organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3β , 5α , 6β -Trihydroxyandrostan-17-one

L.C.R. Andrade,^a M.J.B.M. de Almeida,^a J.A. Paixão,^a* J.F.S. Carvalho^b and M.L. Sá e Melo^{b,c}

^aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, ^bCentre for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal, and ^cFaculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal Correspondence e-mail: jap@pollux.fis.uc.pt

Received 24 March 2011; accepted 29 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.098; data-to-parameter ratio = 10.7.

The title compound, $C_{19}H_{30}O_4$, is an androstan-17-one derivative synthesized from the dehydroepiandrosterone through a sequential addition of an oxidant, followed by a *trans*-diaxial opening of the epoxide generated, with Bi(OTf)₃ (OTf is trifluoromethanesulfonate). The six-membered rings have a slightly flattened chair conformation, while the five-membered ring adopts a 14- α envelope conformation. All rings are *trans* fused. In the crystal, the molecules are connected by O–H···O hydrogen bonds involving the hydroxyl and carbonyl groups, forming a three-dimensional network. A quantum mechanical *ab initio* Roothan Hartree–Fock calculation of the free molecule gives bond lengths, valency angles and ring torsion angles of the free molecule at equilibrium geometry (energy minimum) close to the experimental values.

Related literature

For the synthesis of the title compound, see: Carvalho et al. (2010b). For 3β , 5α , 6β -hydroxylation pattern occurance in several natural products, see: Mizushina et al. (1999); Hata et al. (2002); Tanaka et al. (2002); Sun et al. (2006). For natural products as scaffolds for drug discovery, see: Li & Vederas (2009); Rosén et al. (2009). For angiotoxicity of 3β , 5α , 6β trihydroxy steroids, see: Imai et al. (1980); Peng et al. (1985). For the in vivo genesis of osteoporosis and atherosclerosis, see: Hongmei et al. (2005); Imai et al. (1980); Peng et al. (1985). For the cytotoxicity of steroids with a 3β , 5α , 6β -hydroxylation motif against cancer cells, see: Aiello et al. (1995); Carvalho et al. (2010a); El-Gamal et al. (2004). For the use of 3β , 5α , 6β trihydroxy steroids in the synthesis of Δ^4 -3,6-dione steroids. see: Tischler et al. (1988); Aiello et al. (1991); Pardo et al. (2000). For their use as molecular probes for the study of aromatase inhibition, see: Numazawa & Tachibana (1994); Pérez-Ornelas et al. (2005); Nagaoka & Numazawa (2004). For the use of the title compound as an intermediate in the

synthesis of the aromatase inhibitor androst-4-ene-3,6,17trione, see: Ehrenstein (1939); Numazawa *et al.* (1987); Anthony *et al.* (1999). For related structures, see Anthony *et al.* (1999). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona *et al.* (1968). For reference bond-length data, see: Allen *et al.* (1987). For the program *GAMESS* used to perform the quantum chemical calculations, see: Schmidt *et al.* (1993).

V = 1660.04 (6) Å³

Mo $K\alpha$ radiation

 $0.23 \times 0.13 \times 0.13$ mm

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

Z = 4

Experimental

Crystal data $C_{19}H_{30}O_4$ $M_r = 322.43$ Orthorhombic, $P2_12_12_1$ a = 5.8132 (1) Å b = 13.3880 (3) Å c = 21.3298 (5) Å

Data collection

Bruker APEXII CCD area-detector	40718 measured reflections
diffractometer	2276 independent reflections
Absorption correction: multi-scan	1874 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2000)	$R_{\rm int} = 0.031$
$T_{\min} = 0.937, \ T_{\max} = 1.00$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 213 parameters $wR(F^2) = 0.098$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ 2276 reflections $\Delta \rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Table 1

```
Hydrogen-bond geometry (Å, °).
```

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O3−H3···O17 ⁱ	0.82	2.11	2.931 (2)	175
O5−H5···O3 ⁱⁱ	0.82	1.99	2.8063 (19)	171
$O6-H6A\cdots O5^{iii}$	0.82	2.39	3.120 (2)	148
Symmetry codes: (i) -	$x + \frac{3}{2}, -y + 1,$	$z - \frac{1}{2}$; (ii) $x + \frac{1}{2}$	$y - y + \frac{1}{2}, -z;$ (iii) x -	– 1, <i>y</i> , <i>z</i> .

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Fundação para a Ciência e Tecnologia. We gratefully acknowledge the LCA–UC for a grant of computer time in the Milipeia cluster and Mr Carlos Pereira for help with the analysis of the output of the *GAMESS* code. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5502).

References

- Aiello, A., Fattorusso, E., Magno, S., Menna, M. & Pansini, M. (1991). J. Nat. Prod. 54, 281–285.
- Aiello, A., Fattorusso, E., Menna, M., Carnuccio, R. & Iuvone, T. (1995). Steroids, 60, 666–673.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.
- Anthony, A., Jaskólski, M. & Nangia, A. (1999). Acta Cryst. C55, 787-789.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA. Carvalho, J. F. S., Silva, M. M. C., Moreira, J. N., Simões, S. & Sá e Melo, M. L. (2010*a*). *J. Med. Chem* **53**, 7632–7638.
- Carvalho, J. F. S., Silva, M. M. C. & Sá e Melo, M. L. (2010b). Tetrahedron, 66, 2455-2462.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.
- Ehrenstein, M. (1939). J. Org. Chem. 4, 506-518.
- El-Gamal, A. A. H., Wang, S.-K., Dai, C.-F. & Duh, C.-Y. (2004). J. Nat. Prod. 67, 1455–1458.
- Hata, K., Sugawara, F., Ohisa, N., Takahashi, S. & Hori, K. (2002). *Biol. Pharm. Bull.* 25, 1040–1044.
- Hongmei, L., Lan, Y., Shanjin, X., Kui, W. & Tianlan, Z. (2005). J. Cell. Biochem. 96, 198–208.

- Imai, H., Werthessen, N. T., Subramanyam, V., LeQuesne, P. W., Soloway, A. H. & Kanisawa, M. (1980). Science, 207, 651–653.
- Li, J. W. H. & Vederas, J. C. (2009). Science, 325, 161-165.
- Mizushina, Y., Takahashi, N., Hanashima, L., Koshino, H., Esumi, Y., Uzawa, J., Sugawara, F. & Sakaguchi, K. (1999). *Bioorg. Med. Chem.* 7, 2047–2052. Nagaoka, M. & Numazawa, M. (2004). *Chem. Pharm. Bull.* 52, 983–985.
- Numazawa, M. & Tachibana, M. (1994). *Steroids*, **59**, 579–585.
- Numazawa, M., Tsuji, M. & Mutsumi, A. (1987). J. Steroid Biochem. 28, 337-344.
- Pardo, F., Perich, F., Torres, R. & Delle Monache, F. (2000). Biochem. Syst. Ecol. 28, 911–913.
- Peng, S. K., Taylor, C. B., Hill, J. C. & Morin, R. J. (1985). Atherosclerosis, 54, 121–133.
- Pérez-Ornelas, V., Cabeza, M., Bratoeff, E., Heuze, I., Sánchez, M., Ramírez, E. & Naranjo-Rodríguez, E. (2005). *Steroids*, **70**, 217–224.
- Rosén, J., Gottfries, J., Muresan, S., Backlund, A. & Oprea, T. I. (2009). J. Med. Chem. 52, 1953–1962.
- Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L.,
- Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363. Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, Y., Tian, L., Huang, J., Li, W. & Pei, Y.-H. (2006). Nat. Prod. Res. 20, 381–384.
- Tanaka, J., Trianto, A., Musman, M., Issa, H. H., Ohtani, I. I., Ichiba, T., Higa, T., Yoshida, W. Y. & Scheuer, P. J. (2002). *Tetrahedron*, 58, 6259–6266.
- Tischler, M., Ayer, S. W., Andersen, R. J., Mitchell, J. F. & Clardy, J. (1988). Can. J. Chem. 66, 1173–1178.

Acta Cryst. (2011). E67, o1056-o1057 [doi:10.1107/S1600536811011706]

3β,5α,6β-Trihydroxyandrostan-17-one

L. C. R. Andrade, M. J. B. M. de Almeida, J. A. Paixão, J. F. S. Carvalho and M. L. Sá e Melo

Comment

Recently, the importance of natural products as scaffolds for drug discovery and design has been a subject of renewed interest (Li & Vederas, 2009; Rosén *et al.*, 2009). The $3\beta,5\alpha,6\beta$ -hydroxylation pattern is found in several natural products (Mizushina *et al.*, 1999; Hata *et al.*, 2002; Tanaka *et al.*, 2002; Sun *et al.*, 2006) and also in human tissues, mainly in an oxidation product of cholesterol. The same hydroxylation motif is present in several natural steroids with interesting biological properties, namely cytotoxicity against cancer cells (Aiello *et al.*, 1995; El-Gamal *et al.*, 2004). On the other hand, cholestane- $3\beta,5\alpha,6\beta$ -triol has been extensively studied, proving to display cytotoxicity (Carvalho *et al.*, 2010*a*) and angiotoxicity (Imai *et al.*, 1980; Peng *et al.*, 1985) and has been suggested to participate in the *in vivo* genesis of pathological situations such as osteoporosis (Hongmei *et al.*, 2005) and atherosclerosis (Imai *et al.*, 1980; Peng *et al.*, 1985). Such findings validate the $3\beta,5\alpha,6\beta$ -hydroxylation pattern as biologically important, and in this context a recently new protocol for the straightforward synthesis of $5\alpha,6\beta$ -dihydroxy-steroids from a broad diversity of 3β -hydroxy- Δ^5 -steroids was accomplished by our group (Carvalho *et al.*, 2010*b*).

In addition, 3β , 5α , 6β -trihydroxy steroids are valuable intermediates for the synthesis of Δ^4 -3,6-dione-steroids, widely present in natural products (Tischler *et al.*, 1988; Aiello *et al.*, 1991; Pardo *et al.*, 2000) and with proved utility as molecular probes for the study of aromatase inhibition (Numazawa & Tachibana, 1994; Pérez-Ornelas *et al.*, 2005; Nagaoka & Numazawa, 2004). In fact, compound (I) is a synthetically valuable intermediate (Ehrenstein, 1939) of the biologically active androst-4-ene-3,6,17-trione compound, (Anthony *et al.*, 1999) which is a well known aromatase inhibitor (Numazawa *et al.*, 1987). Due to the interest of our group in the cytotoxic potential of steroids, a series of oxygenated steroids were further prepared and evaluated on HT-29 cancer cells (Carvalho *et al.*, 2010*a*). Compound (I) showed no relevant cytotoxicity (IC₅₀ > 50µM), in contrast to cholestane-3 β ,5 α ,6 β -triol and other cholestane derivatives. Such result points to the importance of a C-17 cholesteryl type side chain for cytotoxicity thus the importance of X-ray diffraction structural studies on such compounds.

Bond lengths and valency angles are within the range of expected values for this type of compounds (Allen *et al.*,1987) with the exception of bonds C2–C3 and C3–C4 [1.510 (3); 1.518 (3) Å)] which are significantly smaller than the Csp_3 – Csp_3 average value [1.535 Å].

Rings A to C have slightly flattened chair conformations, as shown by the Cremer & Pople (1975) parameters [ring A: Q = 0.570 (2) Å, $\theta = 5.6$ (2)° and $\phi = 299$ (2)°; B: Q = 0.5705 (19) Å, $\theta = 3.4$ (2)° and $\phi = 255$ (3)°; C: Q = 0.5727 (19) Å, $\theta = 7.04$ (19)° and $\phi = 271.3$ (16)°].

Ring D has a 14- α envelope conformation [Cremer & Pople (1975) parameters $q_2 = 0.415$ (2) Å and $\varphi_2 = 213.5$ (3)° and asymmetry parameters (Duax & Norton, 1975; Altona *et al.*, 1968) $\Delta C_s(14) = 2.4$ (2)°; $\Delta C_2(13,14) = 17.8$ (2)°; $\varphi_m = 42.6$ (1)°; $\Delta = 30.6$ (4)°]. All rings are fused *trans*.

In order to gain some insight on how the crystal packing of (I) might affect the molecular geometry we have performed quantum chemical calculations on the equilibrium geometry of the free molecule. The calculations were performed with the computer program GAMESS (Schmidt *et al.*, 1993).

The *ab-initio* calculations reproduce well the observed experimental bond lengths and valency angles of the molecule. Also, the calculated conformation of the rings are very close to the experimental values.

The molecules are hydrogen-bonded *via* the hydroxyl and carbonyl groups forming a three-dimension hydrogen bond pattern. Each hydroxyl group acts as both donnor and acceptor, thus full potential for hydrogen bonding is achieved in the crystal struture. In addition to these bonds, three weak intramolecular interactions can be spotted involving atoms O5 and O6 and CH, CH₂ and CH₃ groups.

Experimental

Synthesis of (I) was performed using a new and recently reported (Carvalho *et al.*, 2010*b*) fast and high yielding sequential chemical approach for the straightforward preparation of $5\alpha,6\beta$ -dihydroxy-steroids using 3β -hydroxy- Δ^5 -steroids as raw materials. The protocol involves two steps: (i) formation of the epoxide from Δ^5 -steroids, using MMPP as oxidative agent; and (ii) *trans*-diaxial epoxide opening with Bi(OTf)₃ in commercial acetone. Crystallization from ethanol at room temperature afforded colorless crystals suitable for X-ray analysis. Analytical data of compound (I) is in accordance with the literature (Carvalho *et al.*, 2010*b*).

Refinement

All hydrogen atoms were refined as riding on their parent atoms using *SHELXL97* defaults. The absolute configuration was not determined from the X-ray data, as the molecule lacks any strong anomalous scatterer atom at the Mo K α wavelength, but was known from the synthetic route. Friedel pairs were merged before refinement.

Figures

Fig. 1. *ORTEPII* plot of the title compound. Displacement ellipsoids are drawn at the 50% level.

3β,5α,6β-Trihydroxyandrostan-17-one

Crystal data

 $C_{19}H_{30}O_4$ $M_r = 322.43$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.8132 (1) Å b = 13.3880 (3) Å $D_x = 1.290 \text{ Mg m}^{-3}$ Melting point: 574 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6253 reflections $\theta = 3.1-30.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ c = 21.3298 (5) Å $V = 1660.04 (6) \text{ Å}^3$ Z = 4F(000) = 704

Data collection

2276 independent reflections
1874 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
$h = -7 \rightarrow 6$
$k = -17 \rightarrow 17$
<i>l</i> = −27→25

T = 293 K

Prism, colourless

 $0.23\times0.13\times0.13~mm$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.098$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0563P)^{2} + 0.2093P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2276 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
213 parameters	$\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. IR (film) 3442, 3348, 2942, 2861, 1723, 1471, 1373, 1077, 1047, 1030, 1001, 960, 874 cm⁻¹; ¹H NMR (300 MHz, *DMSO-d6*) δ p.p.m. 0.77 (3*H*, s, 18-CH₃), 1.04 (3*H*, s, 19-CH₃), 2.36 (1*H*, dd, *J*=19.0, 8.2 Hz), 3.35 (1*H*, m, 6α-H), 3.74 (1*H*, s, OH), 3.78 (1*H*, m, 3α-H), 4.22 (1*H*, d, *J*=5.8 Hz, OH), 4.51 (1*H*, d, *J*=4.3 Hz, OH); ¹³C NMR (75 MHz, *DMSO-d6*) δ p.p.m. 13.4, 16.2, 20.0, 21.4 (CH₂), 29.6, 31.0 (CH₂), 31.5 (CH₂), 32.0 (CH₂), 33.3 (CH₂), 35.3 (CH₂), 37.9 (C-10), 40.8 (CH₂), 44.8, 47.2 (C-13), 50.5, 65.6, 73.8, 74.3 (C-5), 220.0 (C-17); MS m/z (%): 321.3 (9) [M—H]⁺, 293.2 (20), 280.4 (23), 265.5 (100), 250.2 (13), 90.3 (54). **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of

cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
03	0.4447 (4)	0.39692 (11)	-0.03066 (6)	0.0551 (5)
Н3	0.4176	0.4562	-0.0371	0.083*
05	0.8749 (2)	0.26939 (10)	0.10844 (6)	0.0344 (3)
Н5	0.8788	0.2198	0.0860	0.052*
O6	0.3172 (3)	0.20863 (13)	0.18197 (7)	0.0490 (4)
H6A	0.2372	0.2182	0.1509	0.074*
017	1.1224 (3)	0.38845 (11)	0.44942 (6)	0.0396 (4)
C1	0.7513 (4)	0.47124 (14)	0.11921 (8)	0.0304 (4)
H1A	0.7555	0.5345	0.1414	0.036*
H1B	0.9085	0.4527	0.1093	0.036*
C2	0.6166 (4)	0.48453 (14)	0.05810 (8)	0.0358 (5)
H2A	0.4642	0.5098	0.0676	0.043*
H2B	0.6940	0.5334	0.0320	0.043*
C3	0.5956 (4)	0.38742 (14)	0.02260 (8)	0.0334 (5)
H3A	0.7485	0.3683	0.0075	0.040*
C4	0.5032 (4)	0.30359 (13)	0.06337 (8)	0.0298 (4)
H4A	0.5094	0.2414	0.0400	0.036*
H4B	0.3433	0.3170	0.0733	0.036*
C5	0.6392 (3)	0.29152 (13)	0.12470 (8)	0.0245 (4)
C6	0.5535 (4)	0.20277 (14)	0.16369 (9)	0.0326 (5)
H6	0.5743	0.1419	0.1388	0.039*
C7	0.6922 (4)	0.19194 (13)	0.22384 (8)	0.0333 (5)
H7A	0.8478	0.1718	0.2133	0.040*
H7B	0.6247	0.1395	0.2492	0.040*
C8	0.7015 (3)	0.28834 (13)	0.26229 (8)	0.0248 (4)
H8	0.5454	0.3049	0.2762	0.030*
С9	0.7942 (3)	0.37543 (13)	0.22212 (7)	0.0226 (4)
Н9	0.9469	0.3549	0.2076	0.027*
C10	0.6459 (3)	0.39125 (12)	0.16226 (7)	0.0219 (4)
C11	0.8298 (4)	0.47172 (13)	0.26035 (8)	0.0332 (5)
H11A	0.9074	0.5205	0.2342	0.040*
H11B	0.6805	0.4989	0.2714	0.040*
C12	0.9702 (4)	0.45672 (14)	0.32058 (8)	0.0329 (5)
H12A	1.1280	0.4402	0.3100	0.039*
H12B	0.9712	0.5181	0.3448	0.039*
C13	0.8657 (3)	0.37305 (14)	0.35939 (8)	0.0267 (4)
C14	0.8548 (3)	0.27739 (13)	0.31973 (8)	0.0267 (4)
H14	1.0109	0.2665	0.3038	0.032*
C15	0.8117 (4)	0.19464 (15)	0.36767 (9)	0.0418 (5)
H15A	0.8561	0.1299	0.3512	0.050*
H15B	0.6513	0.1925	0.3801	0.050*
C16	0.9667 (5)	0.22585 (15)	0.42264 (10)	0.0460 (6)
H16A	0.8930	0.2110	0.4623	0.055*
H16B	1.1126	0.1908	0.4209	0.055*
C17	1.0028 (4)	0.33729 (15)	0.41549 (8)	0.0307 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	0.6314 (4)	0.40438 (18)	0.38719 (9)	0.0436 (5)
H18A	0.6503	0.4641	0.4115	0.065*
H18B	0.5739	0.3519	0.4135	0.065*
H18C	0.5244	0.4166	0.3538	0.065*
C19	0.4042 (3)	0.42658 (15)	0.18101 (9)	0.0331 (5)
H19A	0.4118	0.4944	0.1955	0.050*
H19B	0.3460	0.3847	0.2139	0.050*
H19C	0.3038	0.4227	0.1454	0.050*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	0.0995 (15)	0.0344 (8)	0.0314 (8)	-0.0083 (10)	-0.0306 (9)	-0.0014 (6)
O5	0.0335 (7)	0.0368 (8)	0.0328 (7)	0.0077 (6)	0.0005 (6)	-0.0113 (6)
O6	0.0397 (8)	0.0592 (10)	0.0482 (8)	-0.0219 (9)	-0.0106 (7)	0.0154 (8)
017	0.0437 (8)	0.0463 (8)	0.0289 (7)	0.0028 (8)	-0.0082 (7)	-0.0058 (6)
C1	0.0425 (11)	0.0251 (9)	0.0235 (9)	-0.0085 (9)	-0.0074 (8)	0.0012 (7)
C2	0.0548 (13)	0.0278 (9)	0.0247 (9)	-0.0095 (10)	-0.0092 (10)	0.0023 (8)
C3	0.0461 (12)	0.0328 (10)	0.0213 (9)	-0.0015 (10)	-0.0054 (9)	-0.0025 (8)
C4	0.0398 (10)	0.0236 (9)	0.0260 (9)	-0.0050 (9)	-0.0069 (8)	-0.0041 (7)
C5	0.0256 (9)	0.0230 (9)	0.0250 (8)	-0.0013 (8)	-0.0021 (7)	-0.0039 (7)
C6	0.0417 (11)	0.0227 (9)	0.0335 (10)	-0.0083 (9)	-0.0086 (9)	-0.0010 (8)
C7	0.0468 (12)	0.0202 (9)	0.0330 (10)	-0.0055 (9)	-0.0082 (9)	0.0033 (7)
C8	0.0257 (9)	0.0237 (8)	0.0251 (8)	-0.0010 (8)	-0.0020 (7)	0.0016 (7)
C9	0.0249 (9)	0.0215 (8)	0.0213 (8)	-0.0010 (7)	-0.0017 (7)	-0.0010 (7)
C10	0.0249 (9)	0.0193 (8)	0.0216 (8)	-0.0004 (7)	-0.0009 (7)	-0.0018 (7)
C11	0.0504 (13)	0.0231 (9)	0.0262 (9)	-0.0037 (9)	-0.0092 (9)	-0.0002 (7)
C12	0.0458 (12)	0.0289 (9)	0.0240 (9)	-0.0060 (9)	-0.0066 (9)	-0.0018 (7)
C13	0.0293 (9)	0.0294 (9)	0.0215 (8)	0.0035 (8)	-0.0006 (8)	-0.0011 (7)
C14	0.0287 (10)	0.0256 (9)	0.0258 (8)	0.0003 (8)	-0.0008 (8)	0.0008 (7)
C15	0.0570 (14)	0.0325 (11)	0.0359 (10)	-0.0053 (11)	-0.0098 (10)	0.0095 (9)
C16	0.0661 (16)	0.0387 (11)	0.0332 (10)	0.0014 (12)	-0.0136 (11)	0.0086 (9)
C17	0.0310 (10)	0.0391 (11)	0.0220 (9)	0.0048 (9)	0.0027 (8)	-0.0005 (8)
C18	0.0364 (11)	0.0598 (14)	0.0346 (10)	0.0160 (11)	0.0025 (10)	-0.0060 (10)
C19	0.0303 (11)	0.0382 (11)	0.0306 (9)	0.0076 (9)	-0.0034 (9)	-0.0043 (8)

Geometric parameters (Å, °)

O3—C3	1.441 (2)	С8—Н8	0.9800
O3—H3	0.8200	C9—C11	1.539 (2)
O5—C5	1.444 (2)	C9—C10	1.555 (2)
O5—H5	0.8200	С9—Н9	0.9800
O6—C6	1.430 (3)	C10—C19	1.535 (3)
O6—H6A	0.8200	C11—C12	1.535 (2)
O17—C17	1.215 (2)	C11—H11A	0.9700
C1—C2	1.531 (2)	C11—H11B	0.9700
C1—C10	1.538 (2)	C12—C13	1.520 (3)
C1—H1A	0.9700	C12—H12A	0.9700
C1—H1B	0.9700	C12—H12B	0.9700

C_2 C_3	1 510 (3)	C13 C17	1 515 (3)
C2—C3	0.9700	C13—C14	1.515(3) 1.536(2)
C2—H2B	0.9700	C13-C18	1.550(2) 1 543(3)
$C_2 = C_4$	1 518 (3)	C_{14} C_{15} C	1.578 (2)
C3—H3A	0.9800	C14—H14	0.9800
C4—C5	1 537 (2)	C15-C16	1 537 (3)
C4—H4A	0.9700	C15—H15A	0.9700
C4—H4B	0.9700	C15—H15B	0.9700
C5-C6	1 533 (3)	C16—C17	1 514 (3)
C5-C10	1 558 (2)	C16—H16A	0.9700
C6—C7	1 522 (3)	C16—H16B	0.9700
С6—Н6	0.9800	C18—H18A	0.9600
C7—C8	1 530 (2)	C18—H18B	0.9600
С7—Н7А	0.9700	C18—H18C	0.9600
C7—H7B	0.9700	C19—H19A	0.9600
C8—C14	1 522 (2)	C19—H19B	0.9600
C8—C9	1.544 (2)	C19—H19C	0.9600
С3—О3—Н3	109.5	C19—C10—C1	107 80 (16)
C5	109.5	C19 - C10 - C9	109 59 (14)
C6	109.5	C1 - C10 - C9	111 35 (14)
C_{2} C_{1} C_{10}	112 67 (15)	C19 - C10 - C5	111.05(14) 112.05(14)
C_2 C_1 H_1 A	109.1	C1 - C10 - C5	107.44(13)
C10-C1-H1A	109.1	C9-C10-C5	108.61 (13)
C^2 — C^1 — H^1B	109.1	$C_{12} = C_{11} = C_{9}$	113 91 (15)
C10-C1-H1B	109.1	C12—C11—H11A	108.8
H1A - C1 - H1B	107.8	C9-C11-H11A	108.8
C_{3} C_{2} C_{1}	111 62 (15)	C12—C11—H11B	108.8
$C_3 = C_2 = H_2 A$	109.3	C9—C11—H11B	108.8
C1-C2-H2A	109.3	H11A—C11—H11B	107.7
$C_3 - C_2 - H_2B$	109.3	C13-C12-C11	109.85 (16)
C1 - C2 - H2B	109.3	C13 - C12 - H12A	109.7
$H^2A - C^2 - H^2B$	108.0	C11-C12-H12A	109.7
03 - C3 - C2	111.65 (16)	C13—C12—H12B	109.7
03 - 03 - 04	107 56 (16)	C11—C12—H12B	109.7
$C_2 - C_3 - C_4$	112 23 (14)	H12A—C12—H12B	108.2
03—C3—H3A	108.4	C17 - C13 - C12	116.91 (17)
C^2 — C^3 — H^3A	108.4	C17 - C13 - C14	101.13(14)
C4-C3-H3A	108.4	C12-C13-C14	109.33 (14)
C_{3}^{-}	112 54 (15)	C17 - C13 - C18	104.28(15)
C3—C4—H4A	109.1	C12-C13-C18	111 22 (17)
C5—C4—H4A	109.1	C14-C13-C18	113 69 (16)
C3—C4—H4B	109.1	C8 - C14 - C15	120.83 (16)
C5-C4-H4B	109.1	C8-C14-C13	112.78 (14)
H4A—C4—H4B	107.8	C15-C14-C13	104.05 (14)
05-05-06	106 23 (15)	C8—C14—H14	106.1
05	107.77 (14)	C15—C14—H14	106.1
C6—C5—C4	112.08 (14)	C13—C14—H14	106.1
O5—C5—C10	106.01 (13)	C14—C15—C16	102.55 (16)
C6—C5—C10	113.17 (13)	C14—C15—H15A	111.3
	× /		

C4—C5—C10	111.12 (14)	C16—C15—H15A	111.3
O6—C6—C7	106.51 (16)	C14—C15—H15B	111.3
O6—C6—C5	114.67 (17)	C16—C15—H15B	111.3
C7—C6—C5	111.02 (15)	H15A—C15—H15B	109.2
O6—C6—H6	108.1	C17—C16—C15	105.81 (17)
С7—С6—Н6	108.1	С17—С16—Н16А	110.6
С5—С6—Н6	108.1	C15—C16—H16A	110.6
C6—C7—C8	112.96 (15)	C17—C16—H16B	110.6
С6—С7—Н7А	109.0	C15—C16—H16B	110.6
С8—С7—Н7А	109.0	H16A—C16—H16B	108.7
С6—С7—Н7В	109.0	O17—C17—C16	125.09 (19)
С8—С7—Н7В	109.0	O17—C17—C13	126.38 (17)
H7A—C7—H7B	107.8	C16—C17—C13	108.53 (17)
C14—C8—C7	111.77 (14)	C13—C18—H18A	109.5
C14—C8—C9	108.37 (14)	C13—C18—H18B	109.5
С7—С8—С9	110.60 (14)	H18A—C18—H18B	109.5
С14—С8—Н8	108.7	C13—C18—H18C	109.5
С7—С8—Н8	108.7	H18A—C18—H18C	109.5
С9—С8—Н8	108.7	H18B—C18—H18C	109.5
C11—C9—C8	112.67 (13)	С10—С19—Н19А	109.5
C11—C9—C10	113.30 (14)	С10—С19—Н19В	109.5
C8—C9—C10	111.41 (14)	H19A—C19—H19B	109.5
С11—С9—Н9	106.3	С10—С19—Н19С	109.5
С8—С9—Н9	106.3	H19A—C19—H19C	109.5
С10—С9—Н9	106.3	H19B—C19—H19C	109.5
C10—C1—C2—C3	-56.4 (2)	O5—C5—C10—C1	59.79 (17)
C1—C2—C3—O3	172.65 (17)	C6—C5—C10—C1	175.84 (15)
C1—C2—C3—C4	51.8 (2)	C4—C5—C10—C1	-57.03 (19)
O3—C3—C4—C5	-175.47 (15)	O5-C5-C10-C9	-60.77 (17)
C2—C3—C4—C5	-52.3 (2)	C6—C5—C10—C9	55.28 (19)
C3—C4—C5—O5	-60.09 (19)	C4—C5—C10—C9	-177.60 (14)
C3—C4—C5—C6	-176.63 (16)	C8—C9—C11—C12	50.7 (2)
C3—C4—C5—C10	55.7 (2)	C10-C9-C11-C12	178.37 (16)
O5—C5—C6—O6	-177.18 (15)	C9—C11—C12—C13	-52.8 (2)
C4—C5—C6—O6	-59.7 (2)	C11—C12—C13—C17	170.85 (16)
C10—C5—C6—O6	66.9 (2)	C11—C12—C13—C14	56.8 (2)
O5—C5—C6—C7	62.06 (18)	C11—C12—C13—C18	-69.57 (19)
C4—C5—C6—C7	179.52 (15)	C7—C8—C14—C15	-55.8 (2)
C10-C5-C6-C7	-53.9 (2)	C9—C8—C14—C15	-177.90 (16)
O6—C6—C7—C8	-72.2 (2)	C7—C8—C14—C13	-179.62 (16)
C5—C6—C7—C8	53.2 (2)	C9—C8—C14—C13	58.24 (19)
C6—C7—C8—C14	-176.03 (16)	C17—C13—C14—C8	173.72 (15)
C6—C7—C8—C9	-55.2 (2)	C12—C13—C14—C8	-62.4 (2)
C14—C8—C9—C11	-51.4 (2)	C18—C13—C14—C8	62.6 (2)
C7—C8—C9—C11	-174.26 (16)	C17—C13—C14—C15	41.03 (18)
C14—C8—C9—C10	179.96 (14)	C12—C13—C14—C15	164.95 (17)
C7—C8—C9—C10	57.1 (2)	C18—C13—C14—C15	-70.1 (2)
C2-C1-C10-C19	-62.94 (19)	C8—C14—C15—C16	-168.04 (17)
C2-C1-C10-C9	176.82 (15)	C13—C14—C15—C16	-40.2 (2)

C2-C1-C10-C5	58.0 (2)	C14—C15—C16—C17	23.2 (2)
C11—C9—C10—C19	-62.1 (2)	C15-C16-C17-O17	-177.7 (2)
C8—C9—C10—C19	66.23 (18)	C15-C16-C17-C13	2.2 (2)
C11-C9-C10-C1	57.1 (2)	C12-C13-C17-O17	34.9 (3)
C8—C9—C10—C1	-174.59 (14)	C14—C13—C17—O17	153.5 (2)
C11—C9—C10—C5	175.23 (15)	C18—C13—C17—O17	-88.3 (2)
C8—C9—C10—C5	-56.48 (18)	C12-C13-C17-C16	-145.00 (19)
O5-C5-C10-C19	178.02 (15)	C14—C13—C17—C16	-26.4 (2)
C6—C5—C10—C19	-65.9 (2)	C18—C13—C17—C16	91.8 (2)
C4—C5—C10—C19	61.19 (19)	C19—C10—C13—C18	1.68 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
O3—H3…O17 ⁱ	0.82	2.11	2.931 (2)	175.
O5—H5…O3 ⁱⁱ	0.82	1.99	2.8063 (19)	171.
O6—H6A···O5 ⁱⁱⁱ	0.82	2.39	3.120 (2)	148.

Symmetry codes: (i) -*x*+3/2, -*y*+1, *z*-1/2; (ii) *x*+1/2, -*y*+1/2, -*z*; (iii) *x*-1, *y*, *z*.

Fig. 1