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VEGFA links self-renewal and metastasis by inducing Sox2 to
repress miR-452, driving Slug
M Kim1,2, K Jang1,2, P Miller1, M Picon-Ruiz1, TM Yeasky1, D El-Ashry1,3 and JM Slingerland1,2,3

Cancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we
show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly
upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis. We show Sox2 downregulates
miR-452, which acts as a novel metastasis suppressor to directly target the SNAI2 3′-untranslated region (3′-UTR). VEGFA stimulates
Sox2- and Slug-dependent cell invasion. VEGFA increases lung metastasis in vivo, and this is abrogated by miR-452 overexpression.
Furthermore, SNAI2 transduction rescues metastasis suppression by miR-452. Thus, in addition to its angiogenic action, VEGFA
upregulates Sox2 to drive stem cell expansion, together with miR-452 loss and Slug upregulation, providing a novel mechanism
whereby cancer stem cells acquire metastatic potential. Prior work showed EMT transcription factor overexpression upregulates
CSC. Present work indicates that stemness and metastasis are a two-way street: Sox2, a major mediator of CSC self-renewal, also
governs the metastatic process.
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INTRODUCTION
VEGFA is a cytokine that regulates vascular development during
embryogenesis and the formation of new blood vessels from pre-
existing vascular networks.1–3 VEGFA, secreted by cancer and
stromal cells, stimulates endothelial cell invasion and vessel
formation.4 Without new blood vessel formation, tumor size is
restrained due to limited nutrient and oxygen supply. VEGFA is
expressed in a variety of tumors and its overexpression is associated
with poor prognosis and death from metastasis.5–7 VEGFA functions
are not restricted to vasculogenesis and angiogenesis.8 Autocrine
VEGFA cooperates with EGFR to drive tumor development9 and
VEGFA has also been shown to drive tumor metastasis.4,10,11 Indeed,
patients with metastatic breast cancer have higher circulating
VEGFA levels than those without metastasis.12

Bevacizumab, a humanized monoclonal antibody that targets
VEGFA, has been applied for the treatment of breast and other
malignancies. However, trials in metastatic breast cancer have
yielded variable results and the role of this drug is
controversial.13–15 Recent work sheds light on the limited results
of bevacizumab in most cancers. Hypoxia caused by inhibition of
angiogenesis, upregulates VEGFA expression, contributing to
aggressive disease recurrence.16,17 VEGFA was recently shown to
increase tumor-initiating stem cell abundance in skin18 and breast
cancers,19,20 and in glioblastoma.21,22 The high local VEGFA
induced by hypoxia following bevacizumab treatment would thus
also promote expansion of the tumor cell subset with the greatest
ability to initiate and disseminate tumors.
Cancer stem cells (CSCs) show greater motility and metastatic

potential than the bulk tumor cell population and have been
postulated to be drivers of tumor metastasis,23–25 but the
mechanisms underlying this are not fully characterized. Metastasis

requires cell invasion and escape from the primary tumor into the
vasculature followed by colonization of secondary sites. Tumor
invasion and intravasation are enabled by the epithelial to
mesenchymal transition (EMT), a process in which epithelial cells
lose polarity and intracellular adhesion, and acquire motility and
invasiveness.26–29 The EMT is regulated by diverse molecular
networks including TGF-β, Notch, Wnt, Hedgehog and NF-κB
signaling pathways, all of which have central roles in cancer
invasion and metastasis.30 Downregulated expression of the cell
adhesion molecule, E-cadherin, is critical for acquisition of the EMT
phenotype and tumor invasion.31 Many EMT transcription factors
repress CDH1, the gene encoding E-cadherin, directly or indirectly.
Snail,32,33 Slug,34 Zeb135 and Zeb236 can bind the CDH1 promoter
and repress its transcription, whereas other factors such as Twist,37

Goosecoid38 and fork-head box protein C2 (FOXC2)39 repress CDH1
indirectly. Slug, whose expression correlates strongly with loss of
E-cadherin, is an important EMT mediator in breast cancer cell
models.40

The EMT program has been linked to the initiation and/or
maintenance of CSCs. Enforced expression of EMT transcription
factors has been shown to increase cancer stem cell abundance,
and stem-like cells exhibit EMT properties such as increased
expression of mesenchymal markers and EMT transcription
factors, suggesting a link between cancer stem cells and the EMT
process.41,42 However, pathways governing the relationship
between cancer stem cells and EMT are not fully defined. VEGFA
not only increases the tumor-initiating stem cell population in
several different murine and human cancer models,18–22 but is
also known to induce EMT and metastasis.43–45 Our prior work
showed that VEGFA rapidly activates STAT3 to induce SOX2 and
increase the CSC population in breast and lung models.19 Here, we
investigated whether upregulation of Sox2 by VEGFA might have
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a role not only in CSC expansion but also contribute to the
activation of EMT and metastasis.
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate

transcriptional and post-transcriptional gene expression. Approxi-
mately 70% of all genes are regulated by miRNA in eukaryotes.46,47

miRNAs carry out important functions in development, differentia-
tion, cell cycle progression and apoptosis. Mature miRNAs bind
complementary sequences in the 3′-untranslated region (3′-UTR)
of target genes and repress gene expression by inducing mRNA
degradation and/or translational inhibition.48,49 In cancers, miRNA
expression is deregulated by amplification, deletion, mutation and
epigenetic silencing.50–52 Many miRNAs act as either oncogenes or
tumor suppressors to regulate malignant transformation and
metastatic progression.52 MiRNAs modulate the metastatic pro-
cess by targeting metastasis suppressor genes or by repressing
metastasis promoting genes.53 Several miRNAs regulate EMT
transcription factors including Zeb1, Zeb2 and Snail.54–56 Indeed,
several miRNAs that target EMT transcription factors, such as
miR-200 that targets Zeb154,57–59 and miR-34 that targets Snail,60

also repress cancer stem cell self-renewal.47

Here, we identify a novel pathway in which Sox2, a stem cell
driver upregulated by VEGFA,19 contributes to the activation of
EMT. VEGFA leads to induction of the stem cell transcription factor
gene SOX2. Sox2, in turn, mediates repression of miR-452, which is
shown to directly target the 3′-UTR of SNAI2, leading to EMT and
breast cancer metastasis.

RESULTS
VEGFA induces EMT and an increase in motility and invasion in
breast models
In addition to its angiogenic effects, VEGFA promotes cancer stem
cell expansion.19 VEGFA also drives cancer invasion and metastasis in
experimental models.43,45 Cancer stem cell expansion is linked to,
and potentially driven by, upregulation of EMT transcription
factors,41,42 but whether stem cell drivers can also promote EMT
has not been fully investigated. To investigate whether VEGFA-
mediated CSC expansion might also be linked to EMT activation and
metastasis, we tested the effect of VEGFA on motility and invasion in
aggressive ER-negative breast cancer models. Since our earlier work
showed a prolonged 7-day exposure to VEGFA caused an irreversible
increase in stem-like cells,19 all experiments used 7 days of VEGFA
(10 ng/ml), unless otherwise indicated. VEGFA-treated MDA-MB-231
showed faster migration on wound-healing assays and increased
matrigel invasion compared with controls (Figures 1a and b). Results
were validated in an ER, PR and Her2 (triple) negative primary breast
cancer-derived line, SUM149PT (Supplementary Figure S1a and b).
Acquisition of an EMT phenotype is critical for metastasis.

Mesenchymal markers (vimentin, fibronectin and N-cadherin)
were upregulated by VEGFA in MDA-MB-231 and SUM149PT lines
and in the immortal but not malignantly transformed human
mammary epithelial line, MCF12A. Epithelial markers, including
one or both of E-cadherin and Zo-1, were decreased in all three
cell lines (Figures 1c–e), compatible with a VEGFA-induced EMT.

VEGFA increases motility and invasion by upregulating Slug in
breast cancer cells
Expression of major EMT-driving transcription factors (EMT-TFs),
Slug, Snail, Zeb1 and Zeb2, was induced over a 7-day VEGFA
exposure. The temporal patterns of EMT-TF upregulation during
prolonged VEGFA exposure for MDA-MB-231 and MCF12A are
shown in Supplementary Figures S2A and B. Of these, SNAI2,
which encodes Slug, was the most strongly induced after 7 days,
and was thus investigated further (Figures 2a and b). SNAI2
knockdown (Figure 2c) prevented VEGFA-mediated increases in
cell motility and invasion (Figures 2d and e), indicating VEGFA
increases migration and invasion via Slug. VEGFA also upregulated

SNAI2 expression in SUM149PT cells, and SNAI2 knockdown
inhibited VEGF-driven invasion in this second model (Figures 2f
and g).

Sox2 is required for VEGFA-driven Slug upregulation and for
increased motility and invasion
Sox2 drives self-renewal in both embryonic stem cells and in
several cancer stem cell models61,62 and is a key mediator of
VEGFA-driven CSC expansion.19 CSC are thought to be drivers of
tumor metastasis and exhibit greater motility and metastatic
potential than bulk tumor cells.23,24,63 Notably, EMT-TF over-
expression leads to expansion of cells with stem cell
characteristics.41,42 Here we tested whether the reverse is also
true and whether the embryonic stem cell factor, Sox2, might
mediate VEGFA-driven EMT. Upregulation of SOX2 expression by
VEGFA occurs rapidly, within 1 h in MDA-MB-231 and SUM149PT
(Figure 3a) and remains elevated for at least 7 days.19 SOX2
induction precedes that of SNAI2 by several days. SNAI2/Slug
upregulation by VEGFA was prevented by SOX2 knockdown
(Figures 3b and c, and Supplementary Figure S3) and Sox2 was
also required for VEGFA-mediated increase in cell motility and
invasion (Figure 3d) in MDA-MB-231. Findings were validated in
the SUM149PT line (Figures 3e and f). Moreover, SOX2 over-
expression was sufficient to increase Slug expression (Figure 3g),
invasion and migration in the absence of VEGFA stimulation
(Figure 3h). Thus, the rapid VEGFA-STAT3-mediated induction of
SOX219 not only precedes, but is required for that of SNAI2 and for
the increased migration and invasion following VEGFA exposure in
both MDA-MB-231 and SUM149PT.
Although SOX2 siRNA significantly decreased VEGFA-induced

SNAI2, SOX2 siRNA-transduced cells still showed a modest but
significant increase of SNAI2 by VEGFA (Figure 3b right). This may
reflect incomplete SOX2 knockdown by transient siRNASOX2
transfection (Figure 3b, left). It is also possible that additional
mechanisms govern VEGFA action on Slug.

miR-452 downregulation is required for VEGFA-mediated
increases in Slug and invasion
The SNAI2 promoter contains a single, putative Sox2 consensus
motif, but Sox2 binding to this motif was not detected after VEGFA
treatment. Notably, several studies of global Sox2 DNA binding by
ChIP-sequencing also failed to show stable binding of Sox2 to the
SNAI2 promoter.64–67 These findings, and our observation that
Sox2 is upregulated by VEGFA within hours (Figure 3a), but SNAI2
expression only increases several days later (Figures 2a and b)
suggested that Sox2-mediated SNAI2 induction is indirect.
Since Sox2 is known to induce several miRNAs to drive stem cell

self-renewal, we investigated whether a miRNA-driven mechanism
might govern Slug upregulation. A miRNA screen of MDA-MB-231
cells before and after VEGFA treatment was performed. Among
over 700 miRNAs, 47 miRNAs were significantly downregulated by
VEGFA (see Supplementary Figure S4). The miRNA target
prediction software TargetScan (Version 6.2) was used to identify
miRNAs decreased by VEGFA that could potentially target SNAI2.
Of four potential candidates, miR-452 had the highest probability
score for targeting SNAI2 and was investigated herein. A second
miRNA target prediction database (microT-CDS version 5.0)
verified miR-452 as a putative regulator of SNAI2 expression.
VEGFA downregulated miR-452 in both MDA-MB-231 and
SUM149PT. miR-452 was decreased within 6–12 h and reduced
levels persisted after 7 days of VEGFA treatment (Figure 4a,
bottom panel). To further validate this finding, DT22, an early
passage culture derived from a triple-negative primary human
breast cancer was tested. This culture has been extensively
validated and its gene expression and tumor marker profiles
resemble those of the cancer from which it was derived.68

Prolonged exposure of DT22 to VEGFA over 7 days also led to
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miR-452 loss (Figure 4a, top right). SOX2 knockdown abrogated
the VEGFA-driven loss of miR-452, indicating that Sox2 is required
for miR-452 downregulation by VEGFA (Figure 4b). SOX2 over-
expression (Figure 3g) also reduced miR-452 in MDA-MB-231 cells
(Figure 4c). To test if downregulation of miR-452 is required for
VEGFA to increase invasion, miR-452 was transduced into MDA-
MB-231 and stable clones derived (Supplementary Figure S5, top
panel). The miR-452 overexpression abrogated VEGFA-driven
SNAI2 upregulation (Figure 4d) and prevented the VEGFA-driven
increase in matrigel invasion (Figure 4f). Furthermore, the
inhibition of miR-452 by transfection of a miR-452 antagomir
increased SNAI2 expression (Figure 4g) and was sufficient to
increase matrigel invasion (Figure 4h). Thus, miR-452 is required
for Sox2-driven Slug upregulation and is critical for VEGFA-driven
cell motility and invasion.

miR-452 directly targets the SNAI2 3′-UTR to decrease Slug
Stable overexpression of miR-452 decreased SNAI2 expression
(Figure 4e and Supplementary Figure S5, top) and miR-452

antagomir transfection increased SNAI2 levels in MDA-MB-231
(Figure 4g and Supplementary Figure S5, bottom). miRNAs
commonly regulate mRNA expression by binding to the 3′-UTR.
There are three putative miR-452 binding sites within the 3′-UTR
of SNAI2 (Figure 4i). To investigate whether miR-452 directly
targets the 3′-UTR of SNAI2 to repress Slug expression, a reporter
assay was performed using the 3′-UTR of SNAI2 to drive luciferase
expression. 293T and MDA-MB-231 cells were transfected with a
human SNAI2 3′-UTR luciferase reporter plasmid together with
plasmids encoding either the miR-452 precursor or control
miRNA, and luciferase activity was measured after 48 h. miR-452
transfection significantly reduced luciferase activity, indicating
miR-452 targets the SNAI2 3′-UTR to repress Slug expression
(Figure 4j).
A mutant SNAI2 3′-UTR luciferase vector was constructed

in which all three putative miR-452 binding sites were
mutationally disrupted. When this mutated vector was
co-transfected into 293T cells with the miR-452 precursor
plasmid, luciferase activity was not impaired. Thus one or more
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Figure 1. VEGFA induces EMT and an increase in motility and invasion. (a) MDA-MB-231 was pre-treated for 24 h or 7 days ± 10 ng/ml VEGFA
followed by scratch wounding of a confluent monolayer. Photomicrographs were taken at 0 and 12 h and mean migration± s.e.m. graphed
versus controls (C). (b) MDA-MB-231 pre-treated for 24 h or 7 days±VEGFA were recovered for real-time matrigel invasion assays. Data
graphed represent mean + /� s.e.m. for 3 replicates. (c–e) EMT marker expression was compared by QPCR after 7 days ± 10 ng/ml VEGFA (V)
in MDA-MB-231 (c), SUM149PT (d) and MCF12A (e). All graphs show mean± s.e.m. Mean values were compared by Student's t test. * denotes
Po0.05 for test versus control.
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of these sites is required for miR-452 to inhibit SNAI2 expression
(Figure 4k).
To test whether SNAI2 overexpression could rescue the

inhibitory effect of miR-452 on VEGFA-induced invasion, miR-452
overexpressing MDA-MB-231 cells were transduced with either
control vector or human SNAI2 cDNA lacking the 3′-UTR region. As
noted above, miR-452 overexpression abrogated the increased
invasion by VEGFA (Figure 4f). Overexpression of this 3′-UTR-
deficient SNAI2 vector rescued the inhibitory effect of miR-452 on
cell invasion (Figure 4l), consistent with the notion that miR-452
targets SNAI2. Thus, VEGFA-mediated miR-452 downregulation is

critical for the induction of SNAI2 and for Slug action on cell
motility and invasion.

Repression of miR-452 is required for VEGFA-dependent cancer
metastasis in vivo
Although VEGFA has been shown to drive cancer metastasis,45,69

mechanisms thereof are largely unknown. To test whether VEGFA
drives metastasis in vivo through regulation of miR-452 and Slug,
MDA-MB-231 cells were pre-treated with VEGFA for 1 week before
injection by tail vein into nude mice, without further VEGFA
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Figure 2. VEGFA increases motility and invasion via slug induction in breast cancer cells. (a and b) SNAI1, SNAI2, ZEB1 and ZEB2 expression
levels were assayed by QPCR at indicated times after 10 ng/ml VEGFA in MDA-MB-231 (a) and in MCF12A (b). (c–e) The MDA-MB-231 cells
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treatment after tumor cell injection. The animals were monitored
by in vivo imaging system. VEGFA pre-treated cells gave rise to a
significant increase in lung tumor establishment as measured by
tumor bioluminescence on in vivo imaging system over the next
5 weeks compared with mock-treated cells (Figures 5a–d). VEFG
also increased green fluorescence of lung tumors (Figures 5e).
miR-452 overexpressing cells failed to respond to VEGFA, and
showed no effect of VEGFA pre-treatment on tumor metastasis.
Notably, transduction of a SNAI2 cDNA vector lacking the 3′-UTR
into miR-452 overexpressing cells overcame the effect of miR-452
to inhibit VEGFA-stimulated metastasis in vivo (Figures 5a–e).

VEGFA treatment does not affect MDA-MB-231 cell cycle progres-
sion or population growth.19 Overexpression of miR-452 and SNAI2
did not change cell proliferation (Supplementary Figure S6), thus
differences in the metastatic tumor burdens of each group are not
due to differences in growth rates.
The animals injected with VEGFA pre-treated cells showed

extensive areas of confluent tumor growth in the lungs on
microscopic analysis, precluding accurate enumeration of tumor
nodules (Figures 5d). As a second measure of lung tumor burden,
lung weights were measured. The lung weights were significantly
increased in animals injected with VEGFA-pretreated cells,
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control siRNA (C) transduced MDA-MB-231 cells were treated±VEGFA for 7 days and miR-452 expression assayed. (c) MDA-MB-231 was
transduced with Sox2 or control vector, and miR-452 expression was assayed by QPCR. (d–f) miRNA control or miR-452 vector transduced cells
were treated±VEGFA for 7 days before assays of Slug expression by western (d) and SNAI2 expression by QPCR (e) and real-time matrigel
invasion (f). (g and h) MDA-MB-231 were transfected with miR-452 antagomir (inhibitor) or antagomir control followed by assays of SNAI2 by
QPCR (g) and of invasion as above (h). (i) Sequence alignment of human miR-452 seed regions with SNAI2 3′-UTR. (j) 293 T and MDA-MB-231
were transfected with SNAI2 3′-UTR luciferase reporter together with miR-452 precursor or control miRNA plasmid and luciferase activity
assayed after 48 h. (k) SNAI2 3′-UTR luciferase reporter plasmid bearing mutations in all three putative miR-452 binding sites show loss of
luciferase regulation by transfected miR-452 precursor plasmid after 48 h. (l) miR-452 overexpressing MDA-MB-231 was transduced with either
human SNAI2 or control vector, then treated±VEGFA for 7 days followed by real-time matrigel invasion assay. All graphs show mean± s.e.m.
Mean values were compared by Student's t test. * denotes Po0.05 for test versus control or versus indicated condition.
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whereas those of mice injected with VEGFA-treated miR-452
overexpressing cells were not increased compared with controls.
Finally, SNAI2 transduction into the miR-452 overexpressing cells
yielded similar lung weights to those in the VEGFA-treated group
(Figure 5f). Thus miR-452 repression is required not only for
VEGFA-dependent Slug upregulation in vitro, but also for
increased cancer metastasis in vivo.

VEGFA, SOX2, SNAI2, miR-452 and GABRE expression and prognosis
in primary breast cancers
Our in vitro and in vivo models suggest a mechanism in which
VEGFA induces EMT and metastasis by activating Sox2, resulting in
de-repression of SNAI2 through loss of miR-452 (Figure 6a). To

validate our findings in vivo, we tested whether high VEGFA alone
or together with high SOX2, SNAI2 and decreased miR-452
expression might identify prognostic subsets of primary human
breast cancers. miR-452 is expressed as an intronic transcript from
the GABRE gene locus.70 Pearson’s correlation analysis of two
independent breast cancer data sets, the METABRIC and Enerly
data sets,71,72 respectively, showed that miR-452 expression
correlated strongly with that of its parent transcript, GABRE (R2

values of 0.484 and 0.786 in the METABRIC and Enerly data sets,
respectively; Figure 6b), indicating GABRE can be used as a
surrogate for miR-452 expression in data sets, such as KM Plotter,
that lack microRNA data.
As Sox2 regulates SNAI2 expression via miR-452, we next tested

whether high VEGFA expression (top quartile) alone or in
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combination with high SOX2, high SNAI2 and the lowest quartile
GABRE/miR-452 expression was associated with distant metastasis-
free breast cancer survival (DMFS) in the KM Plotter data set.
Differences between groups are shown by graphed Kaplan–Meier
curves and hazard ratios (HRs) from Univariate Cox Proportional
Hazards analysis. Log-rank comparison of outcome curves was
done and P-values are presented in each graph. Of 1609 primary
breast cancers in the KM Plotter data set, those with high VEGFA
expression alone showed significantly poorer DMFS (n= 1609, HR
(95% confidence interval [CI]) = 1.45 [1.17–1.81]; P= 0.00082;
Figure 6c). We next tested elevated VEGFA and SOX2 expression,
and then evaluated tumors with high levels of VEGFA, SOX2 and
SNAI2, and low GABRE (a surrogate for miR-452) expression.
Tumors in the top quartile of both VEGFA and SOX2 expression
showed significantly worse DMFS (HR for recurrence [95% CI] = 1.9
[1.36–2.65]; P= 0.00014; Figure 6c), while those with high
expression of VEGFA, SOX2 and SNAI2 and the lowest quartile
GABRE expression showed an even greater risk of relapse (HR [95%
CI] = 2.03 [1.46–2.84]; P= 2.0e− 05; Figure 6c).
A similar analysis showed VEGFA expression was of greater

prognostic importance in breast cancers defined as ER-negative
by clinical ER protein immunohistochemistry (n= 170 with both
VEGFA and ER data). Although the top quartile VEGFA expression
associated with shorter DMFS (HR [95% CI] = 2.87 [1.69–4.86];
P= 4.2e − 05; Supplementary Figure S7), median cutoffs were
used to classify ‘high’ or ‘low’ expressers due to the reduced
sample size. Using median cutoffs, high VEGFA associated with
shorter DMFS (HR [95% CI] = 1.71 [1.01–2.87]; P= 0.042;
Figure 6d). ER-negative cancers with high VEGFA and SOX2
expression showed significantly shorter DMFS (HR = 2.72 [95% CI,
1.11–6.7]; P= 0.023; Figure 6d). Remarkably, among ER-negative
breast cancers, those with high VEGFA, SOX2 and SNAI2 together
with low GABRE expression showed a 4.54-fold higher risk of
metastasis, with DMFS (HR [95% CI] = 4.54 [1.67–12.35];
P= 0.0011, Figure 6d). These KM Plotter data identify a very
aggressive population within all cancers and in ER-negative
breast cancers, in which the mechanistic pathway identified
herein appears to be activated.
To validate these findings in an independent patient group, a

similar analysis was carried out for disease-specific survival (DSS)
in the METABRIC breast cancer data set (n= 1286). Analysis of this
second independent patient cohort confirmed the prognostic
significance of VEGFA and showed that elevation of both
VEGFA and SOX2 expression associated with a worse survival
than did VEGFA elevation alone. High VEGFA alone conferred a
1.69-fold higher risk of death (DSS HR (95% CI) = 1.69 (1.25–2.3),
P= 0.000595: Figure 6e, left), and METABRIC cancers in the
top quartile of both VEGFA and SOX2 had even worse
outcome (DSS HR (95% CI) = 1.76 (1.3–2.38), P= 0.000199;
Figure 6e, right).

DISCUSSION
VEGFA is best known as an angiogenic agent,73 but it also
promotes cancer invasion and metastasis through mechanisms
that are not fully understood. VEGFA not only creates a vascular
niche for expanding stem cells,21 it was recently shown to increase
the stem-like cell population in certain human malignancies,
including breast cancer.18–20,22 Hypoxia, caused by angiogenesis
inhibitors, stimulates VEGFA gene expression, and would thus
contribute to CSC expansion74 and disease recurrence and
progression.16,17

CSC have been implicated as drivers of tumor metastasis,
however, the molecular pathways linking stemness and induction
of metastasis are not fully elucidated. Populations bearing surface
CSC markers75–77 or that are enriched for ALDH1 activity78 have
been shown to have greater motility, invasiveness and metastatic
potential than the bulk of the cancer population. Recent work in a

pancreatic model showed EMT and dissemination may precede
overt tumor invasion.79 Circulating tumor cells could be detected
during in situ tumor growth before overt invasion. Circulating
tumor cells bearing the CSC marker, CD44+, showed much more
aggressive self-renewal and tumor-generating potential than
CD44+-positive cells from the primary tumor site, indicating that
escape of stem-like cells from the primary tumor environment is
linked to increased self-renewal potential.79

Sox2 is an important mediator of self-renewal in embryonic
stem cells and is an oncogenic driver of CSC in several cancer
models, including breast cancer.19,25,61,62 Our prior work showed
that VEGFA mediates CSC expansion via STAT3-driven SOX2
induction in breast and lung cancer models.19 Proinflammatory
cytokines that are upregulated on breast cancer cell invasion into
fat also induce SOX2 to drive CSC self-renewal.25 SOX2 knockdown
can decrease both CSC and experimental lung metastasis62 and
SOX2 expression is associated with colon cancer metastasis.80

Present work reveals Sox2 is necessary for VEGFA-driven
SNAI2 induction, EMT and invasion of breast cancer cells and
provides a mechanistic link between VEGFA-stimulated CSC
expansion via SOX2 induction,19 and the upregulation of meta-
static potential.
EMT arising from overexpression of various EMT-TFs has

been shown to increase tumor-initiating cell abundance;41,42

moreover, stem-like cells exhibit EMT properties such as increased
mesenchymal markers and EMT transcription factor expression81

suggesting an intimate relationship between CSCs and EMT.
Mammary cell lines overexpressing various EMT-TFs showed
PLCγ-mediated PKC activation leading to a c-Jun/Fra1-induced
CSC transcriptional program.82 TGF-β and TNFα pathways interact
to drive both EMT and upregulate breast CSC properties.83 Elegant
in vitro and in vivo studies in a Trp53-null mouse breast cancer
model showed cross-talk between transformed mesenchymal cells
and tumor-initiating subpopulations. The mesenchymal cells
produced stimulatory ligands driving CSC surface receptors to
increase tumorigenicity and metastasis via both Wnt/Fzd7 and
CXCL12/CXCR4 pathways,84 suggesting that heterogeneous cell
populations with differing stem cell self-renewal may interact with
each other to drive pathways governing both self-renewal and
metastasis.
miRNAs regulate many processes central to oncogenesis.47

Several miRNAs oppose EMT by targeting EMT transcription
factors.85 miR-200 targets Zeb1 and Zeb254,57–59 as does miR-
138,86 and Snail is targeted by miR-30a56 and miR-34.60

A number of miRNAs not only regulate EMT but also serve as
key CSC regulators. For example, miR-200 not only inhibits EMT by
suppressing Zeb1/2, but also downregulates stem-like cells by
targeting Bmi187,88 and the Notch pathway.89 In addition to its
action on Snail, miR-34a also decreases CSC by targeting Myc90

and downregulates CD44 expression to decrease prostate CSC.91

miR-128-2 targets both the EMT mediator Snail, and CSC drivers
Nanog, KLF492 and Bmi1.93

Here we identify miR-452 at the interface between VEGFA-
activated CSC self-renewal and EMT, providing a novel connection
between VEGFA, induction of the embryonic stem cell transcrip-
tion factor, Sox2 and EMT. Sox2 not only governs CSC expansion,
but also mediates acquisition of EMT and metastatic potential.
VEGFA-induced SOX2 expression is required not only for CSC
expansion,19 but also for VEGFA-mediated SNAI2 induction. VEGFA
increased SOX2 expression within an hour, but EMT-TF levels, and
in particular that of Slug, rose over several days, suggesting that
Sox2 affects Slug indirectly, via an intermediary mechanism. Our
miRNA screen identified miR-452 as a putative metastasis
suppressor, significantly downregulated by VEGFA in MDA-
MB-231 cells. miR-452 is downregulated in breast cancers
compared with normal breast tissue.94 We show miR-452 targets
SNAI2 directly. MiR-452 overexpression abrogated the VEGFA-
mediated upregulation of SNAI2 expression and cell invasion, and
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miR-452 antagomir was sufficient to upregulate SNAI2 expression
and cell invasion. Sox2 upregulation by VEGFA mediates the loss
of miR-452, and miR-452 loss is required for Slug upregulation and
for VEGFA-driven cell motility, invasion and metastasis in breast
cancer models. Notably, miR-452 expression correlates inversely
with glioblastoma survival and inhibits glioma stem cells and
tumorigenesis by targeting CSC mediators, Bmi1, LEF1 and TCF4.95

Thus, miR-452 may not only regulate Sox2-driven EMT via Slug,
but may also serve a dual role at the interface between EMT and
CSC regulation.
The pathway linking VEGFA to Sox2 upregulation, miR-452 loss

and SNAI2 induction is supported by our analysis of two major
data sets including over 2500 primary human breast cancers.
Although high intratumor VEGFA levels detected by immunohis-
tochemistry have been linked to poor breast cancer outcome,
most studies have been small and results controversial.96,97 Our
analysis showed breast cancers in the highest quartile of VEGFA
expression fare worse than all others, and the prognostic value of
high VEGFA levels is increased by sequential addition of high
SOX2, SNAI2 and decreased GABRE (a surrogate for miR-452)
expression. This finding is less important for its prognostic
significance than it is as a confirmation of the molecular pathway
identified herein. Among aggressive breast cancers expressing
high VEGFA, those with SOX2 overexpression define an even more
aggressive subgroup in the two independent data sets evaluated.
VEGFA is a critical mediator of tumor progression. It acts to

generate a vascular niche for CSC through autocrine and paracrine
action on both tumor and microenvironmental components, and
links CSC self-renewal to the acquisition of metastatic potential. To
date, targeting VEGFA has had limited success in cancer, and this
may be due to anti-angiogenics causing tumor hypoxia, leading to
upregulation of both VEGFA and CSC. Since treatment of
metastasis is the final therapeutic frontier, it is hoped that
mechanistic insights linking VEGFA to tumor initiation and the
acquisition of metastatic potential will ultimately generate new
strategies for VEGF pathway-targeted intervention.

MATERIALS AND METHODS
Cell lines and reagents
Luciferase-tagged MDA-MB-231 (from J Massague, MSKCC, New York, NY,
USA), Lenti-X 293 T cells (from Clontech, Mountain View, CA, USA) and
MCF12A line were cultured as described.19 Both lines were verified by STR
profiling. SUM149PT cells were provided by S Ethier (Medical University of
South Carolina, Charleston, SC, USA) and cultured in Ham's F12 medium
with 5% FBS, 5 μg/ml insulin, 1 μg/ml hydrocortisone and 1 mM HEPES.98

All lines were mycoplasma free.

Scratch assay
MDA-MB-231 cells were seeded into six-well plates, grown to confluence
and wound-healing scratch assays were performed as in Larrea et al.,99 and
the cells were photomicrographed after 12 h using an Olympus CKX41
microscope.

Transwell migration and invasion assays
Real-time cell analysis from Xcelligence (ACEA Biosciences, San Diego, CA,
USA) was used for automated transwell migration and invasion from
serum-free toward serum-containing medium was as described100 and
plotted as mean cell index± s.e.m. for at least three independent wells
per group.

Quantitative real-time PCR and miRNA RT–PCR
QPCR was performed at least thrice and mean Ct values normalized to
GAPDH or 18S values. mRNA isolation used miRNeasy mini kit (Qiagen,
Hilden, Germany) and cDNA synthesys used NcodemiR First-Strand cDNA
synthesis kit (Invitrogen, Carlsbad, CA, USA). miR-452 levels were assayed
by QPCR. PCR primers for EMT markers and transcription factors assayed,
and for miR-452 are in Supplementary Figure S8.

miRNA screen and antagomiR
MDA-MB-231 cells were treated ± 10 ng/ml VEGFA for 7 days followed by
Ready-to-Use PCR microRNA array, Human panel I+II in 384-well plates
from Exiqon (Woburn, MA, USA). miRCURY LNA miR-452 antagomir and
miRCURY LNA miRNA antagomir control were purchased from Exiqon
(Woburn, MA, USA) and transduced per manufacturer.

siRNA analysis and western blots
SiRNA pools of three to five target-specific 19–25 nucleotide siRNAs
designed to knockdown Slug/Sox2 and control siRNAs were purchased
from Santa Cruz Biotechnology (Dallas, TX, USA) and used per
manufacturer. Western blots were as described19 using antibodies: anti-
Slug (#9585) and Sox2 (#3579) from Cell Signaling (Denver, CO, USA);
β-actin (#A1978) from Sigma-Aldrich (St Louis, MO, USA).

Lentivirus production and transduction
Human SNAI2 (EX-T1290-Lv155), control vector (EX-NEG-Lv155), hsa-mir-
452 (HmiR0407-MR03) and miRNA scrambled control clone (CmiR0001-
MR03) lentivirus vectors were purchased from GeneCopoeia (Rockville, MD,
USA). Lentivirus vectors were co-transfected with Delta VPR and CMV VSVG
plasmids (Addgene, Cambridge, MA, USA) into Lenti-X 293T cells with
Lipofectamine Plus. Viral supernatants at 48 h were concentrated by
ultracentrifugation for 2 h at 22 000 r.p.m. at 4 °C. MDA-MB-231 was
infected with virus in polybrene (10 μg/ml) as described.19 Stable
expression was confirmed by GFP fluorescence visualization and western.

Luciferase assays
293 T and MDA-MB-231 were transfected with human SNAI2 3′-UTR
luciferase reporter (GeneCopoeia, Rockville MD, USA) plasmid together
with miR-452 or control miRNA plasmid. After 48 h, Firefly and Renilla
luciferase reporter activity luciferase activity was measured using Luc-Pair
Duo-Luciferase Assay Kit 2.0 (GeneCopoeia, Rockville MD, USA) per
manufacturer's instructions.

Experimental lung metastasis assay
MDA-MB-231-luc and controls transduced with miR-452 or miR-452+SNAI2
were pre-treated ±VEGFA for 7 days, before injection of 5 × 105cells via tail
vein into 4–6-week female Balb/C nude mice as described.19 Each
experimental group contained 10 animals. The mice were imaged by
in vivo imaging system (Xenogen, Caliper, Hopkinton, MA, USA) and
bioluminescence (photon flux) was quantified with time as described.100

All animal work was carried out in compliance with the Institutional Animal
Care and Use Committee in the University of Miami.

Statistical analysis and expression analysis of VEGFA, SOX2, SNAI2,
GABRE genes and miR-452
The METABRIC data set contains gene expression data for 2136 and
microRNA expression for 1448 primary breast cancer samples, with both
available in 1302 samples, together with clinical information and DSS
outcome data.71,101 METABRIC and the independent Enerly primary breast
cancer data set, containing 101 cases,72 were used to identify a correlation
between miR-452 and GABRE expression by Pearson’s correlation. The KM
plotter data set contains gene expression from primary human breast
cancers (n= 2553) and was used for the analysis of distant metastasis-free
survival (DMFS).
For clinical outcome analysis, expression quartiles were used to test

whether VEGFA expression alone, or with the other genes, associated with
poor DSS (METABRIC) or with poor DMFS (KM plotter) using Kaplan–Meier
analysis and Univariate Cox proportional hazards analysis identified hazard
ratios with 95% CI. DSS or DMFS curves were also compared using the
log-rank test and the P-value from this analysis was displayed in each
graph. Data analysis was performed using R statistical software or by using
the KM plotter web tool, as in Gyorffy et al.102 Mihaly et al.103

For in vitro work, data are graphed from ⩾ 3 biologic experiments as
means± s.e.m. Means were compared with two-tailed Student’s t-tests.
P-values o0.05 were considered statistically significant. Statistical differ-
ences of a real-time cell analysis data between invasion rates used the
‘Compare Growth Curves’ function (http://bioinf.wehi.edu.au/software/
compareCurves/).
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