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EDITORIAL
Biomedical imaging in translational
orthopaedic research
Musculoskeletal disorder is a major burden on health care
[1]. Musculoskeletal complaints are the second most com-
mon reason for consulting a doctor, and constitute, in most
countries, up to 10e20% of primary care consultations [2].
At any one time, 30% of American adults are affected by
joint pain, swelling, or limitation of movement [3]. Ac-
cording to the National Arthritis Data Workgroup, the best
estimate of the national prevalence of arthritisdspecifi-
cally, osteoarthritis (OA), rheumatoid arthritis, low back
pain, gout, and certain autoimmune connective tissue dis-
easesdwas 15% in 1995 [4]. The total direct cost for use of
health services that results from musculoskeletal conditions
was 1.0% of the gross national product in Canada, and 1.2%
in the USA [5,6]. The indirect costs of musculoskeletal
conditions (loss of productivity and wages) were much
greater than the direct costs. Radiographic evidence of
knee OA is prevalent in > 30% of persons aged 60 years or
older [7]. It is expected that by 2020, this prevalence will
increase to 20%, related in part to the advancing age of the
population. Cartilage damage in OA is characterised as
having an earlier dynamic phase, which is potentially
reversible, followed by an irreversible pathological phase
that ultimately leads to joint pain and immobility. The
impetus to develop techniques to detect early lesions is to
allow timely intervention to prevent the eventual evolution
of radiographic joint space narrowing, osteophytosis, sub-
chondral sclerosis, and cyst formation.
http://dx.doi.org/10.1016/j.jot.2015.09.002
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Animal models are an important part of orthopaedic
research. They add to in vitro methods and provide the
opportunity to study a specific biological mechanism
in vivo. However, the read-out of such models is restricted
because: (1) tissue sampling is time consuming and is sub-
ject to variability; (2) most read-outs have a time lag be-
tween tissue sampling and evaluation; and (3) readout
often requires sacrificing the animal, and increases the
costs. Biomedical imaging, being morphological, func-
tional, or molecular, has been widely adopted in musculo-
skeletal research, and has bridged the gap between
experimental research and clinical imaging. The detection
of biological pathways in vivo is performed without tissue
destruction nearly in real-time and biology can be studied
under physiological conditions. An individual can be
repeatedly analysed over time; a feature that simplifies
data interpretation by minimizing consequences of varia-
tions between living individuals and increased statistical
power. The ability to image a specific biological target
in vivo can be translated into a part of orthopaedic diag-
nostic work-up [8e11].

Commonly used techniques include computed tomogra-
phy (CT), ultrasound, and magnetic resonance imaging
(MRI), single photon emission computed tomography
(SPECT), and positron emission tomography (PET). There is
also an emerging imaging technology involving optical
methods (fluorescence and bioluminescence) that are now
used in preclinical animal models of disease. These
particular tools are advancing the understanding and the
related management of chronic musculoskeletal diseases,
such as OA, rheumatoid arthritis, cancer, musculoskeletal
pain, fracture healing, bone metabolism, chronic osteo-
myelitis, and osteoporosis. Through the use of multiple
imaging modalities it is possible to study anatomy, physi-
ology, and function in an in vivo model. Over the past
several years, there has been significant development of
dedicated instruments for small animal imaging applica-
tions in the modalities of MR, SPECT, PET, mCT, and in vivo
optical imaging. MRI is a single imaging modality capable of
high-resolution imaging, spectroscopy, and quantifying
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metabolic function. Perfusion MRI using dynamic contrast-
enhanced MRI involves the rapid acquisition of serial MR
images during and after administration of MR contrast
agent. Based on the time following injection and the con-
centration of contrast in the tissues under investigation, a
time intensity curve can be drawn allowing detection and
quantification of wash-in and wash-out contrast kinetics.
MR spectroscopy yields quantitative information on the
chemicals that reside within the tissue. The commonly
measured elements in the musculoskeletal system are
hydrogen, phosphorus, and sodium. Muscle diffusion-tensor
imaging has been used for in vivo structural analysis and it
has the potential to detect segmentation of muscle fibers in
disease states [12e14]. Blood oxygen level-dependent
(BOLD) imaging was developed by Ogawa et al in 1990 for
functional MRI imaging for evaluating brain activation. This
technique has recently been applied to evaluate oxygena-
tion level in normal and diseased muscle. It has been re-
ported that BOLD signal-based muscle functional MRI could
be beneficial in understanding microvascular-related dis-
ease such as muscular dystrophy, ischemia, and chronic/
peripheral venous insufficiency [15].

SPECT and PET are functional imaging modalities that
allow for molecular specific imaging in deep tissues of nano-
and picomolar quantities, respectively. SPECT is a readily
available technique for which there are a wide number of
nuclear tracers available. PET is a quantitativemodalitywith
high sensitivity, imaging trace amounts (picomolar concen-
trations) of radiolabelledmolecules. PET is most widely used
to study metabolism through the labelling of glucose with
fluorine-18. PET-based technologies have an advantage
given their greater sensitivity, as well as the ability to use
biological molecules that nearly simulate the structure and
interactions of the native molecule being radiolabelled.
Finally, advancements in deep tissue techniques for optical
imaging have enabled the labelling and tracking of re-
ceptors, biochemical pathways, and cells in small animals.
Osteoblasts have been labelled and imaged in an in vivo
model of mouse bone disease. This technique is particularly
useful in gaining further insight into the mechanisms of bone
remodelling beyond simplemeasures of bone density [16]. In
addition, biomedical imaging can be quantitatively and
objectively assessed, which is superior to the traditional
observer-based assessments that often have higher inter-
and intraobserver variability [17,18].

Quantitative imaging methods that have been proven
to correlate with clinical outcomes can play an important
role in clinical decisions. Presently, a gap still exists be-
tween the physics-based development of new techniques
and the applications used in the study of disease [19]. It
is noticeable that nowadays there are more and more
scientists with physical science or engineering background
working on or starting to work on biomedical projects,
but rarely vice versa. This reflects the multi-discipline
nature of some projects, however, and at least partially
can be explained by biomedical research being seen as
more trendy and fundable [20]. It is also apparent from
some publications and lectures that not all these physical
scientists/engineers are well prepared to work on pro-
jects that do not align with their own expertise [21].
Manpower and financial resources are being wastefully
spent [22]. In addition, ample examples exist where
experienced physical scientists worked with inexperi-
enced medical scientists and resulted in avoidable fail-
ures. Therefore close collaboration and frequent
interaction of physical scientists/engineers, biologists,
and clinicians are vital. Important research decisions have
to be made after group debate rather than by a single
senior scientist [22e24]. To this end, multidisciplinary
translational orthopaedic imaging, and the Journal of
Orthopaedic Translation, shall play a vital role.
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