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When an electron is incident on a superconductor from a metal, it is reflected as a
hole in a process called Andreev reflection. If the metal N is sandwiched between two
superconductors S in an SNS junction, multiple Andreev reflections (MARs) occur.
We have found that, in SNS junctions with high transparency (τ → 1) based on the
Dirac semimetal MoTe2, the MAR features are observed with exceptional resolution. By
tuning the phase difference ϕ between the bracketing Al superconductors, we establish
that the MARs coexist with a Josephson supercurrent I s = IA sin ϕ. As we vary the
junction voltage V , the supercurrent amplitude IA varies in step with the MAR
order n , revealing a direct relation between them. Two successive Andreev reflections
serve to shuttle a Cooper pair across the junction. If the pair is shuttled coherently, it
contributes to I s . The experiment measures the fraction of pairs shuttled coherently vs.
V . Surprisingly, superconductivity in MoTe2 does not affect the MAR features.

superconductivity | topological | Andreev reflection | Josephson | Dirac semimetal

A normal metal N sandwiched between two superconductors S forms an SNS junction.
For electrons in N , the superconducting gaps in S act as steep side-walls in an unusual
square-well potential. An electron in N that approaches the right N –S interface with
momentum p is retro-reflected as a hole of momentum −p (Fig. 1A). In this Andreev
reflection process (1), a Cooper pair is created in the right superconductor. When the left-
moving hole reaches the leftN –S interface, it again suffers a retro-reflection as an electron,
while a Cooper pair is annihilated in the left S . As a result, two successive reflections shuttle
one Cooper pair across the junction (green arrows). Multiple Andreev reflections (MARs)
are prominently seen when a finite voltage V is applied across the junction (2). As shown
in Fig. 1A, both excitations gain energy eV with each traversal (e > 0 is the elemental
charge). Eventually, with n traversals (called the n th-order process), the excitation acquires
enough energy to surmount the potential barrier.

The investigation of topological superconductivity and pairing correlations in uncon-
ventional metals is currently a very active area of research. However, given that very
few superconducting topological semimetals have been found, many experiments resort
to injecting a supercurrent from a conventional superconductor to induce pairing by
proximity in systems of interest. Examples include graphene (3, 4), carbon nanotubes
(5), point-contact or break junctions (6, 7), Josephson ω-junctions (8), topological Bi
nanowires (9), and systems exhibiting edge currents (10–12). In most of these experiments,
Andreev bound states and subgap states based on Andreev reflections play central roles.
Signatures specific to topological junctions arising from Andreev subgap states have been
discussed by a number of groups (13–15).

Junctions with extended geometries (as opposed to break junctions) are particularly
interesting, but a number of questions remain open. Can a Josephson supercurrent coexist
with the MAR observed at finite V ? Are the two charge-transfer phenomena mutually
independent processes, or are they intimately related? Calculations have shown that an
Andreev bound state strongly localized at, say, an atomic break junction can shuttle Cooper
pairs as a supercurrent (16–18) (the calculations are restricted to the V = 0 situation).
In this limit (junction spacing d → 0), MARs have been observed. Here, we expand
the parameter space, going to finite V in extended junctions with finite d . Aside from
the emergence of MARs, the finite d implies that a sizeable fraction of the pairs are
shuttled incoherently, and this dephasing feature can be studied by varying d . This regime
is relevant to many of the experiments listed. Application of phase-tuning allows us to
investigate the relation between MARs and the supercurrent in considerable detail.

Weak subgap, subharmonic features have long been observed in numerous experiments
on (single) S–I–S junctions (where I is insulator) and ascribed to various causes (19, 20).
Their identification with MARs was made in ref. 2. Subsequently, microscopic calculations
of MARs were compared with experiments on point-contact or break junctions (21–23).
Here, we extend these pioneering experiments to a broader regime, applying the powerful
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technique of phase tuning on high-transparency SNS junctions
using an asymmetric superconducting quantum interference de-
vice (SQUID) layout (6, 7, 9, 14, 24–26). Our focus is on
the MARs and the Josephson effect when N is the Dirac–Weyl
semimetal MoTe2 [which becomes a superconductor below the
critical temperature Tc = 100 mK (11)].

Experimental Results

Asymmetric SQUID. Flux-grown crystals of MoTe2 exhibiting
high residual resistivity ratios (∼1,000) and mobilities (100,000
to 150,000 cm2/Vs) were exfoliated in air into thin flakes
of nominal thickness, 100 nm, and transferred onto a SI
substrate capped with a 90-nm-thick SiO2 layer. We deposited
Al wires on the surface of a flake to define four direct current
(dc) SQUIDs (details in Materials and Methods). As shown
in Fig. 1 B, Inset, the S–N –S junction, with critical current
Ic, is fabricated in parallel with an auxiliary conventional S–
I–S tunnel junction with critical current I0 (where S = Al,
n = MoTe2, and I = Al2O3). The phases across the S–N –S and
S–I–S junctions are δ and γ, respectively. In the four devices (S1
to S4), the ratio I0/Ic is ≥ 4. The junction width d equals 200,
300, 400, and 500 nm in devices S1, S2, S3, and S4, respectively.

When the applied current I exceeds the SQUID’s critical
current IcS, the voltage V rises steeply. We recorded both the
I –V curve and the differential resistance dV /dI vs. I measured
in a magnetic field B at temperatures T from 0.035 to 1.1 K. The
curves of V (B , I ) and dV /dI (B , I ) are reported as color maps
in the B–I plane (the two experimentally controlled quantities).

In the regime V = 0 (I < IcS), both phases δ and γ are static
and related by the constraint δ − γ = ϕ, where ϕ≡ 2πBA/φ0 is
the flux-induced phase shift and φ0 = h/2e is the superconduct-
ing flux quantum (A is the loop area, and h is Planck’s constant).
For V = 0, we maximize IcS under the constraint on δ − γ and
find that the auxiliary phase γ is pinned close to π/2 if I0 � Ic.
The curve of IcS vs.ϕ then yields the current-phase-relation (CPR)
curve of the SNS junction. From the CPR, we obtain I0 = 93 μA
and Ic = 29.6 μA (SI Appendix, Fig. S1 and section A).

Our focus is on the finite-V regime (I > IcS) (24). At finite
V , δ(t) and γ(t) wind rapidly at the same rate (δ̇ = γ̇) with their
difference fixed at ϕ. The finite voltage across the SQUID, given
by V = �〈γ̇〉/2e (where 〈· · · 〉 denotes time-averaged), drives a
normal current IN that flows parallel to the supercurrents Is0 and
Is1 in the auxiliary and sample junctions, respectively (I = Is0 +
Is1 + IN).

Resistively Shunted Junction Model at Finite V . To gain insight
into the MAR, it is helpful to generalize the resistively shunted
junction (RSJ) model. We assume that, at finite V , the super-
current in the S–N –S junction can be approximated by Is1 	
IA(V ) sin δ, with a V -dependent amplitude IA(V ) (as V → 0,
IA(0) = Ic). The total t-dependent current is then

I (V ,ϕ, t) =
�γ̇(t)

2eR‖
+ I0 sin γ(t) + IA(V ) sin(γ(t) + ϕ), [1]

with R−1
‖ =G =G0 +G1, where G1 is the shunt S–N –S

conductance arising from the MAR and G0 is the remaining
background conductance (SI Appendix, section C).

We consider the two extremal cases when ϕ equals ϕ+ (with
Is1 parallel to Is0) and ϕ− (antiparallel). At ϕ±, we have

I (V ,ϕ±, t) =
�γ̇(t)

2eR‖
+ [I0 ± IA(V )] sin γ(t), [2]

which reduces to the equation governing the phase dynamics in
a single junction (24–26). [When the geometric inductance L
of the SQUID is negligible, ϕ+ = 0 and ϕ− = π. As discussed
in SI Appendix, section D, a finite L shifts ϕ± from these values
(26).]

We then have for the dc voltage

V (ϕ±, I ) = R‖

√
I 2 − I 2cS(ϕ±), (I > IcS(ϕ±)), [3]

with IcS(ϕ±) = I0 ± IA(V ). As shown below, allowing IA and
R‖ to acquire a V dependence yields a close description of the
measured curves V (ϕ±, I ).

Fig. 1C shows V (B , I ) (measured in S1 at 135 mK) plotted in
the B–I plane. The black region (V = 0) is bounded by the CPR
curve IcS(B). At fixed B , V is observed to increase steeply once
I exceeds IcS(B), approaching a linear dependence at large V .

In Fig. 1D (main panel), we display a series of curves of
V vs. I with B as a parameter (B ∈ [−24, −2] μT). See
SI Appendix, Fig. S2A for curves with B ∈ [0, 42] μT. A series
of steps are clearly seen in V (B , I ). As shown in Fig. 1 D, Inset,
they persist to V = 100 μV. The steps appear as narrow peaks
in the derivative dV /dI , which follow a subharmonic sequence
Vn = Vmax/n . In Fig. 1E, we show that as T is raised to 1.1 K,
the peaks converge to zero.

MARs under Phase Tuning. A key feature emerges when we
investigate the effect of phase tuning on the sequence of peaks.
To see this, we plot the color map of dV /dI (B , I ) in the
B–I plane (Fig. 2A). Above the CPR curve IcS(B), we see a sheaf
of sharply defined sinusoidal curves (light-blue wavy curves) that
appear to peel off from the CPR curve. As we approach the CPR
curve from above (V → 0+ in the limit n � 1), the sinusoidal
curves smoothly approach the functional form of the CPR curve.
(As shown below, this smooth evolution vanishes abruptly when
T is lowered below Tc = 100 mK.) Since B is linear in the phase
ϕ, we infer that the sinusoidal curves are tracking a component
of I that varies sinusoidally with ϕ. This ϕ dependence is the
hallmark of a Josephson supercurrent.

We next show that each sinusoidal curve also corresponds to
an abrupt change in the MAR order (n → n − 1) at a voltage
Vn that is independent of ϕ. Using the I –V curves in Fig. 1D,
we transform the vertical axis from I to V . Under this transfor-
mation (Fig. 2), each sinusoidal curve in S1 collapses to a flat
line. The voltage Vn on each line fits the subharmonic sequence
Vn = Vmax/n for n = 2, 3, 4 · · · (SI Appendix, Fig. S2C ). The
parameter Vmax has the T -independent value 200 μV below
300 mK, but decreases as T → T Al

c (1.2 K), consistent with
Vmax = 2Δ/e, where Δ is the energy gap of Al (SI Appendix,
Fig. S2B). These are key signatures of MARs (2, 21–23).

Increasing the junction spacing d strongly damps both the
critical current Ic and the amplitude of the sinusoidal curves.
In Fig. 3, we show color maps of dV /dI (B , I ) for the four
devices S1· · · S4 measured at 340 mK. Although, at 340 mK,
Ic (defined as half the peak-to-trough excursion) decreases steeply
with d (SI Appendix, Fig. S2D), the supercurrent is observable
well beyond d = 500 nm at 135 mK. Hereafter, we focus on results
from S1.

Quantifying Normal Current and Supercurrent.
MAR-induced steps in I–V curve. The striking staircase profile of
V (ϕ, I ) (Fig. 1D) provides a vital clue to the MAR charge
transfer. When V lies in the interval Vn ≤ V < Vn−1, where
Vn = 2Δ/ne, the nth -order process is dominant because of the
divergent density of states (DOS) at the gap edge in Al. In an
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Fig. 1. MAR in the asymmetric SQUID layout with the S–N–S junction based on MoTe2. A shows a sketch of the 5th-order MAR process. Right-moving electrons
(red circles) are Andreev-reflected as left-moving holes (white circles). After five traversals, the excitation gains sufficient energy to scale the gap barrier.
In the process, two pairs (green arrows) are shuttled across. The DOS in Al are shaded gray. B shows four devices fabricated on an exfoliated crystal of
MoTe2 (gray area). The sketch in B, Inset shows the S–N–S (S–I–S) junction on the right (top) branch. The applied flux φa = BA pierces the enclosed rectangle.
In C, the color map comprises 150 I–V curves with spacing ΔB = 2 μT (color scale in vertical bar) measured in S1 at T = 135 mK. At fixed B, V increases steeply
once I exceeds the SQUID critical current IcS(B) (the CPR curve). If V is held fixed, the current varies periodically with vs. B up to V ∼ 80 μV [thin black curves are
contours of V(B, I)]. D (main panel) shows the I–V curves with B varying from −24 μT to −2 μT in steps of 2 μT. Subharmonic steps (n as indicated) are visible up
to V = 105 μV (D, Inset). Peaks in dV/dI at the steps occur at Vn = Vmax/n (n = 2, 3, · · · ). D shows traces of dV/dI vs. V for 0.34 < T < 1.10 K. As T → TAl

c , Vmax → 0
in accord with MAR.

ideal junction (transparency τ = 1), the number of pairs shuttled
is n/2 or (n − 1)/2 for n even or odd, respectively (for n odd,
a quasiparticle is also transferred). In both cases, the total charge
shuttled is ne. We have n channels when Vn ≤ V < Vn−1. At
either end of the interval, the channel number abruptly changes
by one.

Since kBT �Δ at 135 mK, the normal current I (n)N1 in the
shunt conductance, G(n)

1 , derives overwhelmingly from pairs that

are shuttled incoherently by MARs. As we show below (Fig. 4A),
the shuttled pairs give rise to both a normal current I (n)N1 = VG

(n)
1

and a supercurrent; the former responds only to V whereas the
latter is sensitive to ϕ.

From the staircase profile, we infer a simple expression for
G

(n)
1 . For transparency τ = 1, the abrupt change in conductance

at V = Vn , ΔG1 =G
(n+1)
1 −G

(n)
1 , equals a constant g (the

conductance for one traversal). This implies G(n)
1 = ng .
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In a nonideal junction with τ < 1, classical scattering reduces
the transmission probability by the amount (1− τ ) at each reflec-
tion. Instead of G(n)

1 = ng , we have

G
(n)
1 = g(1 + τ + · · ·+ τn−1) = g(1− τn)/(1− τ). [4]

As shown below, Eq. 4 leads to a quantitative description of
V (ϕ±, I ).
Shuttled pair current. We turn next to the Josephson supercur-
rents in the auxiliary and sample junctions, Is0 and Is1, respec-
tively. The nth -order sinusoidal curve in the dV /dI map traces
the variation of I vs. ϕ with V = Vn (hereafter, we use ϕ in place
ofB ). The maximum and minimum values attained by the current
are called In+ and In−, respectively. They occur at the extremal
phases ϕ+ and ϕ−, respectively.

By Eqs. 2 and 3, we have I 2n± = (Vn/R‖)
2 + [I0 ± IA]

2.
Thus, the observed values In± yield the observed amplitudes I (n)A ,
viz.

I
(n)
A,obs = [I 2n+ − I 2n−]/(4I0). [5]

These are plotted as black circles in Fig. 4A. Initially, I
(n)
A,obs

increases linearly with n , but deviates downward when n exceeds
six (Fig. 4 A, Inset). To us, the initial n-linear growth of I (n)A,obs
is persuasive evidence that the supercurrent derives from the
population of Cooper pairs that are shuttled coherently.

At large n (V → 0), we expect I (n)A,obs to saturate since it cannot
exceed the critical current Ic atV = 0. We propose that saturation
occurs because of the slight attenuation of the probability current
at each reflection, analogous to Eq. 4. Thus, I

(n)
A ∼ 1 + τ +

· · ·+ τn−1, which we write as

I
(n)
A = Ic[1− τn−1]. [6]

Using Eq. 6 to fit the data in Fig. 4A, we find that Ic =
27 μA, close to Ic = 29.6 μA obtained in the CPR. The agreement
supports the reasoning behind Eq. 6. The value of τ is found to
be 0.924, slightly smaller than τ = 0.95 from the CPR fit values
in SI Appendix, Eq. S3.

In Fig. 4A, we also plot (as blue squares) the normal current in
the sample junction I

(n)
N1 , the product of Vn and G

(n)
1 (for g , we

use the value from the fit in Eq. 7). Despite the step-wise increase
in G1 with n , the decrease of V ∼ 1/n forces I (n)N1 to decrease
monotonically. By contrast, I (n)A (red and black symbols) increases
monotonically before saturating at Ic. Both currents reflect the
series 1 + τ + · · ·+ τn .

The saturation IA → Ic in the limit V → 0 implies that the
coherent fraction of shuttled Cooper pairs accounts for the entire
Josephson supercurrent observed in the dissipationless state. This
agrees with the smooth evolution of the sinusoidal curves to merge
continuously with the CPR curve in the limit n � 1 observed in
Fig. 2.

Heuristically, using Eqs. 4 and 6, we can adopt the generalized
RSJ model to describe the measured curves V (ϕ±, I ) by the
expressions

V (ϕ±, I ) =

√
I 2 − [I0 ± I

(n)
A ]2

G0 +G
(n)
1

, [7]

where n = Int[Vmax/V ]. The fits are shown as red curves in
Fig. 4B. A more sensitive test of the fits is to compare them
against the total observed conductances Gobs(ϕ±, I )≡ [I 2 −

(I0 ± I
(n)
A )2]

1
2V (ϕ±, I )

−1 (Fig. 4 B, Inset). As seen, both curves
of Gobs(ϕ±, I ) fit well to Eq. 7. From the fits, we find for ϕ− (and
ϕ+),

τ = 0.93 (0.92), G0 = 3.00 (2.94) S, g = 0.32 (0.20) S.
[8]

The value of τ is in agreement with the fit to Eq. 6. (For ϕ+, a
discontinuous jump of V occurs at the threshhold current IcS.
This implies a finite inertial term in the phase dynamics repre-
sented by a shunt capacitor C , which is neglected for simplicity.)

Discussion and Outlook

Andreev Reflections Below Tc of MoTe2. We note that the pairing
“glue” of the shuttled pairs originates from Al. In MoTe2, the onset
of superconductivity below Tc = 100 mK allows us to see how
the Josephson supercurrent associated with the shuttled pairs is
changed by the intrinsic pairing field ψ̂. Our initial expectation
was that ψ̂ should strongly enhance the Josephson amplitude IA.
To our surprise, however, it has no observable effect. Fig. 4C
and SI Appendix, Fig. S3 show the superposition of color maps
measured at 135 mK and 35 mK (the former is Fig. 2A). As
discussed above, at 135 mK, the sinusoidal curves associated with
MARs evolve smoothly as a sheaf of curves peeling away from the
CPR curve Ic vs. B . By contrast, at 35 mK, the dissipationless
region (dark yellow) covers a larger area, reflecting the sharp
increase in the critical current Ic . Interestingly, the MAR-induced
sinusoidal curves remain unchanged from the ones at 135 mK.
In the superposition, we have plotted the MAR curves observed
at 35 mK in blue (they are unobservable in the dark yellow
region bounded by the CPR curve Ic(B)). The corresponding
curves at 135 mK are plotted in yellow. It may be seen that each
sinusoidal curve measured at 35 mK is continuous with the curve
at 135 mK across the CPR curve Ic(B). The emergence of bulk
superconductivity in MoTe2 leaves the MAR curves unaffected.

To analyze this observation, we note that the MAR process
shuttles Cooper pairs from one Al contact to the other. The pairing
correlations of the shuttled pairs originate from the conventional
phonon-mediated mechanism in Al. Fig. 4C shows that the
emergence of pairing in bulk MoTe2 neither strengthens nor
weakens the coherence of the shuttled pairs. The long-range shut-
tling mechanism persists independent of any additional pairing
attraction induced by ψ̂. An interesting possibility is that the
symmetry induced by s-wave pairing in Al is incompatible with,
and orthogonal to, the intrinsic pairing of the Dirac electrons in
the bulk.

In experiments to be reported elsewhere, we find that the
intrinsic Ginzburg–Landau order parameter Ψ̂ (characterizing the
superconducting state of MoTe2) exhibits weak phase rigidity. At
20 mK, the switch to dissipative behavior as B increases actually
reflects the melting of the vortex solid to the vortex liquid state,
triggered by the loss of phase rigidity (rather than disappearance of
the pair condensate). Because the modulus of the order parameter
|Ψ̂| remains finite in the vortex liquid, we should expect the
coherence of the pairs shuttled by MAR to be enhanced especially
close to the CPR curve, but this is not observed. The unchanged
MAR sinusoidal curves in Fig. 4C suggest that the conventional
s-wave pairing in the shuttled pairs is orthogonal to the intrinsic
pairing mechanism in MoTe2. This result will be explored further
in future experiments.

High Transparency. The high transparency observed in our SNS
junctions is remarkable, given the large mismatch of the Fermi
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Fig. 2. Color maps of the differential resistance dV/dI(B, I) measured in S1 at 135 mK, displayed in the (B, I) plane (A) and the (B, V) plane (B), with scale bar on
the right. In A, the black area (dV/dI = 0) is bounded by the CPR curve IcS(B). Above the CPR, the series of sinusoidal curves trace the variation of narrow peaks
in dV/dI vs. B. In B, the vertical axis is transformed to V using the I–V curve at each B. Each sinusoidal curve collapses to a flat line with V fixed at the MAR voltage
Vn = Vmax/n.

momenta between Al and MoTe2. In conventional systems such a
large mismatch leads to severe degradation of the transparency.
For Dirac/Weyl fermions, we argue that strong suppression of
backscattering is responsible for the large τ . The earliest example
was proposed by Ando et al. (27) to explain the high conductance
of carbon nanotubes. In the two-spinor state ψ(k) = (FA,FB )

T

of momentum k on the honeycomb lattice, the relative phase φ
between the amplitudes FA and FB for occupying the A vs. B
sublattice sites is given by tanφ= ky/kx . The angle φ is also the
orientation of the pseudospin σ. Most scattering potentials are
too weak to change σ, so it is conserved in each scattering event.
This leads to suppression of backscattering events k →−k, which
flip σ. In MoTe2, the backscattering suppression is closer to the
situation in topological insulators (28) and Weyl semimetals (29).

Now, the physical spin s (rather than σ) is conserved at each
scattering event from a nonmagnetic impurity. Because of spin-
momentum locking and distinct spin textures around the Fermi
surface, conservation of s again leads to strong suppression of
backscattering. Lastly, the well-known Klein paradox, which leads
to zero classical reflection at a step potential in graphene (30, 31),
also originates from conservation of σ. However, Klein tunneling
requires Dirac states on both sides of the interface, which is not the
case here. (If a thin layer of proximitized MoTe2 were to be present
betweenN and S , the Klein paradox scenario could apply. We rule
this out because the gap measured by MAR is the full gap in Al,
rather than the much smaller proximity gap.) For these reasons, we
argue that the backscattering suppression by conservation of s is
the most likely reason for the large transparency. Future work will
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Fig. 3. Comparison of color maps of dV/dI(I, B) measured in devices S1 to S4 at T = 340 mK. The junction spacing d is 200, 300, 400, and 500 nm in S1 to S4,
respectively. As d increases, the supercurrent amplitude Ic inferred from the CPR decreases rapidly at 340 mK (SI Appendix, Fig. S2D). Unlike at 135 mK, dV/dI is
not strictly zero below the CPR curve because of thermally excited quasiparticles.
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Fig. 4. Fits to the supercurrent amplitude I(n)
A,obs, the I–V curves, and total conductance Gobs in device S1. (A) The observed supercurrent amplitude I(n)

A,obs vs. n

(Eq. 5, black circles) compared with I(n)
A calculated using Eq. 6 (red circles). The best fit is obtained with Ic = 27 μA and τ = 0.924. The normal current I(n)

N1 = VnG(n)
1

is plotted as blue squares. The data for I(n)
A,obs and fit are shown in expanded view in A, Inset. In B (main panel), we compare the measured V(ϕ±, I) (black curves)

with the best fit to Eq. 7 (red curves). The integer n at each step is indicated. For clarity, the curve V(ϕ+, I) is shifted upwards by 12.5 μA. B, Inset shows the
same fits compared against the observed conductances Gobs(ϕ±, I) defined below Eq. 7, which provide a more sensitive test for the fits. C is the superposition
of the color maps of dV/dI(I, B) measured at 135 mK and 35 mK. The MAR sinusoidal curves at 135 and 35 mK are shown in yellow and blue, respectively.
The dissipationless regions at 135 mK and 35 mK are shaded in black and dark yellow, respectively. The superposition demonstrates that the MAR curves are
identical at the two temperatures within our resolution. The increase in Ic below Tc (100 mK) does not affect the magnitude or positions of the MAR curves.
SI Appendix, Fig. S3 displays the two color maps in separate panels.

test if Dirac/Weyl semimetals invariably lead to high-transparency
SNS junctions.

A related question is whether new regimes can be accessed
in the two-dimensional (2D) limit using monolayers of MoTe2
(or other van der Waals semimetals). The phase-tuning approach
applied to investigate possible 2D superconductivity is promising.
However, we have found that technical problems related to sand-
wiching monolayer MoTe2 between BN films are formidable.

In summary, utilizing the asymmetric SQUID technique to
tune ϕ across extended SNS junctions, we have found that
MARs executed by the Dirac electrons in MoTe2 are observed
with exceptional resolution in the I –V curves. Depending on
V , orders as high as n = 12 are resolved. The modulation of
the MAR features vs. ϕ provides direct evidence that a Joseph-
son supercurrent coexists with the MAR. By measuring how
the amplitude IA varies with V , we find that the supercurrent
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is intimately related to the MAR. At large V (small n), the well-
resolved steps in V correspond to a step decrease in the number of
conductance channels for the pairs that are shuttled incoherently.
Even at n = 2, the coherently shuttled pairs in device S1 produce
a supercurrent that is detectable (Fig. 2A). In the opposite limit
V → 0, nearly all pairs are shuttled coherently. As a result, the
amplitude IA saturates to Ic obtained in the CPR (Fig. 4A). While
the MAR process is the cause of the striking staircase pattern
vividly apparent in the color maps in Figs. 2 and 3, the experiment
demonstrates that, in extended junctions, the bulk of the normal
current and the coexisting supercurrent actually arise from the
pairs that are shuttled incoherently and coherently, respectively,
in the wake of the lone injected electron. Within our resolution,
the shuttled pairs account for essentially the entire Josephson
supercurrent measured when V = 0 (above Tc of MoTe2).

The ability to measure how the amplitude IA and other param-
eters (n , τ , g , · · · ) vary with V in phase-tuned junctions may
lead to a more quantitative treatment of pairing correlations in the
finite-V regime, especially in unconventional platforms (13–15).
Understanding the conditions under which an intrinsic pairing
field can affect the supercurrent conveyed by the shuttled pairs will
provide a novel way to probe an unconventional superconductor.

Materials and Methods

A. Current Definitions. We provide a glossary of the current parameters and
definitions.

I is the total current applied to the SQUID.
IcS is the critical current of the SQUID.
I0 is the critical current of the auxiliary junction.
Ic is the critical current of the sample junction when V = 0.
IA(V) is the V -dependent amplitude of the Josephson supercurrent at finite V .
I1 is the prefactor of the sample junction in SI Appendix, Eq. S1.
In± are the maximum and minimum values of I in the sinusoidal curve with
V = Vn.
IN1 and IN0 are the normal currents in the sample and auxiliary junctions,
respectively, at finite V .
IN is the total normal current in the SQUID.
Is0 is the supercurrent in the auxiliary junction.
Is1 is the supercurrent in the sample junction.

B. Device Fabrication and Measurement. We used double-layer e-beam
lithography, in combination with tilted-substrate thermal evaporation, to fab-
ricate the S–I–S junction. Initially, the substrate is spin-coated with methyl
methacrylate (MMA) EL11 at 3,000 rpm for 30 s twice and baked at 175 ◦C for
5 min, followed by spin-coating with poly(methyl methacrylate) (PMMA) 950 A07
at 4,000 rpm for 60 s and then baked at 175 ◦C for 5 min. Next, the SQUID
pattern was e-beam written by using the Raith eLiNE writer with beam energy set
at 30 kV, aperture at 10μm, and the dose level at∼300μC/cm2. After developing
in methyl isobutyl ketone (MIBK) solution (MIBK:isopropanol [IPA] = 1:3) for
3 min and rinsing in IPA solution for 1 min, we fabricated a suspended bridge,
using a half-dose beam to remove the underlying MMA layer, while keeping
the suspended upper PMMA layer intact. The chip with the pattern defined was
placed inside a thermal evaporator equipped with a tiltable stage, with vacuum at
∼ 5 × 10−7 mbar. To remove residual resist and several (oxidized) monolayers
of MoTe2, we exposed the chip to a radiofrequency argon plasma in situ. After
cleansing, the first layer of Al (60 nm) was deposited at a rate of 10 Å/s. Then, a
mixture of Ar/O2 (10% O2) was injected into the chamber for 30 min at 5 × 10−3

mbar to oxidize the Al. A second layer of Al (120 nm) was next deposited with the
angle set at a new value to define an overlapping Al–AlOx–Al junction under the
suspended PMMA resist bridge. Finally, the device was immersed in acetone to
wash off the extra Al layer.

The I–V measurements were performed in a top-loading wet dilution refrig-
erator (Oxford Instruments Kelvinox TLM400) with base temperature of 15 to
20 mK. The dc bias and alternating-current excitation current was provided by
an Agilent 33220A function generator with a bias resistance of 100 kΩ. After
preamplification (NF LI-75A preamplifier), the SQUID voltage V was fed to a
lock-in amplifier (Stanford Research SR830) for dV /dI measurement, as well as a
nanovoltmeter (Keithley 2182A) for I–V measurement. Data above 300 mK were
acquired in a Heliox Helium-3 cryostat with base temperature of 340 mK.

Data Availability. Data to recreate curves in figures have been deposited in the
Harvard Dataverse (https://doi.org/10.7910/DVN/NAMOHV) (32). All study data
are included in the article and/or supporting information.
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