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INTRODUCTION

Over the past few years, an intense discussion about the reproducibility of scientific findings
in various life science disciplines arose (e.g., Baker, 2016; Scannell and Bosley, 2016; Voelkl
and Würbel, 2016). Thereby, particular attention has been given to animal research, where
irreproducibility prevalence rates have been estimated to range between 50 and 90% (Prinz et al.,
2011; Collins and Tabak, 2014; Freedman et al., 2015). Highlighted under the umbrella term of the
“reproducibility crisis,” mostly failures in the planning and conduct of animal experiments have
been criticized to lead to invalid and hence irreproducible findings. To counteract these trends,
animal scientists have repeatedly emphasized the need for a rethinking of current methodologies,
mainly targeting aspects of the experimental design, but also of the reporting and publishing
standards (see e.g., ARRIVE guidelines, Kilkenny et al., 2010; TOP guidelines, Nosek et al., 2016;
du Sert et al., 2018; PREPARE guidelines, Smith et al., 2018).

However, as demonstrated by an already 20 years-old study, the use of thoroughly planned and
well-reported protocols does not automatically lead to perfect reproducibility: In this study, three
laboratories found remarkably different results when comparing the behavior of eightmouse strains
in a battery of six conventionally carried out behavioral paradigms (Crabbe et al., 1999). It was
hypothesized that “specific experimenters performing the testing were unique to each laboratory
and could have influenced behavior of the mice. The experimenter in Edmonton, for example, was
highly allergic tomice and performed all tests while wearing a respirator—a laboratory-specific (and
uncontrolled) variable.” Following on from these thoughts, the importance of the experimenter as
an uncontrollable background factor in the study of behavior moved into focus (e.g., Chesler et al.,
2002a,b). Concomitantly, the use of automated test systems was promoted as a tool to reduce the
experimenter’s influence and to improve the accuracy and reproducibility of behavioral data (e.g.,
Spruijt and DeVisser, 2006).

Against this background, the present opinion paper aims at (1) briefly discussing the role of the
experimenter in animal studies, (2) investigating the advantages and disadvantages of automated
test systems, (3) exploring the potential of automation for improving reproducibility, and (4)
proposing an alternative strategy for systematically integrating the experimenter as a controlled
variable in the experimental design. In particular, I will argue that systematic variation of personnel
rather than rigorous homogenization of experimental conditionsmight benefit the external validity,
and hence the reproducibility of behavioral data.

THE EXPERIMENTER AS AN UNCONTROLLABLE BACKGROUND
FACTOR

As impressively illustrated by the above-mentioned multi-laboratory study, environmental
conditions can exert a huge impact on behavioral traits. This has been particularly highlighted
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in the context of behavioral genetics, where experimental factors
have been observed to interact greatly with trait-relevant genes.
In order to identify and rank potential sources of such variability,
Chesler et al. initially applied a computational approach to a
huge archival data set on baseline thermal nociceptive sensitivity
in mice (Chesler et al., 2002a,b). This way, they systematically
identified several experimental factors that affected nociception,
including, for example, season, cage density, time of day, testing
order, or sex. Most interestingly, however, this analysis revealed
that a factor even more important than the mouse genotype
(i.e., the treatment under investigation) was the experimenter
performing the test. Following on from this initial finding,
subsequent studies provided further empirical evidence for the
influence of the experimenter on the outcome of behavioral tests
(e.g., van Driel and Talling, 2005; Lewejohann et al., 2006; López-
Aumatell et al., 2011; Bohlen et al., 2014). With the aim of further
disentangling what exactly constitutes the experimenter effect,
some of these studies concentrated on specific characteristics
of the personnel working with the animals. In particular, they
could show that certain characteristics, such as the sex of the
experimenter (Sorge et al., 2014) or the animals’ familiarity
with the personnel (van Driel and Talling, 2005) may play a
crucial role.

Moreover, with respect to behavioral observations and direct
experimenter-dependent assessments (e.g., counting “head-dips”
on the elevated plus maze), it cannot be ruled out that the human
observer may evaluate observations inconsequently and that
definitions of behavior in, for example, ethograms are interpreted
in various ways. Training deficits as well as a lack of inter-
observer reliability can thus be regarded as additional sources of
the experimenter-induced variation (Spruijt and DeVisser, 2006;
Bohlen et al., 2014). Furthermore, only short habituation periods
may promote differential reactions of individual animals toward
the observer. Irrespective of the precise features that account
for the described experimenter effects, however, the research
community has widely agreed upon the importance of this factor
as an uncontrollable background factor in behavioral research.

THE USE OF AUTOMATED TEST SYSTEMS
IN BEHAVIORAL STUDIES

To overcome this issue, voices became loud during the last
years to increase the usage of automated and experimenter-
free testing environments, particularly in behavioral studies.
Thereby, automation is not only considered beneficial to reduce
or even prevent the confounding impact of the “human element”,
but also to decrease the time-consuming efforts of human
observers. Looking at the literature, twomajor research lines have
been pursued to implement this idea further: (1) Automation
of recording and test approaches, and (2) development of
automated home cage phenotyping, or alternatively, test systems
that are attached to home cages and can be entered on a
voluntary basis. Whereas, the former involves testing the animal
outside of the home cage and thus still requires handling by
an experimenter (e.g., Horner et al., 2013), the latter enables
a completely new route for monitoring behavior over long

periods of time within the familiar environment and without
any need for human intervention (e.g., Jhuang et al., 2010).
With regard to automated test systems used outside of the
home cage, typical examples are touchscreen chambers, mainly
used for the assessment of higher cognitive functions in rodents
(e.g. Bussey et al., 2008, 2012; Krakenberg et al., 2019), Skinner
boxes (e.g. Rygula et al., 2012), or more specifically targeted
technologies, such as the automated maze task (Pioli et al.,
2014), the automated open field test (Leroy et al., 2009), or the
automated social approach task (Yang et al., 2011). Likewise,
systems, such as the IntelliCage (e.g., Vannoni et al., 2014),
the PhenoCube (e.g., Balci et al., 2013), or the PhenoTyper
(e.g., De Visser et al., 2006) have been developed to track the
behavior within the familiar home cage. Potential advantages of
such automated compared to manual assessments include the
continuous monitoring, particularly during the dark phase when
mice are most active, the observation in a familiar and thus less
stressful environment, and the examination of combinations of
behaviors rather than single behaviors (Steele et al., 2007). The
latter point has been particularly highlighted as being crucial for
the behavioral characterization of rodent disease models, as signs
of ill health, pain, and distress tend to be very subtle in these
animals (Weary et al., 2009). Furthermore, letting animals self-
pace their task progression from a home-cage has been shown
to speed up learning and to increase test efficiency in complex
tasks (e.g., 5-choice serial reaction time task, Remmelink et al.,
2017). Lastly, the use of automated technologies allows animals
to maintain some control over which resources they would like
to interact with, a key advantage in terms of animal welfare
(Spruijt and DeVisser, 2006). At the same time, automation may
come with certain challenges: For example, many automated
test systems are not yet adapted to group housing and thus
may require single housing of the study subjects, at least during
the observation phases. This in turn may critically impair the
welfare of these individuals, and undermines the goal of refining
housing conditions for social animals according to their needs
(Richardson, 2012; but see also Bains et al., 2018). Likewise, even
the best automation does not prevent the individual from being
handled for animal care reasons, probably potentiating the stress
experienced during these rare events. Although the increasing
implementation of automated systems in behavioral studies thus
brings about a number of advantages, there is still room and need
for further improvement.

AUTOMATION AND REPRODUCIBILITY OF
BEHAVIORAL DATA

In light of the hotly discussed reproducibility crisis, automation
is especially promoted as one potential way out of the problem.
In particular, it has been argued that a computer algorithm,
once programmed, and trained is consistent and unbiased and
may thus reduce unwanted variation and hence contribute to
improved comparability and reproducibility across studies and
laboratories (Spruijt and DeVisser, 2006; Spruijt et al., 2014).
In line with these arguments, a behavioral characterization of
C57BL/6 and DBA/2 mice in the PhenoTyper indeed revealed
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highly consistent strain differences in circadian rhythms across
two laboratories (Robinson et al., 2018). Likewise, automated
home-cage testing in IntelliCages was found to provide consistent
behavioral and learning differences between three mouse strains
across four laboratories, i.e., no significant laboratory-by-
strain interactions could be detected (Krackow et al., 2010).
Furthermore, comparing this system with conventional testing
of mice in the open field and the water maze tests yielded
more reliable results in the IntelliCages, even though the
conventional tests were standardized strictly (Lipp et al., 2005).
All of these studies indeed hint toward improved reproducibility
through automation, suggesting that the absence of human
interference during behavioral testing is a prominent advantage.
However, systematic investigations on this topic are still scarce,
in particular when it comes to comparisons to conventional
approaches. Furthermore, significant behavioral variation has
also been found to occur among genetically identical individuals
that lived in the same “human-free” environment (Freund et al.,
2013), indicating that the link between absence of human
interference, reduced variation, and better reproducibility is not
straightforward. As an alternative to improving reproducibility
through automation, one may thus also think about turning

the experimenter effect into something “advantageous” by
systematically considering this factor in the experimental design.
So, what exactly is meant by this?

DISCUSSION—ALTERNATIVE STRATEGIES
TO IMPROVE REPRODUCIBILITY

Following the above-presented logic, automated test systems
reduce the influence of the experimenter, and may therefore
be characterized by a higher degree of within-experiment
standardization. Typically, it is argued that such increased
standardization reduces variation, thereby improves the test
sensitivity, and hence allows for detecting statistically significant
effects with a lower number of animals (e.g., Richardson, 2012).
At the same time, however, it has been pointed out that rigorous
standardization limits the inference to the specific experimental
conditions, thereby boosting any laboratory-specific deviations.
Increasing the test sensitivity through rigorous standardization
therefore comes at the cost of obtaining idiosyncratic results of
limited external validity [referred to as “standardization fallacy”
by Würbel (2000, 2002)]. Instead, the use of more heterogeneous

FIGURE 1 | Illustration of a conventionally standardized (red) and a systematically heterogenized experimental design (blue). Whereas in the standardized design all

animals (n = 12 per group) are tested by one experimenter (A), three different experimenters (A–C) are involved in the systematically heterogenized design. Importantly,

animals are assigned to the experimenter in a random, but balanced way with each person testing the same amount of animals per group (n = 4 per group and

experimenter). Different colors of mice indicate different groups (e.g., different pharmacological treatments or genotypes).
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samples has been suggested to make study populations more
representative and the results more “meaningful” (Richter et al.,
2009, 2010, 2011; Voelkl and Würbel, 2016; Richter, 2017; Milcu
et al., 2018; Voelkl et al., 2018; Bodden et al., 2019). According
to this idea, the introduction of variation on a systematic and
controlled basis (referred to as “systematic heterogenization” by
e.g., Richter et al., 2009, 2010; Richter, 2017) predicts increased
external validity and hence improved reproducibility.

As outlined above, increased automation may entail similar
risks as it excludes one factor (i.e., the experimenter) known
to induce or explain a lot of variation in behavioral studies.
This way, conditions within experiments are more stringently
homogenized, increasing the risk for obtaining spurious findings.
Instead of trying to eliminate this variation, one may therefore
think about systematically including it to improve the overall
robustness of the data. Building on previous heterogenization
studies (e.g., Richter et al., 2010; Bodden et al., 2019), this
would simply mean to vary the within-experiment conditions
by systematically involving more than just one experimenter.
More precisely, instead of including one experimenter, who
is responsible for testing all animals of one experiment
(“conventional standardized design”, Figure 1), animals could
for example be split in three equal groups (balanced for
treatment, see also Bohlen et al., 2014), each tested by a different
person (“systematically heterogenized design”, Figure 1).

From a practical perspective, such an approach may be
associated with certain challenges, especially for small research
groups with limited resources. For bigger research organizations
or large-scale testing units, however, the organizational efforts

might increase only marginally. Balancing overall costs and
benefits, such an experimenter-heterogenization may still
represent an effective and easy-to-handle way to maximize
the informative value of each single experiment (see Richter,
2017). Thus, rather than eliminating the uncontrollable factor
“experimenter”, it could be turned into a controllable one that—
systematically considered—may in fact benefit the outcome of
behavioral studies.
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