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Objective. Adolescent idiopathic scoliosis (AIS) is a relatively common spinal rotation deformity, and the pathogenesis of AIS is
accompanied by metabolic dysfunction and changes in biochemical factors. In this study, plasma metabolite changes in AIS
patients were analyzed based on nontargeted metabolomics to provide new insights for clarifying functional metabolic
abnormalities in AIS patients. Methods. Clinical indexes and blood samples were collected from 12 healthy subjects and 16 AIS
patients. Metabolomics was used to analyze the changes in metabolites in plasma samples. The correlation between plasma
metabolites and clinical indexes was analyzed by the Spearman rank correlation coefficient. Results. Analysis of clinical data
showed that the body weight, body mass index (BMI), and bone mineral density (BMD) index of the AIS group significantly
decreased, while the blood phosphorus and Cobb angles increased significantly. Metabolomic analysis showed significant
changes in 72 differential metabolites in the plasma of the AIS group, mainly including organooxygen compounds, carboxylic
acids and derivatives, fatty acyls, steroids and steroid derivatives, and keto acids and derivatives. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway showed that arginine biosynthesis, D-glutamine and D-glutamate metabolism, alanine,
aspartate and glutamate metabolism, and citrate cycle (TCA cycle) were significantly enriched in the AIS and healthy groups.
Spearman rank correlation coefficient analysis showed that the plasma metabolites C00026 (oxoglutarate), C00062 (L-arginine,
arginine), C01042 (N-acetylaspartate), and C00158 (citrate) were significantly correlated with clinical indexes in AIS patients. In
the healthy group, the plasma metabolites C00122 (fumarate), C00025 (glutamate and L-glutamic acid) and C00149 (malate, L-
malic acid) were significantly correlated with clinical indexes, while C00624 (N-acetylglutamate) was not significantly correlated
with the clinical indexes. Conclusion. The occurrence of AIS led to changes in clinical indexes and plasma metabolites. Plasma
biomarkers and functional metabolic pathways were correlated with clinical indexes, which might provide new insights for the
diagnosis and treatment of AIS.

1. Introduction

Adolescent idiopathic scoliosis (AIS) is the most common
spinal rotation deformity, affecting approximately 1-4% of
adolescents worldwide [1]. Early diagnosis could increase
the possibility of successful conservative treatment, thus
reducing surgical intervention. AIS has a poor prognosis
and a high mortality rate and can easily increase the risk of
respiratory failure and cardiovascular disease [2]. The
Abnormal neuromuscular system and calcium metabolism,
as well as genetic and mechanical factors, might play a role

in the pathogenesis of AIS. The physiological secondary
effects of severe scoliosis were associated with restrictive lung
disease, but the degree of deformity in most patients was not
sufficient to affect their cardiopulmonary function. The clin-
ical symptoms and pathological changes of AIS indicated
that before abnormal growth of the spine, patients had met-
abolic dysfunction, and blood biochemical factors were
involved in its pathogenesis, but the etiology of AIS was still
unknown [3]. Metabolomics is a research method used to
quantitatively analyze all metabolites in organisms and to
search for the relative relationships between metabolites
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and physiological and pathological changes. It is an integral
part of system biology [4–6]. Metabolomics had been widely
used in the screening and diagnosis of disease biomarkers,
which might be helpful for the early screening and treatment
of AIS.

Ultra-performance liquid chromatography (UPLC) com-
bined with quadrupole time-of-flight mass spectrometry
(TOFMS) has been used to investigate the serum metabolic
status between 30 AIS patients and 31 healthy controls. The
metabolic profile of AIS patients usually deviated from that
of healthy controls, and seven differential metabolites were
identified as candidate diagnostic biomarkers, including PC
(20 : 4), 2-hexanoylcarnitine, β-D-glucopyranosuronic acid,
DG (38 : 9), MG (20 : 3), LysoPC (18 : 2), and LysoPC
(16 : 0). These candidate metabolites indicated that lipid
metabolism in AIS was blocked, including glycerophospholi-
pid, glyceride, and fatty acid metabolism [7]. The increased
expression of triglyceride lipase and hormone sensitive lipase
in the adipose tissue further confirmed the increased lipid
metabolism of AIS [8]. A domestic research team used meta-
bolomics to analyze the changes in the gut microbiota metab-
olites of postmenopausal osteoporosis patients and identified
the gut microbiota metabolites related to bone mineral den-
sity (BMD) and bone transformation markers, indicating
that the changes in gut microbiota metabolites in postmeno-
pausal osteoporosis patients were related to the decrease in
BMD or bone metabolism indexes [9]. These studies demon-
strated that serum differential metabolites found in AIS could
be used as potential diagnostic biomarkers, and that lipid
metabolism played a role in the pathogenesis of AIS.

In addition, most AIS patients have abnormal changes in
estrogen and estrogen receptors, including increased serum
estrogen concentrations, abnormal cellular responses to
estrogen, older menarche age, and estrogen receptor gene
polymorphisms, which are closely related to the susceptibility
of AIS, the severity of the curve, and the progression of sco-
liosis [10, 11]. Plasma, the extracellular fluid of blood cells,
is an important part of the internal environment of the body
and plays an important role in communication between the
internal and external environment of the body. In a recent
study, Shen et al. found that the fecal microbial composition
of AIS patients was different from that of healthy controls.
Through proteomic analysis of the correlation between gut
microbiota and plasma protein, it was confirmed that fecal
Prevotella was positively correlated with host plasma FN1
and negatively correlated with host VDAC1 and AHNK
[12]. The composition of plasma could be changed by the
metabolic activity of the body and the external environment,
but under normal circumstances, the body kept the composi-
tion of plasma relatively constant through various regulatory
functions [13]. When the body is sick, the changes in some
components in plasma might exceed the normal range.
Therefore, the determination of plasma components might
provide a basis for the diagnosis and treatment of AIS.

At present, there is no research on the plasma biomolec-
ular metabolites of AIS patients. This study intends to use
metabolomics to perform nontargeted broad screening of
metabolites and analyze the differences in plasmametabolites
between AIS patients and healthy subjects to elucidate the

metabolic characteristics of AIS and provide a theoretical
basis for the early screening of AIS.

2. Materials and Methods

2.1. Study Subjects.We studied subjects aged 12-18 years who
were diagnosed with AIS from Hunan Province, China. Sub-
jects completed a questionnaire about age, race, medication
history, and medical history. The study excluded patients
with other types of scoliosis caused by congenital or postural
or neuromuscular factors and did not recruit subjects with
acute infectious diseases, severe allergies, gastrointestinal dis-
eases, and abnormal liver and kidney functions within the
first month. None of the subjects underwent any surgery or
rehabilitation. Height, weight, and body mass index (BMI)
of all subjects were recorded.

2.2. Sample Preparation. The blood of all participants was
centrifuged at 1150 g at 4°C for 10 minutes in a centrifuge
tube coated with heparin. The supernatant was then ali-
quoted (100μL) into a labeled test tube and stored at -80°C
before preparation for metabolomics analysis.

2.3. LC-MS/MS Analysis and Annotation. Samples (100μL)
were mixed with 300μL of methanol and 20Μl of internal
standard, vortexed for 30 s, extracted by ultrasonication in
an ice water bath for 5min, and stored at -20°C for 2 h. The
mixture was centrifuged at 4°C (13,000 rpm, 15min), and
200μL of supernatant was put into a 2mL injection bottle
for LC-MS/MS analysis. Baseline filtering, peak identifica-
tion, integration, retention time correction, peak alignment,
and normalization were performed on the original data
obtained after mass spectrometry, and finally, a data matrix
of retention time, mass/charge ratio, and peak intensity was
obtained. Raw data were obtained for quality control, and
bioinformatic analysis was performed.

MetaboAnalyst (https://www.metaboanalyst.ca/) was
used for bioinformatic analysis. MetaboAnalyst is a compre-
hensive platform dedicated to metabolomic data analysis.
There is a wide array of commonly used statistical and
machine learning methods. In this study, the bioinformatic
analyses, including univariate fold change, t-test, volcano
plot, multivariate principal component analysis (PCA), par-
tial least squares-discriminant analysis (PLS-DA), heatmap,
and correlation analysis were applied. PCA is an unsuper-
vised multidimensional statistical analysis method that can
reflect the overall metabolic differences between samples in
each group and the degree of variability between samples
within the group [14]. PLS-DA is a multivariate statistical
analysis method with supervised pattern recognition that
groups multidimensional data according to the different fac-
tors that need to be searched before compression, so that the
variables most relevant to the factors used for grouping could
be found, and the influence of some other factors could be
reduced [15]. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database was used to perform
metabolic pathway enrichment analysis [16].

2.4. Correlation Analysis. The Spearman rank correlation
coefficient and heatmap were generated to analyze the
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correlation between different metabolites and clinical indexes
by Graph Prism 8.0 software.

2.5. Statistical Analysis. Statistical analysis of the data was
performed using Graph Prism 8.0 and R software 3.1.0. The
comparison between the two groups used Student’s t-test or
the Wilcoxon signed rank test, depending on whether the
variable was normally distributed. P < 0:05 indicated that
the difference was statistically significant.

3. Results

3.1. Characteristics of the Participants Involved in This Study.
In this study, 12 healthy subjects and 16 AIS patients were
collected, and their clinical data were statistically analyzed.
Compared with the healthy group, the body weight and
BMI of the AIS group significantly decreased, and the Cobb
angle degree increased significantly. BMD measurements
found that AIS patients had a significantly lower BMD index
in the lumbar and femoral areas. Blood analysis showed that
serum calcium and magnesium levels did not change signifi-
cantly compared with the healthy group, while serum phos-
phorus levels increased significantly. The statistical analysis
results of the clinical data are shown in Table 1. The above
results indicate that the clinical indexes of AIS patients
change to different degrees, which are closely related to the
health of AIS patients.

3.2. Plasma Metabolism Profiles in AIS and Healthy Subjects.
To study the changes in metabolic phenotypes, plasma sam-
ples of healthy subjects and AIS patients were collected, and
endogenous small molecules with relative molecular weights
less than 1000 in plasma were widely screened by nontar-
geted metabolomics. Qualitative metabolites were based on
public databases and self-built software databases. The nor-
malized data matrix was used for multivariate statistical anal-
ysis, and PCA (Figure 1(a)) and partial least squares
regression analysis (Figure 1(b)) were performed on all sam-
ples and quality control samples. PCA showed that the prin-
cipal component 1 (PC1) index was 14%, and the PC2 index
was 10%. PLS-DA analysis showed that the index of the var-
iable factor was 12.5%. PCA and PLS-DA analysis showed
uniform dispersion of quality control and grouped samples,
which indicated that the stability and reliability of instru-
mental analysis were excellent and could be used for further
analysis. A heatmap showed the top 100metabolites obtained
by nontargeted screening in the healthy group and AIS
groups. It showed that the healthy group and AIS group were
enriched with dominant metabolites (Figure 1(c)). These
results suggested that the occurrence of AIS might lead to
an abnormal plasma metabolome or AIS-related metabolic
dysfunction.

3.3. Different Plasma Metabolism Profiles between AIS and
Healthy Subjects. To further analyze the differences in plasma
metabolites between healthy subjects and AIS patients, we
combined the VIP value of multivariate statistical analysis
of OPLS-DA and the P value of the univariate statistical anal-
ysis t-test to screen the significantly different metabolites
between different comparison groups. The threshold of sig-

nificant difference was VIP ≥ 1 and t-test P < 0:05 [17]. After
data normalization, cluster analysis and heatmaps were
drawn to show the accumulation of different metabolites in
the comparison groups [18]. A heatmap showed the top 50
metabolites significantly enriched in the AIS group and the
healthy group (Figure 2(a)). The fold change diagram further
showed the plasma fold changes of 72 different metabolites
between the healthy group and the AIS group (Figure 2(b)).
Volcano plots showed that 27 kinds of plasma differential
metabolites were significantly increased, and 45 kinds were
significantly decreased in the AIS group, and the absolute
value of log2(FC) was ≥0.5869, P < 0:05 (Figure 2(c)).

Based on the Human Metabolome Database (https://
hmdb.ca/), the differential metabolites in plasma were classi-
fied and summarized [19, 20]. Among them, the concentra-
tion of phenols anthranilate in the plasma metabolite class
level of AIS patients increased. The concentration of methyl
nicotinate in plasma pyridines and derivatives increased.
The concentration of ribitol, L-arabitol, D-arabitol, D-xylitol,
N-acetylgalactosamine, isopropanolamine, and trimethyla-
mine N-oxide in plasma organooxygen compounds
increased. The concentration of imidazopyrimidine hypo-
xanthine increased. The concentration of 4-acetamidobu-
tanoate, N-acetylasparagine, L-arginine, arginine, N-
acetylaspartate, homocitrulline, citrate, phosphocreatine,
and dimethylmalonic acid in plasma carboxylic acids and
derivatives increased. The plasma fatty acyl sebacate and ner-
vonate concentrations increased. Plasma steroids and steroid
derivatives taurodeoxycholic acid and taurocholic acid con-
centrations increased. The plasma keto acids and derivative
oxoglutarate concentration increased. In addition, the
unclassified maleamate, trigonelline, and monoethylmalo-
nate concentrations increased. These results indicated that
plasma metabolites were significantly altered in AIS patients,
accompanied by the activation of metabolic pathways related
to phenols, organic oxides, fatty acids, amino acids, and bile
salts.

3.4. Metabolic Pathway Analysis between AIS and Healthy
Subjects. To explore the functional changes caused by the
changes in plasma metabolites in AIS patients, based on
raw metabolomic data, signaling pathway function predic-
tion analysis was carried out through the KEGG pathway
database (https://www.kegg.jp/kegg/pathway.html). The
KEGG pathway analysis showed the top 25 enriched signal-
ing pathways in the AIS group and healthy group
(Figure 3). There were significant changes in the L1 level
metabolism functional pathway in the plasma of AIS
patients. In the L2 level of amino acid metabolism, the L3
level of arginine biosynthesis was enriched in 14 plasma
metabolites (P = 0:000144), of which C00026 (oxoglutarate)
and C00062 (L-arginine, arginine) were significantly
enriched in AIS patients, and C00624 (N-acetylglutamate),
C00025 (glutamate, L-glutamic acid), and C00122 (fumarate)
were significantly enriched in healthy subjects. At the L2 level
of metabolism of other amino acids, the L3 level of D-
glutamine and D-glutamate metabolism was enriched in 6
plasma metabolites (P = 0:000118), of which C00026 (oxo-
glutarate) was significantly enriched in AIS patients, and
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C00025 (glutamate, L-glutamic acid) was significantly
enriched in healthy subjects. In the L2 level of amino acid
metabolism, the L3 level of alanine, aspartate, and glutamate
metabolism were enriched in 28 plasma metabolites
(P = 0:000454), of which C00026 (oxoglutarate), C01042
(N-acetylaspartate), and C00158 (citrate) were significantly
enriched in AIS patients, and C00025 (glutamate, L-
glutamic acid) and C00122 (fumarate) were significantly
enriched in healthy subjects. In the L2 level of carbohydrate
metabolism, the L3 level of citrate cycle (TCA cycle) was
enriched in 20 plasma metabolites (P = 0:0448), of which
C00026 (oxoglutarate) and C00158 (citrate) were signifi-
cantly enriched in AIS patients, and C00122 (fumarate) and
C00149 (malate, L-malic acid) were significantly enriched
in healthy subjects. The above results indicated that the sig-
nificant accumulation and depletion of plasma metabolites
in AIS patients were related to the functional metabolic pref-
erence for amino acid metabolism and energy cycling
pathways.

3.5. Correlation between Plasma Metabolites and the Clinical
Index. Based on the clinical index characteristics of AIS
patients and the plasma metabolomic analysis, we found that
compared with healthy subjects, the clinical index of AIS
patients showed serious adverse changes, and the types and
functions of plasma metabolites of AIS patients were signifi-
cantly changed. To further explore the changes between the
plasma differential metabolites and the clinical index of AIS
patients, the Spearman rank correlation coefficient was used
to calculate the relationship between 72 plasma differential
metabolites and the clinical index of AIS patients. Among
them, 57 plasma differential metabolites were significantly
correlated with the clinical index of patients (Figure 4). A
heatmap showed that plasma metabolite C00026 (oxogluta-
rate) was negatively correlated with weight (r = −0:40, P =
0:031), BMI (r = −0:41, P = 0:029), and BMD (thigh T , r =
−0:42, P = 0:024 and thigh Z, r = −0:38, P = 0:041) in AIS

patients. C00062 (L-arginine) was significantly negatively
correlated with weight (r = −0:51, P = 0:005), BMI
(r = −0:50, P = 0:005), and BMD (waist T , r = −0:39, P =
0:038 and thigh T , r = −0:39, P = 0:036) but positively corre-
lated with Cobb angles (r = 0:48, P = 0:009). C00062 (argi-
nine) was significantly negatively correlated with weight
(r = −0:49, P = 0:007), BMI (r = −0:49, P = 0:007), and
BMD (waist T , r = −0:38, P = 0:043 and thigh T , r = −0:38,
P = 0:042) and positively correlated with Cobb angles
(r = 0:46, P = 0:012). C01042 (N-acetylaspartate) was signifi-
cantly negatively correlated with weight (r = −0:53, P = 0:003
), BMI (r = −0:41, P = 0:026), and BMD (waist T , r = −0:59,
P < 0:001; waist Z, r = −0:53, P = 0:003; thigh T , r = −0:62,
P < 0:001 and thigh Z, r = −0:59, P < 0:001), while positively
correlated with blood phosphate (r = 0:43, P = 0:019) and
Cobb angles (r = 0:71, P < 0:001). C00158 (citrate) was nega-
tively correlated with weight (r = −0:37, P = 0:049) and BMI
(r = −0:40, P = 0:032) and positively correlated with blood
phosphate (r = 0:44, P = 0:018).

The plasma metabolite C00122 (fumarate) was signifi-
cantly positively correlated with weight (r = 0:44, P = 0:017)
and negatively correlated with Cobb angles (r = −0:45, P =
0:015) in healthy subjects. C00025 (glutamate and L-
glutamic acid) was positively correlated with weight
(r = 0:50, P = 0:005), BMI (r = 0:51, P = 0:005), and BMD
(waist T , r = 0:38, P = 0:041 and waist Z, r = 0:40, P = 0:034
), while negatively correlated with blood phosphate
(r = −0:54, P = 0:002) and Cobb angles (r = −0:51, P = 0:005
). C00149 (malate, L-malic acid) was positively correlated
with weight (r = 0:43, P = 0:020), BMI (r = 0:41, P = 0:029),
and BMD (waist T , r = 0:42, P = 0:024 and waist Z, r = 0:40
, P = 0:030) and negatively correlated with blood phosphate
(r = −0:49, P = 0:007) and Cobb angles (r = −0:54, P = 0:002
). In addition, there was no significant correlation between
clinical height index and the differentially enriched plasma
metabolites in the AIS and healthy groups. There was no sig-
nificant correlation between plasma metabolite C00624 (N-

Table 1: Clinical information of the participants.

Participants Control (n = 12) AIS (n = 16) P value

Age (years) 16:41 ± 3:20 15:12 ± 1:70 0.180

Gender (male/female) 6/6 6/10 0.508

Height (m) 1:70 ± 0:08 1:65 ± 0:08 0.169

Weight (kg) 73:18 ± 15:10 48:00 ± 10:44 <0.001
BMI (kg/m2) 25:36 ± 5:41 17:39 ± 2:73 <0.001
Cobb angles (°) 45:56 ± 12:78 <0.001
Bone density

Waist T −0:60 ± 1:23 −2:70 ± 1:03 <0.001
Waist Z 0:20 ± 1:04 −1:90 ± 1:13 <0.001
Thigh T −0:64 ± 1:46 −2:75 ± 0:94 <0.001
Thigh Z −0:18 ± 1:34 −2:15 ± 1:08 <0.001

Blood calcium (mmol/L) 2:32 ± 0:21 2:47 ± 0:35 0.213

Blood phosphate (mmol/L) 1:31 ± 0:14 1:58 ± 0:15 <0.001
Blood magnesium (mmol/L) 0:85 ± 0:07 0:95 ± 0:40 0.432
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Figure 1: The analysis of plasma metabolite profiles. (a) PCA was used to analyze the degree of dispersion of samples in the quality control
and healthy and AIS groups. (b) PLS-DA was used to analyze the degree of dispersion of samples in the quality control and healthy and AIS
groups. (c) Heatmap shows the distribution of the top 100 metabolites among different samples.
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acetylglutamate) and the clinical index in healthy subjects.
These results suggested that the significantly enriched and
depleted metabolites in the plasma of AIS patients and clini-
cal indexes might be used as AIS-related biomarkers for early
screening.

4. Discussion

Early screening of AIS is still a major challenge in clinical
diagnosis. In this study, metabolomics was used to deeply
analyze the differences in plasma metabolites of AIS patients

for the first time. Plasma organooxygen compounds, carbox-
ylic acids, and derivatives were significantly enriched in AIS
patients, and 57 metabolites were significantly correlated
with clinical indexes. We found that plasma C00026 (oxoglu-
tarate) was significantly enriched in AIS patients, and it was
significantly negatively correlated with weight, BMI, and
BMD (thigh T and thigh Z). Oxoglutarate, also known as
α-ketoglutarate, AKG, or 2-oxoglutarate, was classified as a
γ-keto acid or a γ-keto acid derivative. α-Ketoglutarate is a
key molecule in the tricarboxylic acid (TCA) cycle and plays
a fundamental role in determining the overall rate of this
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important metabolic process [21, 22]. In the TCA cycle, AKG
is decarboxylated to succinyl coenzyme A and carbon dioxide
by AKG dehydrogenase, which is the key control point of the
TCA cycle. AKG is a nitrogen scavenger and a source of glu-
tamic acid and glutamine, which can stimulate protein syn-
thesis and inhibit protein degradation in muscles. AKG
could reduce protein catabolism and increase protein synthe-
sis, thereby enhancing the formation of the musculoskeletal
tissue [21]. Interestingly, enteral feeding of AKG supple-
ments could significantly increase circulating plasma levels
of hormones such as insulin, growth hormone, and insulin-
like growth factor 1 [21, 23]. Recent studies have shown that
α-ketoglutarate promotes the differentiation of TH1 cells
with the consumption of glutamine, which is beneficial to
the differentiation of Tregs [24]. The enrichment of oxogluta-
rate in the plasma of AIS patients indicated increased
demand for bone tissue formation, the disorder of hormone,
and energy metabolism related to growth and metabolism in
adolescents. Therefore, the regulation of plasma oxoglutarate
might help promote the recovery of AIS.

C00062 (arginine) is an essential amino acid with physi-
ological activity in the L-type strain. L-Arginine is an amino
acid with multiple functions in the body that helps to process
ammonia that is used to make compounds such as nitric
oxide, creatine, L-glutamic acid, and L-proline and can be
converted into glucose and glycogen when needed. At a high
dose, L-arginine also stimulates the release of growth hor-
mone and prolactin. Arginine is a known inducer of mTOR
and is responsible for inducing protein synthesis through
the mTOR pathway. The inhibition of mTOR by rapamycin
partially reduces arginine-induced protein synthesis [25].
Catabolic diseases such as sepsis, injury, and cancer could
lead to increased utilization of arginine, and the utilization
of arginine might exceed normal body production, resulting
in arginine consumption. Arginine also activated the AMPK
pathway and stimulates skeletal muscle fatty acid oxidation
and muscle glucose uptake, thereby increasing insulin secre-
tion by pancreatic β cells [26]. This study found that plasma
C00062 (L-arginine, arginine) was significantly enriched in
AIS patients, and it was significantly negatively correlated
with weight, BMI, and BMD (waist T and thigh T) and signif-
icantly positively correlated with Cobb angles. The massive
enrichment of L-arginine and arginine in the plasma of AIS
patients might be the metabolic dysfunction caused by AIS,
and the reasonable regulation of plasma arginine metabolism
might help the recovery and treatment of AIS.

C01042 (N-acetylaspartate) is a derivative of aspartic acid
that is synthesized by aspartic acid and acetyl coenzyme A in
neurons. Various functions of N-acetylaspartate are still
under investigation, but the main proposed functions include
acting as a neuroosmotic agent and participating in fluid bal-
ance in the brain, acting as a source of lipid acetate for the
synthesis of myelin in oligodendrocytes, used as a precursor
for the synthesis of the important dipeptide neurotransmitter
N-acetylaspartyl glutamate (NAAG), and playing a potential
role in the energy production of neuronal mitochondria [27,
28]. However, when N-acetylaspartate was present at a suffi-
ciently high level, it could have a variety of adverse effects on
many organ systems. Abnormally high levels of N-

acetylaspartate in blood (organic acidemia), urine (organic
aciduria), brain, and other tissues could cause general meta-
bolic acidosis [29]. Adults with acidosis or acidemia are
prone to headache, confusion, tiredness, tremor, lethargy,
and flapping tremor. C01042 (N-acetylaspartate) was signif-
icantly enriched in the plasma of AIS patients, which might
be related to the spinal injury caused by the AIS endangering
spinal nervous system.

The plasma metabolites C00122 (fumarate), C00025
(glutamate and L-glutamic acid), and C00149 (malate, L-
malic acid) were significantly enriched in healthy subjects
and were closely correlated with clinical indexes. C00149
(malate, L-malic acid) is an organic dicarboxylic acid with a
sour taste. Malic acid and fumarate are intermediate products
of the TCA cycle [30, 31]. Under aerobic conditions, the oxi-
dation of malic acid to oxaloacetic acid can provide a reduced
mitochondrial equivalent through the redox shuttle between
malic acid and aspartic acid. Under anaerobic conditions, the
accumulation of excess reduction equivalents inhibits glycol-
ysis, and the simultaneous reduction of malic acid to succi-
nate and oxidation to oxaloacetic acid could remove the
accumulated reduction equivalents, which leads to malic acid
reversing the inhibition of hypoxia on glycolysis and energy
production. C00122 (fumarate) is a dicarboxylic acid that
has recently been identified as a metabolite or an endogenous
carcinogenic metabolite. High levels of this organic acid can
be found in tumors or biological fluids around tumors. Its
carcinogenic effect seemed to be due to its ability to inhibit
prolyl hydroxylase [32]. C00025 (glutamate and L-glutamic
acid) is one of the 20 kinds of proteogenic amino acids. Glu-
tamate is the most abundant fast excitatory neurotransmitter
in the mammalian nervous system. Glutamate induced exci-
totoxicity was part of the ischemic cascade and is associated
with stroke, amyotrophic lateral sclerosis, systemic lupus ery-
thematosus, and Alzheimer’s disease [33]. The depletion of
the plasma metabolites C00122 (fumarate), C00025 (gluta-
mate and L-glutamic acid), and C00149 (malate, L-malic
acid) in AIS patients might be related to energy metabolism
and spinal injury.

The study limitations mainly lie in the limited patient
population covered by the analysis. The AIS patients selected
in this study had mainly severe scoliosis with Cobb angles of
45:56 ± 12:78°. Meanwhile, since we studied the plasma
metabolomics of multiple patients and did not specifically
compare the gender and clinical classification of patients
with King, Lenke, or PUMC (Peking Union Medical College)
in AIS, our study may not fully represent the entire clinical
spectrum of AIS patients. It has been reported that the Carter
effect exists in AIS, and the incidence of AIS in women is 2-10
times higher than that in men [34–37]. In this study, we did
not explore whether the gender or clinical classification
affected the plasma metabolomics of AIS patients. Indepth
follow-up studies will explore the above issue further.

In summary, this study used metabolomics to open the
black box of plasma metabolomics in AIS patients. Based
on the differential analysis of biomarkers, 72 small molecule
metabolites were changed. Among them, the plasma metab-
olites C00026 (oxoglutarate), C00062 (L-arginine, arginine),
C01042 (N-acetylaspartate), and C00158 (citrate) were
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significantly enriched in AIS patients. The plasma metabo-
lites C00122 (fumarate), C00025 (glutamate and L-glutamic
acid), C00149 (malate, L-malic acid), and C00624 (N-acetyl-
glutamate) were significantly depleted. These eight AIS-
related plasma biomarkers have significant effects on the
functional metabolism of the following four signaling path-
ways: arginine biosynthesis, D-glutamine and D-glutamate
metabolism, alanine, aspartate and glutamate metabolism,
and citrate cycle (TCA cycle). Based on clinical index corre-
lation analysis, it was found that these eight AIS-related
plasma biomarkers were clearly correlated with clinical
indexes, BMD, and Cobb angles or could be used as new tar-
gets for clinical screening and treatment of AIS.

5. Conclusion

The occurrence of AIS led to significant changes in clinical
indexes, BMD, Cobb angles, and plasma metabolites.
Changes in blood metabolism functional pathways were
closely related to AIS-related plasma biomarkers. Plasma
biomarkers and their functional metabolism might provide
new insights for the screening and treatment of AIS.
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