of selected checkpoint mRNAs from the network we previously reported.
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2. Results
2.1. Correlations Analyses in Bladder Cancer Samples—Genes mRNA to miRNA

In this study, we investigated co-expression profiles of miRNAs and co-inhibitory and
co-stimulatory checkpoint genes potentially involved in the immunological synapse. To
facilitate this task, we visualised the correlations as both static and interactive heatmaps for
the bladder cancer dataset available in The Cancer Genome Atlas (TCGA). This resource
is now available publicly as an interactive website (see Supplementary Materials Section,
Figures S1 and S2).

In order to create a good starting point for further investigations aiming to assess regu-
latory dependencies and genetic interactions between genes and microRNAs, we calculated
correlations between all miRNAs and a selected set of 21 genes, known from the litera-
ture to be potentially expressed on the cancer side of the immunological synapse: CD112,
CD137L, CD200, CD276, CD277, CD40, CD48, CD70, CD80, CD86, GITRL, HHLA2, HVEM,
ICOSLG, LGALS9, OX40L, PD−L1, PD−L2, PVR, VISTA and VTCN1. To present a more
complete picture of regulation, we also included three transcription factors (TFs), which
we identified in our previous research to be correlated with the co-expressed checkpoint
genes in this set: BACH2, MAFK and NFE2L2 [16].

We chose to further study miRNAs that are negatively correlated with gene expression
under our assumptions that these may directly negatively regulate one of the genes of interest.
Conversely, positive correlation might indicate indirect regulation; for example, miRNAs that
negatively regulate suppressors of the genes of interest, but may also indicate more complex
crosstalk. Using these criteria, we obtained 27 miRNAs generally anti-correlated with gene
expression: hsa−mir−30d, mir−4778, mir−1306, mir−4756, mir−1287, mir−96, mir−3200,
mir−187, mir−93, mir−423, mir−219a−1, mir−98, mir−182, mir−1307, mir−744, mir−301b,
mir−940, mir−151a, mir−3193, mir−183, mir−191, mir−141, mir−7706, mir−200c, mir−429,
mir−200b and mir−200a (Figure 1).

The correlation profiles of all 27 miRNAs are very similar, suggesting that they all
contribute to the co-suppression of immune synapse genes. However, their correlation
with genes is not uniform: CD48 CD70, CD80, CD86, OX40L and PD−L2 are most strongly
anticorrelated to miRNA expression, indicating that this cluster of genes is under the
strongest control. In the previous report [16], we found most of these genes to be strongly
correlated with each other and possibly working together in synergy. At the same time, the
results suggest the existence of a second set of genes that are not anticorrelated or weakly
correlated with the set of putative downregulating miRNAs: CD112, VEM, ICOSLG,
LGALS9 and VTCN1. Interestingly, we found these genes correlated with other genes in
the immune response set—this intuitively suggests that not all, but only a specific subset of
immune response genes is under specific miRNA control.

The TCGA database contains the expression levels of pre-miRNAs and not of the
mature miRNAs. Some of the top correlated and anticorrelated miRNAs, for example, mir-
199a-1 and mir-199a-2, have different pre-miRNA sequence, but produce identical mature
miRNA, and are extremely likely to target the same genes. Furthermore, among our top
hits, there are miRNAs, which have a different mature sequence, but share the same seed
region such as mir-146a and mir-146b, and are also likely to target the same genes. However,
their transcriptional and post-transcriptional regulation might be different, and they can
potentially perform different functions depending on transcription of other miRNAs and
coding genes. We observed identical correlation profiles for some miRNAs sharing the
mature sequence (mir-125b-1 and mir-125b-2). However, the expression profiles were
similar, but not identical for miRNAs, sharing only the seed region: mir-146a and mir-146b;
mir-199a and mir-199b. Additionally, mir-199a−1 and mir-199a−2, despite sharing an
identical sequence, had similar, but not identical correlation profiles.
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Figure 1. Heatmap showing negative correlations between selected genes active at cancer side of the immunological
synapse: CD112, CD137L, CD200, CD276, CD277, CD40, CD48, CD70, CD80, CD86, GITRL, HHLA2, HVEM, ICOSLG,
LGALS9, OX40L, PD−L1, PD−L2, PVR, VISTA and VTCN1, transcription factors: BACH2, MAFK and NFE2L2 and miRNA.
Negative correlations are shown in blue. The numbers in heatmap tiles represent the correlation coefficients. The following
statistical criteria were used to filter miRNA: correlation coefficient <= −0.2 for anticorrelated microRNAs and statistical
significance of correlation (p-value from cor.test function in R) < 0.01.

We also obtained 19 miRNAs generally correlated with gene expression: mir−155,
mir−146b, mir−142, mir−146a, mir−29a, mir−150, mir−4772, mir−5586, mir−223, mir−7702,
mir−199b, mir−100, mir−199a−2, mir−511, mir−125b−1, mir−125b−2, mir−199a−1,
mir−221 and mir−21 (Figure 2). In this case, it is more difficult to speculate if this posi-
tive correlation indicates indirect regulation or these miRNAs are generally upregulated in
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cancer alongside immune response genes and are responsible for different functions, for
example suppressing an unrelated set of genes.

Figure 2. Heatmap showing positive correlations between selected genes active at cancer side of the immunological synapse:
CD112, CD137L, CD200, CD276, CD277, CD40, CD48, CD70, CD80, CD86, GITRL, HHLA2, HVEM, ICOSLG, LGALS9,
OX40L, PD−L1, PD−L2, PVR, VISTA and VTCN1, transcription factors: BACH2, MAFK and NFE2L2 and miRNA. Positive
correlations are shown in red. The numbers in heatmap tiles represent the correlation coefficient. The following statistical
criteria were used to filter miRNA: correlation coefficient >= 0.2 for correlated microRNAs and statistical significance of
correlation (p-value from cor.test function in R) < 0.01.

2.2. Correlations Analyses in Bladder Cancer Samples—Genes to Genes

To better understand the impact of underlying gene regulatory network on genes-
miRNA interactions, we analysed the correlations between the genes and transcription
factors only. These created a symmetric correlation heatmap (Figure 3), which we further
projected as a correlation-driven network using a force-directed layout (Figure 4).
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Figure 3. Heatmap showing correlations between selected genes active at cancer side of the immunological synapse: CD112,
CD137L, CD200, CD276, CD277, CD40, CD48, CD70, CD80, CD86, GITRL, HHLA2, HVEM, ICOSLG, LGALS9, OX40L,
PD−L1, PD−L2, PVR, VISTA and VTCN1, transcription factors: BACH2, MAFK and NFE2L2. Positive correlations are
shown in red, negative correlations are shown in blue. The numbers in heatmap tiles represent the correlation coefficients.
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Figure 4. Expression correlation network showing genes active at cancer side of the immunological synapse (red nodes):
CD112, CD137L, CD200, CD276, CD277, CD40, CD48, CD70, CD80, CD86, GITRL, HHLA2, HVEM, ICOSLG, LGALS9,
OX40L, PD−L1, PD−L2, PVR, VISTA and VTCN1 and transcription factors (blue nodes): BACH2, MAFK and NFE2L2.
Green lines represent positive correlations, and red lines represent negative ones. Line thickness represents the strength of
the correlation.

The genes that we previously observed to be well-correlated and anticorrelated to
miRNA hits, CD48 CD70 CD80 CD86 OX40L PD−L1 PD−L2, show a good correlation
with each other resulting in a distinctive cluster (Figure 4). Additionally, the BACH2
transcription factor is well-corelated to genes within this group. Other genes are either
not that strongly correlated, or strongly correlated only to a single gene within the cluster,
rather than forming further cliques.

2.3. Correlations Analyses in Bladder Cancer Samples—miRNA to miRNA

To investigate if gene–miRNA interaction is influenced by a specific pattern of cor-
relations between miRNAs themselves, we analysed the correlations within previously
identified miRNA hits. Figures 5 and 6 show correlations within negatively and positively
correlated miRNA hits, respectively. We also projected these correlations on the common
interaction network using a force-directed layout (Figure 7).

As expected, both groups of miRNAs were well-correlated within each set, with
the correlation of 1 or close to one for miRNAs leading to the same mature microRNA.
However, we observed some examples of nearly identical expression profiles between
different miRNAs, for example, hsa−mir−429, hsa−mir−200b and hsa−mir−200a in
negative hits; and hsa−mir−199b, hsa−mir−100, hsa−mir−199a−2, hsa−mir−125b−1
and hsa−mir−125b−2 hsa−mir−199a−1 in positive hits.
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Figure 5. Heatmap showing correlations within miRNA hits negatively correlated to checkpoint genes. Positive correlations
are shown in red, negative correlations are shown in blue. The numbers in heatmap tiles represent the correlation coefficients.
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Figure 6. Heatmap showing correlations within miRNA hits positively correlated to checkpoint genes. Positive correlations
are shown in red, negative correlations are shown in blue. The numbers in heatmap tiles represent the correlation coefficients.
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Figure 7. Expression correlation network showing positive (blue negative) and negative (red negative) miRNA hits. Green
lines represent positive correlations and red lines represent negative ones. Line thickness represents the strength of
the correlation.

When visualised as a network, correlations within miRNA targets showed similar
expression profiles within positive and negative hit groups. Between these two groups,
correlations were negative indicating—as expected—opposite expression patterns. Interest-
ingly, we observed a further sub-clustering within both groups. Positive hits formed two
distinct clusters, while negative hits formed two smaller, tightly correlated cliques with
other miRNAs more loosely correlated.

2.4. Network of Correlation Derived Interactions between miRNAs, Checkpoint Genes and TFs

We analysed all the dependencies and possible interactions between miRNAs, check-
point genes and TFs. We visualised them and a combined correlation network. Figure 8
shows the features we discovered in previous steps in a broader context. The gene cluster
of CD48, CD70, CD80, CD86, OX40L, PD−L1, PD−L2 and BACH2 transcription factor
is well-connected and visible in between positive and negative miRNA hits territories.
Negative hits show well-connected cliques, that are also better anti-correlated with the
cluster of checkpoint genes. Positive miRNA hits show two bigger, distinct clusters, of
which one is more strongly correlated to the cluster of checkpoint genes.
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Figure 8. Combined expression correlation network showing negative (green nodes) and positive (blue nodes) miRNAs
hits; immunological checkpoint genes (red nodes): CD112, CD137L, CD200, CD276, CD277, CD40, CD48, CD70, CD80,
CD86, GITRL, HHLA2, HVEM, ICOSLG, LGALS9, OX40L, PD−L1, PD−L2, PVR, VISTA and VTCN1; and transcription
factors (purple nodes): BACH2, MAFK and NFE2L2. Green lines represent positive correlations and red lines represent
negative ones. Line thickness represents the strength of the correlation.

2.5. Immune Synapse Genes Are Deregulated in Breast Cancer

Finally, we analysed how the expression of the immune synapse gene set changes
between cancer sample and normal tissue. It should be noted that this study is severely
limited since cancer tissue data set in TCGA are much more numerous than normal tissue
414 and 19 samples, respectively. We obtained gene expression value estimates as fragments
per million reads per kilobase of transcript (FPKM) and visualised their distributions with
imposed box statistics in Figure 9. Direct comparison of FPKM distributions show us that
all three transcription factors: BACH2, MAFK and NFE2L2 are downregulated in cancer
cells. CD48, CD200 and VISTA are also downregulated in cancer samples, while CD276,
LGALS9 and PVR are upregulated in cancer tissue. To understand these changes in the
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context of global expression, we have run differential expression analyses using the DEseq2
package. Taking into account a global dispersion and values of the expression, DEseq
found MAFK, NFE2L2, CD200, CD80, HHLA2, LGALS9, PD−L1 (CD274) and PVR to
be significantly upregulated, while CD112 (PVRIG), CD276, CD48 and VISTA (VSIR) are
significantly downregulated. It should be noted that as with the very low expression values,
such as BACH2, they are not assigned as significantly deregulated. However, analysing
the distributions of the expression of BACH2 in cancer vs. normal tissue we see a small but
significant difference.

Figure 9. Comparison of gene expression values in cancer vs. normal tissue. Visualised values represent fragments per
million reads per kilobase of transcript (FPKM) obtained from TCGA. Violin plots show the distribution of expression
values, with imposed boxplots visualising box statistics. A value below the violin plot denotes the median of the sample.
The stars above each group indicate the significance level (p-value) derived from Mann–Whitney (Wilcoxon) U test. p-value
mapping go as follows: ***** represents a p-value below 0.00001, **** represents a p-value below 0.0001, *** represents a
p-value below 0.001, ** represents a p-value below 0.01 and * represents a p-value below 0.1; “NS.” denotes not significant.
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3. Discussion

It has been suggested that bladder cancer should not be divided merely based on the
characteristic of muscle invasion, thus generating two groups: muscle-invasive (MIBC,
around 20% of bladder cancers at diagnosis) vs muscle-non-invasive (NMIBC, over 60%
at diagnosis), based on the mutations they possess [12]. Both types have been studied
extensively and it is clear that they differ genetically; for example, NMIBC has significantly
fewer genomic rearrangements and mutations, whereas MIBC is characterised by frequent
chromothripsis events, leading to many different aberrations [12]. Thus, currently, it is
accepted that two types of bladder cancer mentioned above have several subgroups, still
under investigation. It is clear if miRNAs can be used as biomarkers for these subgroups.
Interestingly, most of the miRNAs analysed and described here were not previously
reported to be involved in immunological synapse genes regulation. However, they were
well connected with oncogenesis or cancer invasion events, as well as cancer’s response to
the therapeutics.

3.1. The Most Positively Correlated miRNAs

The top hit in correlated miRNAs, mir−155, is a known oncogenic microRNA that
targets the ELK3 transcription factor that is imperative in the response to hypoxia [17]. It
was shown to be upregulated in breast cancer and linked to PARP-1 inhibitors response [18].
In bladder cancer, this miR is known to be significantly overexpressed, promoting tumour
growth by repressing DMTF1, a tumour-supressing gene [19].

The second-best hit, miR-146b, is a known tumour-suppressor targeting TRAF6 in
gliomas [20]. In fact, this miRNA has been reported to be a tumour-suppressor molecule, or
conversely, an oncomiR, in many various cancer types [21]. In bladder cancer, it is usually
upregulated, and this event is correlated with the inhibitory effect on the invasion of bladder
cancer that resulted from the reduction of the matrix metalloproteinase MMP2 expression.
It has also been proven that miR-146b knock-down attenuated ETS2 expression in cell
lines and in mice, with ETS2 being the significant transcription factor for the expression of
MMP2 [21].

Its family ‘cousin’, miR-146a, is known to be involved in bladder cancer relapse,
affecting the function of bladder cancer stem cells both directly and indirectly [22]. It was
also shown that miR-146a is important for the maintenance of breast cancer stem cells
during the epithelial–mesenchymal transition (EMT) by suppressing the expression of the
Notch signalling inhibitor NUMB [23]. It has already been proposed that miR-146a-5p
levels measured in the urine samples of patients might be used as a prognostic marker
for bladder cancer [22,24]. Interestingly, miR-146a—our fourth-best hit—is known to
mediate the suppression of inflammatory response in adipocytes [25], which suggests that
it might have a similar effect in cases of cancer disease. The expression of the third-best
hit, miR-142-3p, was reported to be linked with reduced regulatory T-cell function in
granulomatosis [26]. It also suppresses cell proliferation and cell migration in bladder
cancer [27]. These and other miRNAs found to be the most correlated with the expression
of checkpoint genes are described in Table 1.

Table 1. The most positively correlated miRNAs and their known functions in human cancers, including bladder cancer, if
such a function was reported.

miRNA Function References

hsa-miR-21

Impact on survival and prognosis in patients with pancreatic
cancer; exosomal miR-21 promotes proliferation, but also

invasion and therapy resistance of colon adenocarcinoma cells
via its target PDCD4; nothing is known about its role in bladder

cancer; a lack of miR-21 expression in tumor-associated
macrophages (TAMs) promotes antitumoral immune response.

[28–30]
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Table 1. Cont.

miRNA Function References

hsa-miR-29a

Downregulated in bladder cancer; shows inhibition of
proliferation in bladder cancer cell lines via PI3K-AKT pathway;

acts as a tumour suppressor in many cancer types; increased
urine levels correlated with shorter event-free survival in most
cancer types; high expression of miR-29a was associated with a

prolonged disease-free survival.

[31–35]

hsa-miR-100

Suggested role in the invasion and metastasis of hepatocellular
carcinoma; involved in the PI3K/AKT and mTOR pathways in
renal carcinoma; interestingly, a variant in the miR-100 gene is a
protective factor of childhood acute lymphoblastic leukaemia.

[36–38]

hsa-miR-125b

Suppresses cell proliferation and metastasis by targeting the
HAX-1 gene in esophageal squamous cell carcinoma; regulates

IL-1β-induced inflammatory genes through targeting
TRAF6-mediated MAPKs and NF-κB signaling in human

osteoarthritic chondrocytes; acts as an oncogene in glioblastoma
cells and inhibits cell apoptosis through p53 and

p38MAPK-independent pathways; has a role in conferring the
metastatic phenotype among pancreatic cancer cells; unknown

function in bladder cancer.

[NO_PRINTED_FORM][39–
42]

hsa-miR-142
Linked to the reduced regulatory T-cell function in

granulomatosis; suppresses cell proliferation and cell migration
in bladder cancer.

[25,26]

hsa-miR-146a

Mediates the suppression of inflammatory response in
adipocytes; involved in bladder cancer relapse; important for

the maintenance of breast cancer stem cells during EMT;
suggested that the urine levels might be possibly used as a

prognostic marker for bladder cancer; in bladder cancer, it is
usually upregulated, and this event is correlated with the

inhibitory effect on the invasion of cancer cells resulting from
the reduction of MMP2 expression.

[20–25]

hsa-miR-150

Acts as a tumour promoter: promotes cell proliferation,
migration and invasion of cancer cells through targeting

PDCD4 (programmed cell death 4 protein); modulates cisplatin
chemosensitivity and invasiveness of muscle-invasive bladder

cancer cells via targeting PDCD4; is suggested as a urinary
biomarker for bladder cancer progression; its agonist promotes
fibrosis in cultured kidney cells, while its antagonists decrease

pro-inflammatory cytokines and pro-fibrotic proteins and
increase anti-fibrotic protein SOCS1.

[43–47]

hsa-miR-155

Tumour-promoting and highly oncogenic microRNA that
targets ELK3 transcription factor functioning in the hypoxia
response; upregulated in breast cancer and linked to PARP-1

inhibitors response; overexpressed in bladder cancer, promoting
tumour growth by repressing DMTF1.

[17–19]

hsa-miR-199a

Functions as a tumour suppressor in oral squamous cell
carcinoma, targeting the IKKβ/NF-κB signalling pathway;

inhibits malignant progression of lung cancer through
mediating RGS17; serum levels were suggested as a potential

diagnostic biomarker for detection of colorectal cancer; recently
discovered to inhibit angiogenesis by targeting the

VEGF/PI3K/AKT signalling pathway in an in vitro model of
diabetic retinopathy; can attenuate aerobic glycolysis and cell
proliferation in glioblastoma, but the role in bladder cancer

remains unrevealed.

[48–52]
[NO_PRINTED_FORM]
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Table 1. Cont.

miRNA Function References

hsa-miR-199b

Downregulated in breast cancer patients; is often associated
with malignant clinical characteristics; exerts tumour

suppressive functions in hepatocellular carcinoma by targeting
JAG1 directly; suppression of miR-199b expressions improves

apoptosis and reduces the cell viability in cervical cancer.

[53–56]

hsa-miR-221

High expression is a poor predictor for glioma; affects
proliferation and apoptosis of gastric cancer cells (through

targeting SOCS3); promotes cisplatin resistance in osteosarcoma
cells by targeting PPP2R2A; the function in bladder cancer is

unknown.

[57–59]

hsa-miR-223

Tumour-suppressive, but also oncogenic miR in various cancers;
targets WDR62 directly in bladder cancer—the knockdown of
WDR62 in mice significantly inhibited tumour aggressiveness
and induced the apoptosis of bladder cancer cells; it may also

inhibit migration and invasion of bladder cancer cells.

[60–64]

hsa-miR-511

circZFR promotes cell proliferation and migration by regulating
the miR-511/AKT1 pathway in hepatocellular carcinoma;

promotes proliferation of human hepatoma cells; functions as a
tumour suppressor and a prognostic marker in colorectal

cancer; contributes to intestinal inflammation; significantly
altered expression and its target AKT3 have negative prognostic

value in prostate cancer, but its function in bladder cancer
remains unknown.

[65–69]

hsa-miR-4772

Significance in bladder cancer and immunological surveillance
remains unclear, but a high level in serum exosomes derived

from stage II and stage III colon cancer patients was negatively
associated with the risk of recurrence and the risk of death.

[70,71]

hsa-miR-5586

Downregulated in pancreatic and bladder cancers; high levels
linked to good outcomes in diffuse large B-cell lymphoma

(DLBCL); significance in bladder cancer and immunological
surveillance remains unknown.

[72,73]

hsa-miR-7702 Potentially important in colorectal cancer (CRC) progression,
but significance in bladder cancer remains unclear. [74,75]

Correlation with the expression of several other miRNAs have been noted, but with
surprisingly low statistical significance, given the information from the existing papers,
for example, high miR-34a expression sensitised MIBC to cisplatin, also inhibiting tumori-
genicity and cancer cells proliferation [76]. Connection with epigenetic changes was also
observed and reported in the literature: cisplatin-based therapy induces demethylation of
miR-34a promoter region, and thus, increases its expression [76]. Despite the significance
of miR-34a in bladder cancer and suggested role in checkpoint immune mechanisms, it
seems unrelated to the expression of checkpoint genes per se.

3.2. The Most Anti-Correlated miRNAs

Our top hit in anticorrelated miRs, mir−200a, is known to often play a role in cancer.
However, it is reported to regulate the EMT rather than immune response. It is also
predictive for prognosis in colorectal cancer patients. Specifically, in bladder cancer, it was
reported to be correlated with early-stage and T1 bladder tumour progression [77] and
bladder cancer invasion [78]. Overexpressed miR-200a is known to promote bladder cancer
invasion through the direct regulation of the axis Dicer/miR-16/JNK2/MMP-2E [78].
Moreover, miR-200a is very important in ovarian carcinoma: it promotes cell invasion and
migration by targeting PTEN. The only reports of mir-200a involvement in the immune
response to date come from small airway epithelial cells lung cancer [79].
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Although the role of hsa-miR-200b has not been clear in bladder cancer, it seems partic-
ularly significant in renal cancer: it is often downregulated and may suppress metastasis by
targeting LAMA4 in renal cell carcinoma [80]. The significantly aberrant expression has also
been reported in HER-2 negative breast cancer [81], as well as cardiological pathologies and
angiogenesis aberrations [82,83]. In breast cancer, it has also been reported that miR-200b
may affect breast cancer cells’ response to tamoxifen, involving MYB [84]. Moreover, it has
been suggested as a prognostic marker in clear cell renal carcinoma [85]. Finally, epigenetic
silencing of miR-200b was connected with cisplatin resistance in bladder cancer [86].

miR-200c seems to be particularly important in breast cancer pathogenesis and re-
sponse to treatment; for example, several authors indicated its role in cancer cell sensitivity
to therapy, including trastuzumab use in HER2 positive breast cancer [87,88]. Interest-
ingly, miR-200c might act protectively against colorectal cancer through the BMI1 gene
complex [89]. Furthermore, it suppresses tumour metastasis by inhibiting EMT in oral
squamous carcinoma [90]. Although its role in bladder cancer remains unknown, the level
of miR-200c in bladder cancer patients’ urine is significantly different from the level in
healthy people; thus, it has been suggested as a potential biomarker [32,91].

In our research, miR-200 family seems to be important in the regulation of several
checkpoint genes, especially CD48, CD70, CD80, CD86 and PD-L2, as well as transcription
factor BACH2, which is known to be involved in transcription regulation of these genes.
This finding suggests that it might be a strong candidate for future investigations, especially
those aiming at biomarker discovery and new drug targets.

These and other significant miRs revealed in this study are described in Table 2.

Table 2. The most negatively correlated miRNAs and their known functions in human cancers, including bladder cancer, if
such a function is reported.

miRNA Function References

hsa-miR-30d
Involved in suppressing endoplasmic reticulum and chaperone and

signalling regulators in several human cancers; suggested as a
tumour supressor in lung cancer initiation and progression.

[92–96]

hsa-miR-93

Probably associated with the prognosis of bladder cancer; known to
promote bladder cancer cells proliferation and invasion via

targeting PEDF gene; involved in sensitivity of bladder cancer to
chemotherapy; promotes hepatocellular carcinoma progression,

possibly via miRNA-93-5p/MAPK/c-Jun positive feddback loop.

[97–102]

hsa-miR-96
Oncogenic miR; potential urinary biomarker in bladder cancer;
involved in EMT and migration and invasion of bladder cancer

cells via targeting CDKN1A; impacts the response to chemotherapy.
[103–108]

hsa-miR-98

Important in the development and progression of bladder cancer
due to its involvement in the WNT/β-catenin pathway; promotes
drug resistance via targeting the LASS2 gene; axis miR-98/IGF1

contributes to breast cancer progression.

[109–113]

hsa-miR-141

Might be important in the wound-healing process; promotes
bladder cancer progression, and thus, has prognostic value; in
oesophageal cancer, promotes cell proliferation, migration and

invasion; moreover, in ameloblastoma, it has been shown to supress
cell migration via upregulation of the NCAM1 molecule.

[114–117]

hsa-miR-151a

Studied in atopic dermatitis, pain transmission and NOTCH2
signalling pathway; targeting CHL1 inhibits proliferation and

invasion of colon cancer cells; in nasopharyngeal carcinoma, the
inhibition of p53 by miR-151a induced cell proliferation, migration

and possibly also invasion.

[118–121]

hsa-miR-182

Potentially important in the bladder cancer development,
proliferation and migration; inhibits inflammation, proliferation

and migration of endometrial stromal cells through NFkB pathway
deactivation.

[122–125]
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Table 2. Cont.

miRNA Function References

hsa-miR-183

Involved in the cell adhesion modulation and progression of
laryngeal cancer; reports in bladder cancer indicated its crucial role
in maintaining the canonical WNT signalling pathway, regulating
growth and apoptosis; it has also been reported that cisplatin and
paclitaxel significantly alter the expression of miR-183; potentially

involved in hepatocellular carcinoma cells proliferation by
LNC-HC gene inhibition.

[108,126–129]

hsa-miR-187
Oncogene miR known to be involved in proliferation, migration,

invasion and recurrence bladder cancer; regulates the
WNT/β-catenin pathway.

[130,131]

hsa-miR-191

Linked to the antiviral response and intracellular mechanisms of
viral replication, e.g., may inhibit the replication of human

immunodeficiency virus in human cells; circulating miR-191 has
been proposed as a biomarker of breast cancer, as well as squamous
cell carcinoma; it has been suggested to regulate endometrial cancer
cell growth via TET1-mediated epigenetic modulation of APC gene.

[132–135]

hsa-miR-200a

Regulation of EMT; probably predictive for a patient’s prognosis in
colorectal cancer; reported to be correlated with early-stage and T1

bladder tumour progression and bladder cancer invasion; when
overexpressed, it promotes bladder cancer invasion.

[77,78]

hsa-miR-200b

Significant in renal cancer: it is often downregulated and may
suppress metastasis by targeting LAMA4 in renal cell carcinoma;
aberrant expression has been reported in HER-2 negative breast

cancer as well as cardiological pathologies and angiogenesis
aberrations; may affect breast cancer cells’ response to tamoxifen,
involving MYB; it has been suggested as a prognostic marker in

clear cell renal carcinoma; epigenetic silencing of miR-200b is
connected with cisplatin resistance in bladder cancer.

[83–85,136–138]

hsa-miR-200c

Important in breast cancer pathogenesis and response to treatment,
including trastuzumab use in HER2 positive breast cancer; might

act protectively against colorectal cancer through BMI1 gene
complex; it suppresses tumour metastasis by inhibiting EMT in oral

squamous carcinoma; the role in bladder cancer remains
unknown—the level of miR-200c in bladder cancer patients’ urine
is significantly different from the level in healthy people, and thus,

it has been suggested as a potential biomarker.

[32,87–91]

hsa-miR-219a Inhibits colon cancer progression; enhances the radiosensitivity of
lung cancer cells. [139,140]

hsa-miR-301b

Accelerates the growth of gastric cancer; promotes the mobility,
proliferation and EMT in bladder cancer by targeting EGR1; plasma

levels of miR-301b might be a potential biomarker of early stage
non-small-cell lung cancer.

[141–144]

hsa-miR-423

It has been proposed as a biomarker, indicating early stages of
bladder cancer, especially from blood serum and urine; suppression

of miR-423 in breast cancer cells inhibited cell proliferation and
invasion.

[46,145–147]

hsa-miR-429

Known to be involved in the pathogenesis of many cancer types,
including bladder; significant role in EMT in bladder cancer;

expression levels have been correlated with patient outcomes; it
seems to promote proliferation of bladder cancer cells via the

inhibition of CDKN2B; elevated miR-429 supresses the progression
of hyphopharyngeal squamous cells carcinoma by reducing ZEB1

expression.

[148–152]
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Table 2. Cont.

miRNA Function References

hsa-miR-744

Although its function in bladder cancer has to be revealed, it seems
important in colorectal cancer, ovarian cancer and heart diseases,
targeting the ARF1 gene; interestingly, it has been reported to be

involved in regulation of the MHC class I gene expression;
contributes to inflammation among patients with Sjorgen

Syndrome; promotes proliferation of osteosarcoma cells by
targeting PTEN.

[153–157]

hsa-miR-940

Known to impact the aggressiveness of bladder cancer cells via
activating the WNT/β-catenin pathway; suggested as a biomarker
of gastric cancer; involved in the hepatocellular cancer and prostate

cancer development.

[158–161]

hsa-miR-1287 Probably regulates the MEK/ERK pathway; the role in immune
surveillance remains unknown. [162,163]

hsa-miR-1306 Connected with the SIRT gene family expression; important in
gastric cancer; its role in immune surveillance is to be revealed. [164–166]

hsa-miR-1307

Upregulation contributes to the progression of gastric cancer;
indicates the metastatic potential of hepatocellular carcinoma; by

targeting TRAF3 gene, it also regulates the MAPK/NFkB pathway
in lung adenocarcinoma, promoting cancer cells’ proliferation.

[167–169]

hsa-miR-3193 Very little is known about this miR; however, its role has been
reported in melanoma pathogenesis. [170]

hsa-miR-3200 Acting in gastric cancer tumorigenesis and progression. [171–173]

hsa-miR-4756 Seems to be particularly important in triple-negative breast cancer
pathogenesis; also reported in the EMT process. [174,175]

hsa-miR-4778 Might be involved in radioresistance development in cervical
cancer. [176]

hsa-miR-7706
Little is known about this miR and its function in cancer

pathogenesis; in hepatocellular carcinoma, it seems to have a
prognostic value.

[177]

3.3. Other miRNAs Important in Bladder Cancer

There are several miRNAs described extensively in the bladder cancer literature, but
surprisingly, they are not significantly correlated with any of the analysed genes. For
example, miR-497 was significantly downregulated in bladder transitional cell carcinoma
cells and tissues [8]. This led to the upregulation of the transcription factor E2F3 and
suppression of cell proliferation and invasion [8]. On the other hand, the transcription
factor E2F has been shown to regulate the expression of miR-15b, a member of the same miR
family as miR-497 [137]. Similarly, miR-106a had an inhibitory effect on the proliferation of
BC cells through the modulation of MAPK signalling [8].

Several authors have already emphasised the importance of immune cells infiltrations
in the tumour as a key component of the patient’s response to PD-1/PD-L1 checkpoint
inhibition. Additionally, the presence of specific cells and/or components in the cancer
microenvironment can be crucial, for example, in myeloid cells. This phenomenon was
observed not only in melanoma or bladder cancer, but also in other not-so-well-investigated
cancer types in terms of immunotherapy, such as pancreatic cancer [178]. MicroRNAs
have been shown to be important in the patient’s response to therapy. For instance, in
chemoresistant ovarian cancer, miR-424 has been proved to regulate the PD-1/PD-L1 and
CTLA-4/CD80 pathways [179]. The expression of miR-424 is inversely correlated with the
expression of PD-1, PD-L1, CTLA-4 and CD80 genes, and it has been shown that miR-424
inhibited the expression of those genes through direct binding to the 3’UTRs [99]. Moreover,
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the progression-free survival (PFS) of ovarian cancer patients has been positively correlated
with high levels of this miR [179].

3.4. Limitations to the Research Presented

As in any research, there are several limitations to our work which need to be men-
tioned. First, our results are based on the retrospective analysis of a single dataset of
402 cancer samples. The correlations should, therefore, be verified using other data co-
horts. Secondly, our analysis is based on the expression data. The RNA-seq data do not
measure the final concentration of protein in the cytoplasm and at the cell surface. With
a comprehensive proteomics dataset, a more in-depth analysis of actual protein levels
and protein–protein interactions at the cancer cell membrane could be performed. This is
especially important for the surface proteins of the immunological synapse.

4. Materials and Methods
4.1. Data Acquisition and Pre-Processing

We acquired miRNA expression, mRNA expression and clinical metadata for cancer
cohorts from The Cancer Genome Atlas (TCGA) database using the “TCGAbiolinks”
package in R (see Supplementary Materials Section). For correlation analyses, we used
the results of “HTSeq - FPKM” workflows for mRNA and read counts for miRNA. We
discarded duplicates of the same patient and selected only for experiments where the
matching sample was profiled for gene expression and miRNA expression. Of note,
healthy tissue samples marked as “controls” were derived from the same patients from
which the tumour samples were derived.

4.2. Correlation Analyses

Based on the literature, 21 genes potentially expressed at cancer/APC side of the
immunological synapse were selected for further analyses. We selected mRNAs of interest
and created an n × m numeric matrix of expression measures representing reads per
million per kilobase of transcript (RPKM) for RNA-seq, where n is the number of individual
samples and m is the number of pre-selected mRNAs. In a similar manner, we created a
matrix presenting microRNA expression values—an n × k numeric matrix of expression
values, where n is the number of individual samples and k is the number of miRNAs.

We then generated a nonparametric correlation matrix between miRNA and mRNA
expression values using Spearman’s rank-order correlation coefficient implemented in R.
The statistical significance of each correlation is determined using a correlation test: a t-test
is applied to the individual correlations using the following formula: t = r* sqrt(n-2)/sqrt(1-
rˆ2). This method is implemented in the “psych” package. The p-values are then corrected
to q-values using the false detection rate (FDR) method [179]. The resulting correlations
and associated q-values are visualised for further inspection using a custom correlation
heatmap drown in “GGplot2” package. Because of the large number of miRNAs, we also
provide interactive heatmaps drown using “d3heatmap” package. All interactive and full
static heatmaps are available in the Supplementary Materials Section. For figures shown in
the manuscript, in the interest of clear visualisation, we have filtered out miRNAs with
only non-significant or low correlations to 21 re-selected mRNAs.

4.3. Graphical Model Estimation for Correlation Networks

Correlation graphs represent the correlation matrix with nodes that indicate genes
of interest and edges that represent correlation values. Green edges indicate positive
correlations and red edges negative ones. The width of the edges and their colour saturation
corresponds to the absolute value of correlations and scale relative to the strongest weight
in the graph. The graphs are organised as “spring” layout, which uses the Fruchterman–
Reingold algorithm [11] to obtain a force-directed layout. In this solution, each node
(connected and unconnected) repulses the other, while connected nodes attract each other.
After a number of iterations (500), a final logout is reached—the distance between the
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nodes corresponds well to the correlation between the nodes, where correlated nodes are
close to each other, while anticorrelated (negative correlation) nodes are moved to distant
parts of the graph.

5. Conclusions

Our results clearly indicate several miRNAs that might be important in post-transcriptional
checkpoint genes regulation on tumour side of the immunological synapse. Moreover,
some microRNAs might indirectly participate in transcriptional regulation of checkpoint
genes in bladder cancer. Further experimental research is required to confirm and quantify
these interactions. MicroRNAs acting as moderators of immune response at the cancer
side of the synapse are promising drug candidates and biomarkers. They can be used
directly as novel biologics to modulate the synapse, aiming to increase tumour immuno-
genicity, and thus, as the response to the immune checkpoint inhibitor therapy in bladder
cancer. Despite our better understanding of immune response regulation and new check-
point inhibitor therapeutics being introduced to the market, cisplatin-based chemotherapy
remains the major therapeutic agent used to treat bladder cancer worldwide [5]. Only
about half of patients respond to this treatment, and eventually, all patients develop a
chemotherapy resistance [5,180]. Therefore, we see a crucial need for finding new, highly
individualised therapeutic strategies together with molecular biomarker-based companion
diagnostics. MicroRNAs play a crucial role in many, if not most, of the processes leading
to the development, growth, invasiveness and progression of the tumour. Given their
favourable molecular characteristics and ease of detection, they are promising biomarker
and therapeutic target candidates. We postulate that further research into the function of
microRNA in cancer will yield predictive and prognostic biomarkers to be used in rapid,
inexpensive and accurate diagnostics [14].

Supplementary Materials: Figure S1: Heatmap showing all corelations between selected gens and
miRNAs as PDF; Figure S2: Interactive heatmap showing all corelations between selected gens and
miRNAs—online resource at https://przemol.github.io/blca/ [181,182].
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