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Abstract
Background: Although B-acute lymphoblastic leukemia (B-ALL) patients' sur-
vival has been improved dramatically, some cases still relapse. This study aimed 
to explore the prognosis-related novel differentially expressed genes (DEGs) for 
predicting the overall survival (OS) of children and young adults (CAYAs) with 
B-ALL and analyze the immune-related factors contributing to poor prognosis.
Methods: GSE48558 and GSE79533 from Gene Expression Omnibus (GEO) and 
clinical sample information and mRNA-seq from Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) database were retrieved. 
Prognosis-related key genes were enrolled to build a Cox proportional model 
using multivariate Cox regression. Five-year OS of patients, clinical characteris-
tic relevance and clinical independence were assessed based on the model. The 
mRNA levels of prognosis-related genes were validated in our samples and the 
difference of immune cells composition between high-risk and low-risk patients 
were compared.
Results: One hundred and twelve DEGs between normal B cells and B-ALL 
cells were identified based on GSE datasets. They were mainly participated in 
protein binding and HIF-1 signaling pathway. One hundred and eighty-nine 
clinical samples were enrolled in the study, both Kaplan–Meier (KM) analysis 
and univariate Cox regression analysis showed that CYBB, BCL2A1, IFI30, and 
EFNB1 were associated with prognosis, CYBB, BCL2A1, and EFNB1 were used to 
construct prognostic risk model. Moreover, compared to clinical indicators, the 
three-gene signature was an independent prognostic factor for CAYAs with B-
ALL. Finally, the mRNA levels of CYBB, BCL2A1, and EFNB1 were significantly 
lower in B-ALL group as compared to controls. The high-risk group had a signifi-
cantly higher percentage of infiltrated immune cells.
Conclusion: We constructed a novel three-gene signature with independent 
prognostic factor for predicting 5-year OS of CAYAs with B-ALL. Additionally, 
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1   |   INTRODUCTION

B-acute lymphoblastic leukemia (B-ALL) is the most 
prevalent hematological malignancy in children (Filbin 
& Monje, 2019; Inaba & Mullighan, 2020). Current treat-
ments including chemotherapy, radiotherapy, targeted 
therapy, immune therapy, Chimeric Antigen Receptor 
T-Cell Immunotherapy (CAR-T), and allogenic hemato-
poietic stem cell transplantation (allo-HSCT) are effective 
with the cure rates approaching 90% for children, and the 
outcome has improved for young adults with the appli-
cation of pediatric-inspired regimens, but some patients 
especially young adults who experienced relapse remains 
dismal (Jabbour et al.,  2018; Malard & Mohty,  2020; 
Pui,  2020). Relapsed ALL remains the major cause of 
cancer-related deaths, the 5-year overall survival (OS) 
rates for relapsed ALL remain between 25% and 40% 
(Oskarsson et al.,  2016). For many B-ALL patients, re-
lapse was caused by the chemotherapy resistance (Huang 
et al., 2020), while chemotherapy resistance mainly due to 
molecular abnormalities, such as genetic, epigenetic, tran-
scriptomic, and proteomic alterations, these molecular 
abnormalities could be useful for better risk stratification 
and predicting treatment response of patients (Aberuyi 
et al., 2019).

Currently, prognostic factors of B-ALL are mainly fo-
cused on clinical factors, genetic alterations, and mini-
mal residual disease (MRD) for risk stratification (Inaba 
& Mullighan,  2020). Clinical factors containing age (in-
fant or ≥ 10 years), white blood cell (WBC) count at di-
agnosis (≥50 × 109/L), central nervous system (CNS) or 
testicular involvement, race (Hispanic or black), and 
male sex have been considered adverse prognostic fac-
tors (El Ashry et al.,  2021; Inaba & Mullighan,  2020; 
Lee et al.,  2021). Genetic alterations such as low hypo-
diploid, positive E2A-PBX1, or KMT2A rearrangement, 
Philadelphia chromosome-positive and Ph-like, etc. have 
been also recognized as worse prognostic factors (Inaba 
& Mullighan, 2020; Lee et al., 2021). In addition, positive 
MRD at end of remission induction was associated with 
an unfavorable prognosis. Recently, large researches indi-
cated that telomerase activity, dysregulated microRNAs, 
and even long non-coding RNA were regarded as prognos-
tic factors of B-ALL (Gao, 2021; Karow et al., 2021; Rashed 

et al.,  2019). However, few studies were reported that 
using some genes mRNA expression levels as 5-year OS 
prognostic biomarkers especially for CAYAs with B-ALL.

Gene Expression Omnibus (GEO) is an open-access 
data that stores microarray, next-generation sequenc-
ing, high-throughput sequencing data, and clinical in-
formation. Using this database, we can retrieve some 
experimental sequencing data (Barrett et al.,  2013; Das 
et al.,  2020). Additionally, Therapeutically Applicable 
Research To Generate Effective Treatments (TARGET) is 
a database specifically for childhood tumors, it contains 
ALL, Acute Myeloid Leukemia (AML), Kidney Tumors, 
Neuroblastoma and Osteosarcoma, and administrated 
by NCI's Office of Cancer Genomics and Cancer Therapy 
Evaluation Program, it has the right powerful and more 
targeted (Lyu et al., 2019). TARGET program contains raw 
genomic data as well as diagnostic, histologic, and clin-
ical outcome data (Grossman et al.,  2016). Therefore, to 
explore new genes that related to the prognosis of CAYAs 
with B-ALL and increase credibility of the result, GEO 
and TARGET databases were analyzed integratively.

Here, the main aim of this study was to identify the 
prognosis-related novel genes and construct a credible 
gene-based prognostic model of CAYAs with B-ALL using 
the two databases. Then, immune-related factors contrib-
uting to poor prognosis were also analyzed. This may help 
develop a personalized treatment to improve the survival 
of these patients.

2   |   MATERIALS AND METHODS

2.1  |  Data collection

Two gene expression profiles (GSE48558 and GSE79533) 
from the GEO database (http://www.ncbi.nlm.nih.gov/
geo/) were extracted (Barrett et al.,  2013), the clinical 
sample information and mRNA-seq (ALL Phase II) 
were obtained from the TARGET database (https://
ocg.cancer.gov/progr​ams/target). The platforms of 
GSE48558 (Cramer-Morales et al., 2013) and GSE79533 
(Hirabayashi et al.,  2017) were GPL6244 and GPL570, 
respectively. The gene expression data of 38 samples 
(11 normal B cells and 27 children B-ALL cells) from 

we discovered the difference of immune cells composition between high-risk and 
low-risk groups. This study may help to customize individual treatment and im-
prove prognosis of CAYAs with B-ALL.

K E Y W O R D S

B-acute lymphoblastic leukemia, bioinformatical analysis, differentially expressed genes, 
immune cells infiltration, prognostic signature

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target


      |  3 of 17Xiang et al.

GSE48558 and 229 samples (three normal B cells and 226 
children B-ALL cells) from GSE79533 were screened. 
The clinical samples lacking survival status or OS time 
and alive patients with follow-up less than 5 years were 
excluded. The samples with mRNA expression levels, 
survival status and OS time were retained. Ultimately, 
a total of 189 CAYAs with B-ALL samples were enrolled 
in this study. The specific screening process is shown in 
the Figure S1.

2.2  |  DEGs identification

DEGs between normal B cells and children B-ALL cell 
samples from two GSE datasets were analyzed by R soft-
ware “limma” package (http://www.bioco​nduct​or.org/
packa​ges/relea​se/bioc/html/limma.html). To select sig-
nificant DEGs, the data were standardized and filtered. 
p-value < .05 and |log2 Fold Change (FC)| ≥ 1 were set 
as the threshold. Furtherly, based on the threshold: 
log2FC ≥1, DEGs were defined as upregulated genes; 
correspondingly, log2FC ≤ −1, DEGs were defined as 
downregulated genes. Subsequently, upregulated or 
downregulated overlapped genes from two datasets were 
defined as co-upDEGs or co-downDEGs, co-DEGs were 
displayed with the online Venn diagram tool (available 
online: https://bioin​fogp.cnb.csic.es/tools/​venny/​index.
html).

2.3  |  GO and KEGG pathway 
enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were 
conducted using the online databases KOBAS 3.0 (http://
kobas.cbi.pku.edu.cn). GO terms and KEGG pathways 
were analyzed based on p value (corrected p < .05 and 
p < .05, respectively).

2.4  |  Protein–protein interaction (PPI) 
construction and key gene extraction

Co-DEGs were uploaded to the STRING online website 
version 11.0 (http://www. strin​g-db.org/), which is a PPI 
network functional enrichment analysis tool. To acquire 
the network graph of PPI, an interaction score > 0.4 was 
set as the threshold used for analysis. The Maximal Clique 
Centrality (MCC) algorithm, one of the most useful meth-
ods to select essential proteins from PPI networks (Chin 
et al., 2014), was used to identify key genes in the cyto-
Hubba plugin of Cytoscape.

2.5  |  Prognosis and survival analysis

B-ALL clinical samples information and mRNA-seq from 
TARGET data is open to the public. To obtain informa-
tion related to B-ALL survival, 189 clinical samples with 
information including survival status, OS time and mRNA 
expression levels were enrolled. R software “Survival” 
package (https://CRAN.R-proje​ct.org/packa​ge=survival), 
univariate Cox survival analysis and Kaplan–Meier (KM) 
survival analysis methods were applied to investigate the 
association between genes expression levels and the OS of 
patients. A value of p < .05 was the cutoff value to identify 
significant prognosis-related genes.

2.6  |  Prognostic risk score model 
construction and clinical characteristics 
relevance evaluation

Genes related to survival were obtained through the 
univariate Cox regression analysis and KM analy-
sis, then three key genes CYBB(OMIM#300481), 
BCL2A1(OMIM#601056), and EFNB1(OMIM#300035) 
were used to establish model via stepwise regression 
Akaike Information Criterion (AIC) method, finally 
prognosis-related gene signature was constructed via mul-
tivariate Cox regression analysis. Based on the Cox regres-
sion risk model coefficients, the risk score for each patient 
was calculated.

Coef (gene) was defined as the coefficient of gene correlated 
with survival. Expr (gene) was defined as the gene mRNA 
expression levels.

The 189 patients were divided into low-risk and high-
risk groups based on the median risk score. Finally, the 
predictive efficiency of the risk signature was evaluated 
using time-dependent receiver operating characteristic 
(ROC) curve. Chi-square test was used to analyze the re-
lation between risk score and clinical factors. Cox propor-
tional hazards regression analysis was used to estimate the 
independence of the prognostic value of signature.

2.7  |  Specimen collection and 
cell culture

Three peripheral blood (PB) samples got from healthy 
children; B-ALL cells Nalm-6, purchased from the Chinese 
Academy of Sciences (Shanghai, China). RS4;11 and SUP-
B15, obtained from American Type Culture Collection 
(USA). Nalm-6 and RS4;11 cell lines were cultured in 

Risk score= coef(gene1)×expr(gene1)+coef(gene2)×expr(gene2)

+coef(gene3)×expr(gene3)
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RPMI-1640 medium supplemented with 10% fetal bovine 
serum (FBS), 1% penicillin/streptomycin at 37°C in a hu-
midified atmosphere containing 5% CO2. SUP-B15 cell 
line was cultured in Iscove's modified Dulbecco's medium 
(IMDM) medium supplemented with 20% FBS, 1% peni-
cillin/streptomycin in humidified atmosphere of 5% CO2 
at 37°C.

2.8  |  Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR)

Total RNAs of PB mononuclear cells from three healthy 
children and B-ALL cells were extracted using TRIzol 
reagent (VICMED, China) following the manufac-
turer's protocol. Then, the purity and concentration 
of the isolated RNA were measured using NanoDrop 
2000c (Thermo Fisher Scientific, USA). cDNA was syn-
thesized through Reverse Transcriptase Kits (Vazyme, 
China) containing gDNA eraser (DNAse) following 
the manufacturer's instructions. The qRT-PCR reac-
tions of GAPDH (OMIM#138400, NM_001256799.3), 
CYBB (NM_000397.4), BCL2A1 (NM_001114735.2), 
and EFNB1 (NM_004429.5) were performed using 7500 
Fast Real-Time PCR System (Applied Biosystems, CA). 
Relative mRNA levels were calculated via the 2-ΔΔCT 
method. Primer sequences obtained from Sangon Biotech 
(Shanghai, China) are listed in Table 1.

2.9  |  Abundance analysis of 
immune cells

CIBERSORT (https://ciber​sort.stanf​ord.edu/) was used to 
evaluate the composition of 22 immune cell types between 
low-risk and high-risk groups.

2.10  |  Statistics

All statistics were performed in R software (ver-
sion 4.0.5) and IBM SPSS Statistics (version 21.0). 
Measurement data of three experiments were ex-
pressed as mean ± standard deviation. Student's t test 
was used to evaluate difference of data between two 
groups, and the chi-square test was applied to assess 
categorical variables. The Cox proportional hazards 
regression model was used to analyze the prognostic 
value of each parameter. A value of p < .05 was consid-
ered statistically significant.

3   |   RESULTS

3.1  |  DEGs between normal B cells and 
children B-ALL cells

To illustrate the study clearly, a flow diagram was designed 
to elucidate the research (Figure  1). The two datasets 
GSE48558 and GSE79533 were collected from the GEO 
database. All gene expression values were standardized, 
gene expression values of GSE79533 were log2 converted. 
Then, gene expression values of normal B cells and chil-
dren B-ALL cells were analyzed by R software “limma” 
package. Six hundred and eighty-two and 494 significantly 
upregulated DEGs were screened from the GSE48558 and 
GSE79533 datasets respectively, correspondingly 696 and 
578 significantly downregulated DEGs. Cutoff standard 
was p-value .05, |log 2FC|) ≥ 1. The top significant 20 DEGs 
from the GSE48558 and GSE79533 were displayed in heat-
map (Figure 2a,b), and all DEGs were shown in Volcano 
plots (Figure  2c,d). One hundred and twelve co-DEGs 
containing 60 upregulated and 52 downregulated genes 
were screened by visual analysis method of Venn diagram 
(Figure 2e,f).

3.2  |  GO analysis and KEGG pathway 
enrichment analysis of DEGs

GO and KEGG analysis of DEGs were performed 
using KOBAS 3.0. The top 20 enrichments analysis are 
shown in Figure 3a,b. GO terms of DEGs were mostly 
located in plasma membrane, cytosol, cytoplasm, in-
tegral component of membrane, and involved in pro-
tein binding and positive regulation of transcription 
by RNA polymerase II (Figure 3a); while KEGG path-
ways of DEGs were mostly as follows: HIF-1, PD-1 
checkpoint, TNF, Phospholipase D, Hippo, and MAPK 
(Figure 3b).

T A B L E  1   Primer sequences

Gene
Primer sequences (F: forward; R: 
reverse)

CYBB F: 5′-AAGATGCGTGGAAACTACCTAA-3′

R: 5′-TTTTTGAGCTTCAGATTGGTGG-3′

BCL2A1 F: 5′-AGAATCTGAAGTCATGCTTGGA-3′

R: 5′-CTCCTTTTCCATCACTTGGTTG-3′

EFNB1 F: 5′-CAGAGCAGGAAATACGCTTTAC-3′

R: 5′-AATCATGGTGCTTCTTGAACTC-3′

GAPDH F: 5′-CTGGGCTACACTGAGCACC-3′

R: 5′-AAGTGGTCGTTGAGGGCAATG-3′

Abbreviations: BCL2A1, NM_001114735.2; CYBB, NM_000397.4; EFNB1, 
NM_004429.5; GAPDH, NM_001256799.3.

https://cibersort.stanford.edu/
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3.3  |  PPI network and key genes

In order to select key genes, 112 co-DEGs were analyzed 
using the PPI network in STRING online database and 
Cytoscape software (Figure  4a). Subsequently, they were 
calculated using MCC calculation method in the cytoHubba 
plugin of Cytoscape, 10 key genes (TLR4, ITGB2, CYBB, 
CCN2, BCL2A1, IRF4, FAS, IFI30, EFNB1, and SLIT2) with 
highest MCC scores were obtained (Figure 4b,c).

3.4  |  Key genes related to survival

Based on the clinical information and mRNA-seq expres-
sion data from TARGET data matrix, 10 key genes associ-
ated with the 5-year OS of patients were explored using 
KM survival analysis and univariate Cox survival analysis, 
respectively. KM survival analysis revealed that four genes 
(CYBB, BCL2A1, IFI30, and EFNB1) were associated with 
5-year OS (p < .05, Figure  5a), but other six genes were 
not (p > .05, Figure 5b); Univariate Cox survival analysis 
identified seven key genes (CYBB, CCN2, BCL2A1, FAS, 

IFI30, EFNB1, and SLIT2) were associated with 5-year 
OS (p < .05, Table 2). Therefore, overlapped genes CYBB, 
BCL2A1, IFI30, and EFNB1 identified by the two survival 
analysis methods were regarded as the key genes related 
to prognosis.

3.5  |  Multivariate Cox regression 
analysis and construction of risk 
score signature

Based on survival status, OS time and the mRNA ex-
pression levels of genes from 189 patients, three key 
prognosis-related genes were selected to construct the 
prognostic-related gene signature with stepwise method 
using the AIC. Finally, a predictive model for 5-year OS 
in CAYAs with B-ALL was prosed, risk score = expr (BC
L2A1) × 0.193929-expr(EFNB1) × 0.22053-expr(CYBB) × 0
.14097 (Table 3). In 189 clinical samples, cases with risk 
scores less than or equal to 0.877765(median risk score) 
were defined as low-risk group, others were defined as 
high-risk group.

F I G U R E  1   The flow chart of data 
processing in this work
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F I G U R E  2   DEGs Identification. (a–b) Heatmap exhibited top 20 significant DEGs from GSE48558 and GSE79533 datasets. (c–d) 
Volcano map showed all significant DEGs from GSE48558 to GSE79533 datasets. (e–f) Authentication of 112 co-DEGs in GSE48558 and 
GSE79533 datasets. Purple and yellow circles meant GSE48558 and GSE79533 datasets, respectively
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3.6  |  Predictive capability and 
efficiency of the prognostic signature

To evaluate the predictive value and efficiency of 
the prognostic signature, ROC curve was drawn 
(Figure 6a). Area under the curve (AUC) was used to 
assess the discriminative ability of prediction models, 
in the 189 samples, AUC of the risk signature 5-year OS 
was 0.729. In addition, the patients were classified into 
low-risk and high-risk groups based on the median risk 
score. The result illustrated that high-risk patients had 
lower OS compared to low-risk patients. (Figure 6b–d; 
Table 4).

3.7  |  Analysis of the relation between 
risk score and clinical characteristics and 
Evaluation of the independence of the 
three-gene-based prognostic signature

To investigate whether any correlation existed between 
risk score and clinical characteristics, we compared risk 
score with different clinical features. The result dem-
onstrated that no significant differences were found 
between high-risk and low-risk groups in terms of 
age, gender, WBC count, CNS grade, MRD at day 29, 
BCR-ABL1 and DNA Index (p < .05; Table  5). To fur-
therly evaluate the independence of the signature for 

F I G U R E  3   Enrichment analysis of top 20 significant co-DEGs. (a) GO analysis illustrated the functional pathway. (b) Top 20 pathway 
enrichment was displayed by KEGG analysis



8 of 17  |      Xiang et al.

predicting 5-year OS, we performed univariate and mul-
tivariate Cox regression analysis to calculate p value 
and hazard ratio in terms of risk score and different 
clinical characteristics. The result of two analysis meth-
ods both indicated that age, gender, WBC count, CNS 
grade, MRD, BCR-ABL1, and DNA Index were all not 
significantly associated with the 5-year OS of CAYAs 
with B-ALL, while risk score was significantly related to 
the 5-year OS and was an independent prognostic factor 
(Figure 7a,b; univariate p < .001, HR 2.434; multivariate 
p < .001, HR 2.325).

3.8  |  RNA expression levels detection

In order to verify the mRNA expression levels of CYBB, 
BCL2A1, and EFNB1 in children B-ALL, PB of three 
healthy children and B-ALL cell lines (Nalm-6, RS4;11 
and SUP-B15) were selected as experiment samples. The 
result of qRT-PCR method showed that expression levels 
of CYBB, BCL2A1, and EFNB1 were significantly lower in 
B-ALL cell lines than the PB samples from three healthy 
children (Figure 8a–c). Perhaps they all played the role of 
tumor suppressor genes.

F I G U R E  4   PPI network and key genes. (a) All co-DEGs were constructed by STRING online database, the confidence level was greater 
than or equal to 0.4. (b–c) Top 10 key genes and their scores were calculated by MCC method
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F I G U R E  5   KM survival analysis of 10 key genes. (a) CYBB, BCL2A1, IFI30, and EFNB1 were associated with survival (p < .05); (b) 
TLR4, ITGB2, IRF4, SLIT2, FAS and CCN2 were not related to survival (p >  .05)
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3.9  |  Immune cell infiltration

To understand the mechanism contributing to the poor 
prognosis, we compared the difference of 22 immune cells 
composition between high-risk and low-risk groups via 
CIBERSORT algorithm. Compared with low-risk group, T 
cells CD4 memory resting (p = .031), monocytes (p < .001), 
and eosinophils (p  =  .038) occupied higher proportions 
of infiltration in high-risk group. However, naïve B cells 
(p = .024), plasma cells (p = 0.043), and macrophages M1 
(p =  .031) were significantly more abundant in the low-
risk group than in the high-risk group (Figure 9).

4   |   DISCUSSION

In this study, 112 co-DEGs between normal B cells and 
children B-ALL cells from two GEO datasets were identi-
fied by R software “limma” package, GO terms analysis 
mainly enriched in positive regulation of transcription 
by RNA polymerase II, protein binding, signal transduc-
tion, and zinc ion binding; KEGG analysis mainly en-
riched in pathways as follows: HIF-1, PD-1 checkpoint, 
TNF, Phospholipase D, Hippo, and MAPK, numerous 
researches have reported these signaling pathways were 
activated in the development progress of B-ALL (Inaba & 
Mullighan, 2020; James et al., 2019; Tran & Hunger, 2020; 
Wellmann et al.,  2004; Wunderlich et al.,  2021; Yang 
et al.,  2020). Besides, 10 key genes were screened by 

cytoHubba plugin in Cytoscape, among them, four key 
genes (CYBB, BCL2A1, IFI30, and EFNB1) were revealed 
to be associated with 5-year OS of patients by KM and 
univariate Cox regression analysis. Then, CYBB, BCL2A1, 
and EFNB1 were used to construct risk model via stepwise 
regression AIC and multivariate Cox regression analy-
sis, the regression coefficient was −0.14097, 0.193929, 
and −0.22053, respectively. This result indicated the CYBB 
or EFNB1 mRNA expression level was negatively associ-
ated with the 5-year OS of patients, while BCL2A1 mRNA 
expression level showed contrary correlation. Garcia-
Manero et al. showed that higher level of CYBB was as-
sociated with longer survival in AML or myelodysplastic 
syndromes (MDS) patients (Garcia-Manero et al.,  2012). 
EphB1, the receptor of EFNB1, functioned as a tumor sup-
pressor in AML, EphB1 repression was associated with 
poor prognosis of pediatric AML (Kampen et al.,  2015). 
Based on the median risk score, the patients were divided 
into low-risk and high-risk groups and 5-year OS was cal-
culated. Without exception, high-risk patients had lower 
OS compared to low-risk patients. Furthermore, ROC 
curve analysis was utilized to estimate the efficiency of 
prognostic risk model, the AUC was 0.729, and the result 
indicated that this three-gene-based prognosis signature 
had a strong ability to predict the 5-year OS of CYAYs 
with B-ALL.

To furtherly estimate the predictive value of three-
gene-based signature, we investigated the correlation 
between the risk score and clinical features (age, gen-
der, WBC count, CNS grade, MRD, BCR-ABL1, and DNA 
Index), the result showed that no statistically significant 
relation existed between them. Additionally, to assess 
the independence of the signature, we compared the risk 
score with clinical features, the result of Cox regression 
indicated that risk score was confirmed as an independent 
factor for predicting the 5-year OS of CYAYs with B-ALL, 
and high risk score was negatively associated with the 5-
year OS.

To validate the mRNA levels, we used qRT-PCR method 
to detect the mRNA levels of CYBB, BCL2A1, and EFNB1 
in samples from healthy donors and B-ALL cell lines. 
The result showed that CYBB, BCL2A1, and EFNB1 ex-
pression levels were all significantly lower in B-ALL cells 
than controls. Similarly, Li et al. and Ramli et al. indicated 
that CYBB and BCL2A1 expression levels were both lower 

T A B L E  2   Univariate Cox survival analysis

Gene HR p value

TLR4 1.063833 .173326

ITGB2 0.959475 .561492

CYBB 0.84713 .000332

CCN2 0.907505 .01326

BCL2A1 1.229886 .000125

IRF4 1.121806 .087944

FAS 1.224464 .009774

IFI30 1.225176 .000764

EFNB1 0.780803 2.21E-05

SLIT2 0.939958 .036937

Abbreviation: HR, hazard ratio.

Gene Coefficient HR SE(coefficient) Z p value

EFNB1 −0.22053 0.80209 0.055081 −4.00383 6.23E-05

BCL2A1 0.193929 1.21401 0.053377 3.633161 .00028

CYBB −0.14097 0.868517 0.044627 −3.1588 .001584

Abbreviation: HR, hazard ratio.

T A B L E  3   Multivariate Cox regression 
analysis for CYBB, BCL2A1, and EFNB1
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F I G U R E  6   Assessment of the prognosis risk model. (a) The 5-year ROC curves in the 189 clinical samples from the TARGET dataset. 
(b) Survival status and survival time of patients in low-risk and high-risk groups. Red and green meant living and dead patients, respectively. 
(c) Patients' risk scores in the low-risk and high-risk groups. Red and green meant living and dead patients, respectively. (d) BCL2A1, 
EFNB1, and CYBB mRNA expression levels in each patient
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in leukemia than normal controls (Li et al., 2009; Ramli 
et al., 2021).

Previous researches have shown CYBB acted as a driver 
to promote leukemia cell proliferation and suppress apop-
tosis (Abdul-Aziz et al.,  2019; Marlein et al.,  2017), and 
regulated self-renewal of leukemic stem cells. Irwin et al. 
suggested that CYBB mediated tyrosine kinase inhibitors 
(TKI) resistance (Irwin et al., 2015). BCL2A1, gene encoding 
a member of the BCL-2 family protein, it could mediate drug 
resistance such as asparaginase resistance in B-ALL (Chien 
et al., 2015), cytarabine and doxorubicin resistance in AML 
(Simpson et al., 2006), fludarabine and ABT-737 resistance 
in chronic lymphocytic leukemia (CLL) cells (Morales 

et al.,  2005; Olsson et al.,  2007; Ottina et al.,  2012; Vogler 
et al., 2009). In addition, BCL2A1 was a critical mediator of 
B-cell survive and regulated by Spleen tyrosine kinase and 
Bruton tyrosine kinase, and was associated with advance-
ment of hematological malignancies as well as solid tumor 
(Sochalska et al., 2016; Vogler, 2012). EFNB1 was a critical 
factor in stromal-mediated support of hematopoiesis, and 
help to maintain the hematopoietic stem niche (Arthur 
et al., 2019). However, EphB1 as a tumor suppressor which 
mediated growth inhibition, apoptosis, and cycle arrest of 
EphB1-expressing AML cells (Kampen et al.,  2015). Eph/
ephrin has been implied in tumorigenesis, metastasis, inva-
sion, and drug resistance in some human cancers (Iwasaki 
et al., 2018; Kataoka et al., 2002; Vermeer et al., 2013).

The tumor microenvironment (TME) was an important 
factor in the development and progression of ALL, and im-
mune cell infiltration was a component of TME (Cencini 
et al.,  2021; Pastorczak et al.,  2021; Simioni et al.,  2021; 
Witkowski et al., 2020). For a better understanding the rea-
sons contributing to poor prognosis, we evaluated the lev-
els of 22 tumor-infiltrating immune cells via CIBERSORT 

T A B L E  4   Assessment of 5-year OS in two groups

Group OS (%) Lower 95%
Upper 
95%

High risk 44.7 35.7 56

Low risk 74.5 66.2 83.9

Abbreviation: OS, overall survival rate.

Characteristic

Group

C2
p 
valueHigh risk Low risk

Gender 0.641 .423

Female 44(46.81%) 50(53.19%)

Male 50(52.63%) 45(47.37%)

Age 1.411 .235

<18 89(48.90%) 93(51.10%)

≥18 5(71.43%) 2(28.57%)

WBC count 0.043 .837

<50 × 109 ↑/L 59(49.17%) 61(50.83%)

>50 × 109 ↑/L 35(50.72%) 34(49.28%)

CNS grade 0.370 .831

CNS 1 75(49.67%) 76(50.33%)

CNS 2 17(48.57%) 18(51.43%)

CNS 3 2(66.67%) 1(33.33%)

MRD at Day 29 1.274 .529

<0.01% 19(52.78%) 17(47.22%)

≥0.01% 63(47.37%) 70(52.63%)

unknown 12(60.00%) 8(40.00%)

BCR-ABL1 0.000 1.0

Negative 92(50%) 92(50%)

Positive 2(40.00%) 3(60.00%)

DNA index 0.144 .705

1–1.16 81(50.31%) 80(49.69%)

>1.16 13(46.43%) 15(53.57%)

Abbreviations: C2, chi-square; CNS, central nervous system; MRD, minimal residual disease; WBC, white 
blood cell.

T A B L E  5   Correlation between risk 
score and clinical characteristics
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analysis. We found that six immune infiltrating cells, in-
cluding naïve B cells, plasma cells and macrophages M1, T 
cells CD4 memory resting, and monocytes and eosinophils, 
were significantly associated with the prognostic model 

risk score, this result demonstrated there were different im-
mune status between high-risk and low-risk groups. Similar 
results have been observed in several studies (Cencini 
et al., 2021; Pastorczak et al., 2021; Witkowski et al., 2020).

F I G U R E  7   The independency of 
the risk model was assessed based on 
univariate Cox regression analysis (a) and 
multivariate Cox regression analysis (b) 
Bar length represented variable of Hazard 
ratio 95% CI

F I G U R E  8   Relative RNA expression levels of CYBB, BCL2A1, and EFNB1 in PB from three healthy children and B-ALL cell lines 
(Nalm-6, RS4;11 and SUP-B15). (p < .05, *; p < .001, ***). EFNB1, NM_004429.5; BCL2A1, NM_001114735.2; CYBB, NM_000397.4
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In the present study, it was found that the novel three-
gene signature-related prognostic model had not been re-
ported. More notably, as regards immune infiltrating cells 
in TME, we found significant difference existed between 
high-risk and low-risk patients. These findings could help 
better risk stratification of CAYAs with B-ALL and guide 
individual treatment opinion. Additionally, the mRNA 
expression levels of three genes in B-ALL cells were con-
firmed statistically different compared with controls by 
qRT-PCR assay rather than relying on the database com-
pletely, this increased credibility of result.

However, there were several limitations in this study. 
First, the expression and the prognostic roles of CYBB, 
BCL2A1, and EFNB1 at protein level were not validated, 
further investigation was warranted in our clinical sam-
ples. Second, the underlying molecular mechanisms of 
CYBB, BCL2A1, and EFNB1 were not performed in vivo 
and in vitro experiments, further exploration may be valu-
able. Third, biological information of other DEGs might 
be overlooked. Fourth, because of limited sample size, the 
predictive efficiency of three-gene-based prognosis signa-
ture was not validated in external samples. These deficien-
cies will be the focus of our next studies.

5   |   CONCLUSION

In summary, on the basis of profiles (GSE48558 and 
GSE79533) and TARGET data matrix, a three-gene risk 
score signature was constructed and the signature was 

an independent prognostic factor for CAYAs with B-
ALL; more importantly, immune cells infiltration con-
taining T cells CD4 memory resting, monocytes, and 
eosinophils were highly abundant in high-risk patients. 
To our knowledge, no such study has been proposed 
previously. Only detected mRNA expression, the pa-
tients are stratified into high risk and low risk, which 
significantly reduces the cost of sequencing and is more 
routine in practice. The information gained from this 
study help to assess the prognosis of CAYAs with B-
ALL and advance individualized treatment which will 
further improve the quality of life and the cure rate for 
CAYAs with B-ALL.
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