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Predicting the dynamics of community composition and functional attributes responding to
environmental changes is an essential goal in community ecology but remains a major challenge,
particularly in microbial ecology. Here, by targeting a model system with low species richness, we
explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD)
microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a
comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant
microbial lineages and key functional genes were observed regardless of the large-scale
geographical isolation. Functional and phylogenetic β-diversities were significantly correlated,
whereas functional metabolic potentials were strongly influenced by environmental conditions and
community taxonomic structure. Using advanced modeling approaches based on artificial neural
networks, we successfully predicted the taxonomic and functional dynamics with significantly higher
prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with
relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages
may be better predicted at the functional genes level rather than at taxonomic level. Furthermore,
relative metabolic potentials of genes involved in many key ecological functions (for example,
nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to
increase under more acidic and metal-rich conditions, indicating a critical strategy of stress
adaptation in these extraordinary communities. Collectively, our findings indicate that natural
selection rather than geographic distance has a more crucial role in shaping the taxonomic and
functional patterns of AMD microbial community that readily predicted by modeling methods and
suggest that the model-based approach is essential to better understand natural acidophilic
microbial communities.
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Introduction

Given the critical importance of species biogeogra-
phy for biological conservation and climate change
management, the development and application of
statistic models for predicting the species distribu-
tion are an essential issue in community ecology
(Elith and Leathwick, 2009). In the past two decades,

the number of studies involved in species distribu-
tion models of plants and animals has increased
markedly, providing ecological insights into the
assessment of impacts and consequences of environ-
mental changes on natural communities and ecosys-
tems (Guisan and Thuiller, 2005; Guisan et al., 2006;
Austin, 2007; Pearman et al., 2008).

Microorganisms are arguably the most diverse and
abundant group of organisms on Earth (Fierer and
Jackson, 2006), driving the bulk of biogeochemical
cycles on the planet and influencing the functioning
of virtually all ecosystems. During the last few years,
a large number of phylogeny/taxonomy-based sur-
veys have focused on the spatio-temporal dynamics
and biogeographic patterns of microbial commu-
nities, revealing environmental variations (that is,
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contemporary environmental conditions) (Lozupone
and Knight, 2007; Lauber et al., 2009) or spatial
isolation (that is, historical events and disturbances)
(Whitaker et al., 2003; Martiny et al., 2011) are the
major factors shaping the large-scale ecological
breadth of microbes. However, these studies are
mainly limited to descriptive approaches rather than
predictive model-based analyses (Gonzalez et al.,
2012). With the recent development of high-
throughput molecular technologies and advanced
bioinformatics tools, there have been increasing
attempts to predict the biogeographic distributions
of microbes across diverse ecosystems (King et al.,
2010; Larsen et al., 2012; Bokulich et al., 2013;
Ladau et al., 2013; Szabo et al., 2013). These
pioneering studies demonstrate that it is now
possible to obtain more comprehensive understand-
ing of microbial communities and their connections
with climate change and biogeochemical cycling
using vastly increased data sets.

Although the novel predictive strategies based on
phylogenetic/taxonomic profiles have significantly
advanced the study of microbial communities from
the descriptive nature to the predictive science, the
underlying mechanisms of how changes in these
spatio-temporal variations of biogeographic pattern
affect the processes of ecosystem functioning remain
largely unknown, especially in a predictive scheme.
As a broad range of functional variation may occur
among closely related organisms, taxonomic distri-
butions are assumed to be ambiguous in assessing
the response of microbial communities to environ-
mental changes (Green et al., 2008) and may be of
little value in predicting the functional dynamics in
ecosystems. Thus, the functional traits (for example,
gene content and metabolic potential), which deter-
mine the habitat-related attributes of a specific
microbial species, have recently received a great
deal of attention. Recent studies have highlighted the
critical importance of trait-based approaches for
studying microbial biogeography (Green et al.,
2008; Raes et al., 2011; Barberán et al., 2014). The
investigation of functional traits distribution across
spatial/temporal scales and along geochemical gra-
dients will help elucidate how natural communities
and their ecological functions respond to environ-
mental changes (Green et al., 2008; Bryant et al.,
2012; Fierer et al., 2012) and subsequently identify
the interaction of ecological processes affecting
biogeographic patterns (Hanson et al., 2012). Conse-
quently, by combining the advanced modeling
strategy and trait-based approaches, never has there
been a greater opportunity for investigating the
dynamics of functional community structure in
space and time.

Community assembly is previously suggested to be
deterministic in trait-based functional structure but
historically contingent in taxonomic composition,
indicating that environmental conditions would
determine the types of ecological niches available
for specific functional groups, whereas species

compositions with similar physiological fitness are
stochastically influenced by the history (Fukami
et al., 2005). Accordingly, the responses of func-
tional traits specifically associated with the habitat-
related attributes of microbial taxa may be more
deterministic to environmental changes compared
with those of taxonomic community composition.
Thus, we hypothesized that natural microbial
assemblages may be better predicted at the func-
tional genes level rather than species. Here, we use
the acid mine drainage (AMD) model system to test
this hypothesis. These acidic, metal-rich drainages
arise largely from the microbially mediated oxidative
dissolution of sulfide minerals (for example, pyrite)
and represent a major environmental problem world-
wide (Baker and Banfield, 2003; Johnson and
Hallberg, 2003). The microbial and geochemical
simplicity of AMD systems makes them ideal targets
for a quantitative, genomic-based test of our assump-
tion. We applied a comprehensive functional gene
array (GeoChip 4.0) (Tu et al., 2014) and a recently
developed modeling approach (Larsen et al., 2012) to
40 environmental samples that were previously
collected from diverse AMD sites across Southeast
China with detailed microbial community composi-
tion and associated geochemical properties (Kuang
et al., 2013). Our results demonstrated that the
patterns of taxonomic and functional community
structure were environmentally dependent and
readily predictable with significant higher prediction
accuracies of metabolic potentials compared with
relative microbial abundances. These findings
provide ecological important insights into the adap-
tive strategies of how these microorganisms
can survive and thrive in the extreme AMD
environment.

Materials and methods

Sample description
A total of 40 AMD samples that are distinct with
respect to environmental characteristics were pre-
viously collected across Southeast China. Sampling
procedure, physicochemical analyses, DNA extrac-
tion, bar-coded 16S ribosomal RNA pyrosequencing
and data processing were described previously
(Kuang et al., 2013) (also see a brief description in
Supporting Information). The sequences reported in
this paper have been deposited in the European
Nucleotide Archive database (accession no.
PRJEB9908). Total community genomic DNAs were
profiled with the comprehensive microarray Geo-
Chip 4.0 (Tu et al., 2014) and subsequently analyzed
with the corresponding data of geochemistry and
microbial community composition (see below).

GeoChip analysis and data processing
The general pipeline of DNA labeling, GeoChip
processing and data normalization was described
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previously (He et al., 2007; Tu et al., 2014). The
details of GeoChip analysis are available in Support-
ing Information. The GeoChip 4.0 covers major
functional genes involved in biogeochemical pro-
cesses and stress toleration and adaptation, and
generates standard and comparable data sets
appropriate for subsequent tests of ecological the-
ories and biogeographic hypotheses (He et al., 2012).
A suite of genes targeting a specific pathway of
biogeochemical process are grouped into a func-
tional gene category. The diversity of a given gene
can be estimated by the detection of various 50-mer
oligonucleotide probes, whereas its functional
metabolic potential (that is, gene abundance) is
reflected by the sum of signal intensities of these
detected probes. In this study, we specifically
focused on the commonly detected genes involved
in the key biogeochemical and ecological processes
in AMD ecosystems, including C, N, S cycling,
P utilization, energy processes, stress responses,
heavy metal and antibiotic resistance. To increase
the confidence of GeoChip hybridization intensity
data, only those probes detected in at least half of the
total samples were retained for subsequent analyses.
Totally, 114 genes that met these criteria
were selected (Supplementary Table S1) and the
GeoChip data set reported in this paper is publicly
available at http://ieg.ou.edu/4download/.

Prediction model of microbial assemblages and
functional metabolic potentials
A modeling approach based on the artificial neural
networks (ANN) was applied to predict the microbial
community composition and functional metabolic
potentials in response to the environmental changes.
This method was developed to capture and model
the complex interactions between microbial taxa and
their environment, and was demonstrated to be able
to accurately predict natural microbial assemblages
(Larsen et al., 2012). Here, we further apply this
strategy to predict the functional metabolic poten-
tials. Significant relationships of the interactions
between nodes (that is, environmental parameters,
microbial taxa or functional genes) were estimated
using Bayesian network inference with Java Objects
(BANJO v2.2.0) (Smith et al., 2006; Larsen et al.,
2012) (for example, see Supplementary Figure S1).
The relationships revealed by the consensus network
generated from the output of BANJO highest-scoring
networks could be expressed as a set of formulas
such that the value of every node is a function of the
value of its parent nodes (Larsen et al., 2012).
Selected nodes were subsequently incorporated into
the nonlinear equation modeling and these ANN-
based functions were derived using Eureqa v 0.99.9
beta software (Schmidt and Lipson, 2009). The best-
fitted equations based on the optimality criteria were
then used for the prediction. In the formula search,
data from 30 randomly selected samples were used
for model training. After the generation and selection

of the best-fitting equation, the data of the remain-
ing 10 samples were imported to validate this
equation. Statistical significance of the model was
tested by a randomized permutation-based
approach (reshuffled 10 000 times) as described
previously (Larsen et al., 2015). In addition, two
null models were performed to test whether the
predicted model has better correlation with biolo-
gical observation than these null models: (i) setting
all taxa's predicted relative abundance/metabolic
potentials equal to the average taxa abundance/
metabolic potentials across all samples, (ii) setting
all taxa abundances/metabolic potentials equal to
the minimum observed values across all samples
(Larsen et al., 2015). Details of the modeling
method are available in Supporting Information.

Comparison of prediction accuracies between
different biotic levels
To test our hypothesis that the dynamics of func-
tional metabolic potentials in response to environ-
mental changes are more predictable than those of
microbial taxa, permutation-based Bray–Curtis simi-
larities between predicted and observed values at
different biotic levels were calculated to provide a
statistic estimation of prediction accuracy (Larsen
et al., 2012). The differences of these prediction
accuracies were subsequently analyzed by t-test
(pairwise t-test) and the statistical significance (P-
value) was adjusted by the Bonferroni correction and
the false discovery rate (Benjamini algorithm),
respectively, to deal with the non-independent data
sets (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001). In this study, three microbial
taxonomic/phylogenetic levels including phylum,
order and operational taxonomic unit (defined at
the 97% 16S ribosomal RNA similarity level) were
chosen. Specifically, those microbial taxa with high
relative abundance (that is, phyla 41%, orders
40.1%) or wide distribution (that is, operational
taxonomic units observed in at least half of the total
samples) were used for the analyses. For functional
metabolic potentials, models were respectively fitted
using original signal intensities and relative values
that were normalized between 1 and 100 according
to this formula:

Func norm j
i ¼ 1� Max Funcj

� �� Funcji
Max Funcj

� ��Min Funcj
� �

 !
´ 99þ 1

where Func norm j
i is the normalized value for the

metabolic potential of gene j at sample i, Funcji is
the observed value for the metabolic potential
of gene j at sample i, and Max and Min give the
maximum and minimum values for the metabolic
potential of gene j across all samples. Given that
many microbial taxa and a large number
of GeoChip probes were not widely detected across
all samples, the difference of predictive power at
different biotic levels may be affected by the
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rarely observed taxa/probes. Thus, we further
investigated the predictive power at various taxa/
probes occurrences (that is, percentage of the
total samples where a given taxa/probe was
detected).

Statistical analyses
Various packages were used for the implementation
of statistical analyses in R (R Core Team, 2014).
Environmental variables were standardized to zero
mean and unit variance using ‘decostand’ function in
the vegan package (version 2.3-0, Oksanen et al.,
2015). Bray–Curtis distances were used to construct
the dissimilarity matrices for microbial community
composition and functional community structure,
whereas Euclidean distances were calculated using
standardized environmental variables and geogra-
phical locations (vegan 2.3-0). Permutational multi-
variate analysis of variance (‘Adonis’ function),
analysis of similarity (ANOSIM, ‘anosim’ function)
and multi-response permutation procedure analysis
(MRPP, ‘mrpp’ function) were conducted to test the
statistical significance of difference between three a
priori classified groups of samples based on the
clustering of geochemical data (see below) (vegan
2.3-0). Mantel tests were performed to reveal the
correlation between two dissimilarity matrices
(vegan 2.3-0). Principal component analysis was
used to link the general pattern of functional
community structure to distinct environmental con-
ditions and convert a set of variables from possibly
correlated to linearly uncorrelated (vegan 2.3-0). To
quantitatively evaluate the relative influence of
environmental properties, geographical distribution
and microbial community composition to the diver-
sities (Simpson index) and metabolic potentials of
functional genes (De’ath, 2007; Kuang et al., 2013),
aggregated boosted tree analysis was applied using
‘gbm’ function with 5000 trees used for the boosting,
10-fold cross-validation and three-way interactions
within the gbm package (version 2.1.1). Using
individual variables assumed to be significantly
correlated with each other would result in a large
number of unplanned comparisons and so severely
inflate Type I errors (John et al., 2007). To reduce
these impacts, orthogonal composite variables
including PCsEnv, PCLocation and PCsTaxa derived from
principal component analysis were computed
respectively before the aggregated boosted tree
analyses and only PCs with an eigenvalue 41 were
retained. The correlations of functional metabolic
potentials with the environmental properties and
relative microbial abundances were fitted
with generalized linear models (glm). Hierarchical
cluster analysis was performed based on average
linkage method (hclust argument) with Euclidean
distance measure (dist argument) and visualized
with heatmap.2 function (gplots 2.17.0, Warnes
et al., 2015).

Results

Patterns of taxonomic and functional community
structure among distinct environmental conditions
Prior to adopting the prediction procedures, we first
investigated whether the patterns of microbial
community composition and functional community
structure share mathematically describable relation-
ships with environmental conditions (Larsen et al.,
2012). The environmental properties of our samples
(Supplementary Table S2 and also see
Supplementary Table S5 in Kuang et al., 2013)
represented the typical range of geochemical condi-
tions in AMD environments (Johnson and Hallberg,
2003), although more extreme conditions (for exam-
ple, extremely low solution pH between 0.3 and 1.2)
have been reported in the Richmond Mine in
California (Druschel et al., 2004; Denef et al., 2010;
Mueller et al., 2010). Hierarchical cluster analysis
based on the geochemical data showed that the
analyzed AMD samples were well separated into
three groups qualitatively owing to the distinct
environmental conditions (Figure 1a). Specifically,
samples defined in Group 1 were associated with
more extremely acidic conditions (pH=2.2 ± 0.07,
mean± s.e.) and contained significantly higher con-
centrations of total organic carbon (22 ±4.8 mg l− 1,
t-test, comparing Group 1 with Group 2/3, respec-
tively, with both Po0.05), total phosphorus (P)
(6.5 ± 2.5mg l− 1, Po0.05) and heavy metals such as
arsenic (As) (24 ± 9.9mg l−1, Po0.05) and cadmium
(Cd) (1.5 ± 0.59mg l− 1, Po0.05), whereas samples
defined in Group 2 were characterized by
relatively moderate pH levels (pH=2.4 ± 0.08) and
significant higher dissolved oxygen concentration
(6.2 ± 1.3mg l− 1, Po0.05). In comparison, the
samples defined in Group 3 were apparently fea-
tured by higher pH values (pH=3.0 ± 0.09),
significantly lower electrical conductivity
(2605 ±330 μS cm−1, Po0.05) and sulfate concentra-
tion (2034 ±384mg l− 1, Po0.05). Correspondently,
the taxonomic microbial community composition
(Figure 1b, Supplementary Table S3) and functional
community structure (Figure 1c) were likely shaped
by the distinct geochemical properties, and the
differences of these abiotic and biotic structures
among the sample groups were significantly different
as revealed by three complementary non-parametric
multivariate statistical tests (Table 1). Moreover, a
significant correlation was found between functional
and taxonomic β-diversities (Mantel test, R=0.32,
P=0.035, Sorenson dissimilarities using profiles of
16S ribosomal RNA and functional genes). Addi-
tional analyses were also applied to assess whether
geographical distance or local site characteristics (for
example, climate and mineralogy) affected func-
tional community structure as the AMD samples
were collected across a wide range of distance (up to
over 1600 km) and patchily located in different
mining areas. Similar to the pattern of microbial
community composition observed in previous study
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(Kuang et al., 2013), there were no significant
correlations between geographical distance and
functional community dissimilarity (Mantel test,
P40.05) and no significant differences of functional
structure between most pairs of mining areas

(Supplementary Table S4), implying a limited
influence of spatial variation on the functional
community structure. These results suggested that
functional community structure as well as taxo-
nomic community composition was better predicted

Table 1 Results of significant differences of the geochemical properties, the microbial community composition and the functional
community structure between the sample groups

Dissimilarity method Geochemical
properties

Microbial community
composition

Functional community
structure

(Euclidean distance) (Bray–Curtis)a (Log, Bray–Curtis)b

Statistic P-value Statistic P-value Statistic P-value

Adonisc 0.029 0.001 0.098 0.018 0.207 0.001
ANOSIMd 0.244 0.001 0.041 0.015 0.238 0.001
MRPPe 0.082 0.001 0.032 0.031 0.106 0.001

aBray–Curtis distance of microbial community composition is calculated based on the OTUs defined at the 97% similarity level. bThe signal
intensity of each probe was log-transformed before Bray–Curtis distance calculation. cPermutational multivariate analysis of variance. dAnalysis of
similarity. eMulti-response permutation procedure analysis.
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Figure 1 Hierarchical cluster analysis of geochemical data of the 40 acid mine drainage (AMD) samples (a) and the distribution patterns
of microbial community composition (b) and functional community structure (c) among distinct environmental conditions. Geochemical
data including pH, electrical conductivity (EC), dissolved oxygen (DO), total organic carbon (TOC), total phosphorus (P) and the
concentrations of sulfate (SO4

2−)/ ferric (Fe3+)/ ferrous (Fe2+)/ aluminum (Al)/ arsenic (As)/ cadmium (Cd)/copper (Cu)/lead (Pd) and zinc
(Zn) were standardized before hierarchical clustering (see details in Materials and methods). Relative abundances (%) of dominant
lineages (phylum level) were shown in overall communities (average) and in different groups of AMD samples. Principal component
analysis (PCA) was used to link the pattern of functional community structure to distinct environmental conditions based on the overall
functional profiles (that is, selected probes of all key functional genes).
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by environmental variation rather than spatial varia-
tions, consistent with the assumption of the model-
ing method.

Responses of metabolic potentials to the dynamics of
environmental properties and microbial taxonomy
To further identify the driving forces for the patterns
of diversity and metabolic potential of each func-
tional gene, the relative influences of environmental
properties (that is, PCsEnv), geographical distribution
(PCLocation) and microbial community composition
(PCsTaxa) were interpreted by using the aggregated
boosted tree models. The PCs with an eigenvalue
greater than one collectively accounted for 470% of
the variations and were chosen for the aggregated
boosted tree analyses (Supplementary Table S5).
Generally, the PCsTaxa were identified as the major
factors affecting the patterns of gene diversity,
whereas the metabolic potentials of functional genes

were influenced by the PCEnv (that is, E1) or PCsTaxa
(that is, T1, T3 and T4) (Figure 2). In contrast, spatial
distribution was found to contribute less to both gene
diversity and metabolic potential. We further
addressed the responses of metabolic potentials to
the changes of environmental properties and micro-
bial taxonomy. The most dominant (top-50%) vari-
ables of each important PC were selected based on
the PC loadings (Supplementary Table S5) and
incorporated into the multiple linear regression
analyses. Among the metabolic potentials of 114
genes analyzed, 23 and 20 were significantly
correlated with environmental properties and
relative microbial abundances, respectively
(Supplementary Table S6). In most cases of E1,
solution pH was indicated as a strong predictor of
and negatively correlated with metabolic potentials
as revealed by the best models. When considering
the relative microbial abundances, Euryarchaeota
and Gammaproteobacteria were commonly found to

10 20 30 40 50

Relative influence %

Gene diversity Metabolic potential

E1 E2 L T1 T2 T3 T4 E1 E2 L T1 T2 T3 T4

E1

T1

T4

T3

Figure 2 Relative influence (%) of environmental properties (PCsEnv, E1, E2), spatial distribution (PCLocation, L) and microbial community
composition (PCsTaxa, T1–T4) for gene diversity (Simpson index) and functional metabolic potential that evaluated by ABT models. Data
profiles (that is, the relative influence of different PCs for each gene) were clustered with average clustering method based on the Pearson
correlation. The ‘boxes’ qualitatively reveal the major factors (including E1, T1, T3 and T4) for the metabolic potentials of different
functional genes according to the results of hierarchical clustering.
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be significantly related to the functional metabolic
potentials. These results suggested that there were
clear patterns of gene diversity and metabolic
potential of various key biogeochemical processes
and stress responses, and solution pH and some
dominant microbial lineages were the major factors
determining the functional metabolic potentials in
the AMD ecosystem.

Prediction of microbial community composition and
functional metabolic potential
An ANN-based modeling approach was applied to
predict the interactions among environmental prop-
erties, microbial community composition and func-
tional metabolic potentials according to their
relationships. Our results indicated that there were
significant differences of prediction accuracy (that is,
Bray–Curtis similarity between predicted and
observed values) between different biotic levels,
and the prediction accuracies of functional meta-
bolic potential were significantly higher than those
of relative microbial abundance (Figure 3a). Consis-
tently, the cross-validation results showed that
the functional metabolic potentials (R2

(orig. signal) = 0.97)

were better predicted than those of relative micr-
obial abundances (R2

(Phylum) = 0.70, R2
(Order) = 0.62,

R2
(operational taxonomic unit) = 0.52) (Figure 3b, also see

Supplementary Figures S2 and S3). A clear trend
was found that the prediction accuracies and the
coefficients (R2) of relative microbial abundance
decreased at lower microbial taxonomic levels. In
order to assess whether this decrease in predictive
power with increasing taxonomic resolution was
largely a result of an increased number of rarely
observed taxa, we further investigated the patterns of
predictive power at various taxa occurrences. Our
results suggested that there was no significant
difference in predictive power across various occur-
rence levels (Figure 3a). The lowest prediction
accuracy at operational taxonomic unit level implied
that different microbial species might have similar
responses to environmental changes and that our
measured environmental parameters could not defi-
nitely simulate their natural dynamics. Higher
predictive power was observed when modeling the
functional metabolic potentials with relatively lower
accuracies for models using normalized data, which
might be due to the higher dependency of the overall
data set especially for the data points of minimal and
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Figure 3 The comparison of prediction accuracies (a) and cross-validation results (b) between different biotic levels. Bray–Curtis
similarity between predicted and observed values was used to represent the prediction accuracy according to the data sets for training and
validation (that is, average values) (a). Values were mean± s.e. and all these similarities were significant (Po0.05) that tested by a
randomized permutation-based approach (reshuffled 10 000 times). The differences of prediction accuracies were subsequently analyzed
by t-test (pairwise t-test) and the statistical significance (P-value) was adjusted by the Bonferroni correction and the false discovery rate
(FDR), respectively, to deal with the non-independent data sets and consistent results were found by using these two P-value adjustment
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maximal values. Notably, modeling with relative
abundances of microbial phyla could significantly
predict the validation data points in 92.1%
(105/114) of the functional genes as compared
with 78.9% (90/114) of them without such taxo-
nomic information, implying that the interaction of
microbial species was necessary for predicting
functional community structure that are not used
to train the model. Subsequently, we also esti-
mated the effect of rarely detected GeoChip probes
on the predictive power, that is, a comparison
using a data set with probes detected in at
least 50% of samples versus all probes, and
similarly limited effect was found for these rare
probes (Figure 3a). In addition, two null models
were performed to validate these ANN-based
models and all of our predictive models at different
biotic levels were better correlated with biological
observation than the null models (Supplementary
Tables S7–10), providing useful biological insight
into the interactions. Collectively, these findings
supported our hypothesis, suggesting that
functional traits are more predictable by environ-
mental conditions than microbial community
composition.

Finally, we explored how microbial community
composition and functional metabolic potential
responded to the changes of pH, which was
previously identified as the primary determinant of
microbial diversity in extreme AMD systems
(Kuang et al., 2013). The most accurate models of
relative microbial abundances (phylum level,
Supplementary Table S11) and functional metabolic
potentials (orig. signal with TAXA, occurrence
450%, Supplementary Table S12), which generated
significant Bray–Curtis similarity (Po0.05) of
72.6 ± 1.8 and 92.3 ±0.6 for all training and valida-
tion data points (Figure 3a and Supplementary
Figure S4), were used for the subsequent simula-
tions. Functional metabolic potential was modeled
based on the environmental parameters and relative
microbial abundances as the consensus network
revealed that these variables could be directly or
indirectly predicted by solution pH (Supplementary
Figure S1 and Supplementary Table S13). Thus, we
could extrapolate the dynamics of microbial com-
munity composition and functional metabolic poten-
tial along a wider pH gradient even though the pH of
our observed samples mainly ranged from 2.0 to 3.0.
Finally, a pH range of 1.8–4.4 (at a 0.01-unit
interval), which covers most of the pH values
previously reported in AMD around the globe
(Kuang et al., 2013), was chosen for modeling. The
predicted microbial community composition exhib-
ited a consistent trend with the observed pattern
especially for Euryarchaeota, Nitrospira and Gam-
maproteobacteria (Figure 4), corroborating the high
accuracy of this modeling strategy. The pH-
dependent distribution of these predominant
lineages was possibly attributed to their remarkable
environmental preferences and supposed to

contribute to the dynamics of functional metabolic
potentials. Indeed, although the relative metabolic
potentials of 52 genes kept consistent or fluctuant
revealing in the predictive models with non-
significant relationship (P40.05, linear regression)
between relative metabolic potentials and pH values
(Supplementary Table S14), the relative metabolic
potentials of the remaining 62 genes (significantly
related to pH, Po0.05) showed clear patterns
along the pH gradient (Figure 5 and Supplementary
figure S5), and generally the observed values could
be accurately predicted (Supplementary Figures
S6–11). Specifically, the changes of relative meta-
bolic potentials of some key genes related to
biogeochemical processes (for example, nitrogen,
phosphorus and sulfur cycling, Figures 5a and b
and Supplementary Figure S5a) indicated the
dynamics of resources utilization and energy trans-
formation associated with the acidification process
in AMD ecosystem, whereas the increase of relative
metabolic potentials of genes involved in environ-
mental adaptation such as heavy metal resistance
(Figure 5c) and stress response (Supplementary
Figure S5b) in more extreme conditions implied
the adaptive strategies for these extremophilic
communities.
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Discussion

Similar to the large-scale taxonomic composition
patterns of AMD communites (Kuang et al., 2013),
the spatial variation of functional community struc-
ture resolved by GeoChip was remarkably
environment-dependent. Likewise, a previous study
has demonstrated significant correlations between
proteogenomics and geochemical and physical attri-
butes in shaping communities of AMD biofilm
(Mueller et al., 2010). These findings highlight the
importance of natural selection in this extreme
environment. Such severe environmental filtering
may lead to a smaller available pool of species/genes
that can persist under the harsh conditions, making
their structure more niche-assembled (Chase, 2007).
These patterns of taxonomic and functional biogeo-
graphy shaped by the measurable environmental
variables rather than geographic distance are highly
consistent with the assumption of the modeling
method (Larsen et al., 2012), enabling a successful
application of the predictive strategy in this study.

According to the ANN-based predictive frame-
work, we demonstrated that functional traits were
more predictable by environmental variations and
provided more useful explanation than taxonomic
diversity based on phylogenetic markers in assessing
the relationship between microbial communities and
ecological processes. Although several recent meta-
genomic studies have revealed a significant correla-
tion between phylogenetic diversity and functional
diversity (Bryant et al., 2012; Fierer et al., 2012),
specific functional traits and microbial species may
not always have a the definite relationship, as
functional interchange may occur across different
taxa (Green et al., 2008), resulting in the conspicuous
decoupling of ecological attributes from phylogeny
(Raes et al., 2011; Barberán et al., 2014). In support-
ing this, a recent study has documented that specific
functions could be widely detected across a variety
of taxa or phylogenetic groups (Burke et al., 2011).
Importantly, previous research has revealed that
lateral gene transfer is prevailing mechanisms for
AMD microbes to rapidly acquire and possess new
genes involved in survival and habitat-specific
functions (for example, heavy metals resistance)
(Baker and Banfield, 2003; Tyson et al., 2004).
Indeed, it was recently suggested that functional
traits are valuable ecological markers to understand
bacterial community assembly (Barberán et al., 2012)
and to explain shifts in microbial community
composition across environmental gradients
(Edwards et al., 2013). As such, it is reasonable to
obtain more accurate prediction of the metabolic
potentials of key functional genes in response to
environmental change, as these specific functional
capabilities may directly impact how microbial
communities interact with their environments.

Application of the predictive models allowed
an accurate estimation of the dynamics of taxonomic
and functional community structure along a pH

range typically reported for AMD environments.
As nitrogen resources are very limited in natural
AMD systems (Baker and Banfield, 2003), their
bioavailability and biogeochemical processes are
vital to the acidophilic communities and essential
in understanding of how these extraordinary assem-
blages respond and adapt to the harsh conditions.
Diverse genes involved in nitrogen cycling were
detected and predicted to show clear patterns of
relative metabolic potentials (Figure 5a). In a recent
transcriptional analysis of several AMD commu-
nities (Chen et al., 2015), nitrogen-fixation
transcripts such as nifH were commonly found and
associated with Leptospirillum ferrooxidans, Leptos-
pirillum ferrodiazotrophum, Acidithiobacillus
ferrivorans and Acidithiobacillus sp. GGI-221. In
our predictive models, the relative metabolic poten-
tial of nifH exhibited a notable increase with the
decrease of solution pH, which was possibly attrib-
uted to the dominance of Leptospirillum spp. and
Acidithiobacillus spp. under more acidic conditions
(Figures 4 and 5a). In addition, an increase of relative
metabolic potential of glutamate dehydrogenase
(gdh) mostly derived from Thermoplasma was
predicted, indicating an alternative strategy of
ammonium acquisition from organic N conducted
by this dominant population in low pH conditions
(Ruepp et al., 2000). Similar patterns of increased
predictive potential activities were also found for
genes encoding the enzymes for nitrite utilization
(for example, nirA, nirB and nrfA). This accumula-
tion of ammonia/ammonium might indicate a high
requirement of nitrogen resources for microbial
protein synthesis, which further supported by the
higher relative metabolic potential of glutamine
synthetase (glnA) that associated with incorporation
of ammonium into glutamine (Leigh and Dodsworth,
2007) (Supplementary Figure S5b). These findings
indicated the nitrogen-limited adaptation and the
prosperity of these extremely acidophilic
populations. Phosphate represents another key
nutrient limited in the extreme AMD environment.
With the increase of acidity, the high amounts of Fe3+

and Al3+ ions might favor phosphate precipitation
(Moreno-Paz et al., 2010), resulting in further
phosphate starvation. As predicted in our models,
multiple strategies of phosphate uptake and utiliza-
tion were used by enhancing the relative metabolic
potentials of genes involved in polyphosphate
metabolism (ppk and ppx) (Vera et al., 2003),
phosphate regulon (Pho) (Lamarche et al., 2008)
and specific phosphate ABC transporters (pstSCAB)
(Parro et al., 2007) (Figure 5b), reflecting a positive
response to the phosphate deficiency in the AMD
systems.

Various protective mechanisms were identified to
compensate for the deleterious effects of the extreme
acidity. Diverse genes encoding proteins of heavy
metal resistance and cation efflux systems were
widely detected, and their relative metabolic poten-
tials were predicted to be remarkably higher in lower
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pH conditions (Figure 5c). This was possibly
attributed to and stimulated by the increased con-
centrations of dissolved heavy metals. Likewise,
the relative metabolic potentials of genes involved
in the defense against oxidative and osmotic stress
(for example, oxyR, proV and ABC transporters)
were predicted to be highly increased as
well (Supplementary Figures S5b and c). The
membrane-binding ABC transporters are identified
to function as pumps to exclude toxins and drugs
from the cell (Higgins, 2001), and these transport
systems such as potassium transporters (kdpBAC)
are suggested to be an effective strategy to maintain
pH homeostasis and cellular osmotic pressure
(Baker-Austin and Dopson, 2007; Parro et al., 2007;
Moreno-Paz et al., 2010). Collectively, these stress-
resistant mechanisms may provide the populated
microbes important strategy for surviving and
thriving in the extreme environment.

Our predictive models also revealed some clues
about microbial interaction in the AMD commu-
nities. It was suggested that more extreme conditions
are less conducive to microbial growth, making
survival capacities more important than the abilities
for enhancing microbial competition (Fierer et al.,
2012). However, the indigenous AMD populations
are assumed to be well adapted to the extremely
acidic conditions, whereas the decrease of energy
sources such as pyrite and ferrous iron in lower pH
environments might largely increase the importance
of competition between sulfur/iron oxidizers. This
assumption is partly supported by the higher relative
metabolic potentials of genes involved in antibiotic
resistance in our predictive models (Supplementary
Figure S5d), as elevated microbial competition
would select for increased antibiotic resistance
(Fierer et al., 2012).

In summary, our analyses of the dynamics of
taxonomic and functional community structure in
response to the environmental changes by modeling
strategy represents a crucial step toward a predictive
model-based understanding of the distribution
mechanisms of acidophilic microorganisms in the
extreme AMD system. Our results showed that the
environmentally dependent patterns of taxonomy
and traits (functional genes) are readily predictable,
whereas the notable enhancement of relative
metabolic potentials of a suite of key functional
genes under more acidic and metal-rich conditions
may reflect an important adaptation strategy of these
extraordinary assemblages. More importantly, we
demonstrated that natural microbial communities in
the AMD model system are better predicted at the
functional genes level rather than species, at least by
the set of functional genes considered in the current
study. It should be pointed out that although the
microbial taxonomic composition was resolved by
pyrosequencing of universal 16S ribosomal RNA
gene, the functional structure of AMD assemblages
was profiled by GeoChip, which is a high-throughput
microarray-based genomic technology designed for

detecting ‘known’ genes specifically involved in
biogeochemical processes and stress toleration and
adaptation (Zhou et al., 2015). Alternatively, meta-
genomic sequencing represents another way to study
the microbial community and its traits by simulta-
neously generating information on functional and
taxonomic data sets. Such approaches could be
adopted to verify our findings for its universality in
diverse habitats.
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