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Recently, tumor immunotherapy based on immune checkpoint inhibitors (ICI) has been
introduced and widely adopted for various tumor types. Nevertheless, tumor
immunotherapy has a few drawbacks, including significant uncertainty of outcome, the
possibility of severe immune-related adverse events for patients receiving such
treatments, and the lack of effective biomarkers to determine the ICI treatments’
responsiveness. DNA methylation profiles were recently identified as an indicator of the
tumor immune microenvironment. They serve as a potential hot spot for predicting
responses to ICI treatment for their stability and convenience of measurement by liquid
biopsy. We demonstrated the possibility of DNA methylation profiles as a predictor for
responses to the ICI treatments at the pan-cancer level by analyzing DNA methylation
profiles considered responsive and non-responsive to the treatments. An SVMmodel was
built based on this differential analysis in the pan-cancer levels. The performance of the
model was then assessed both at the pan-cancer level and in specific tumor types. It was
also compared to the existing gene expression profile-based method. DNA methylation
profiles were shown to be predictable for the responses to the ICI treatments in the TCGA
cases in pan-cancer levels. The proposed SVM model was shown to have high
performance in pan-cancer and specific cancer types. This performance was
comparable to that of gene expression profile-based one. The combination of the two
models had even higher performance, indicating the potential complementarity of the DNA
methylation and gene expression profiles in the prediction of ICI treatment responses.
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INTRODUCTION

Cancer immunotherapy based on immune checkpoint inhibitors
(ICI), such as antibody-mediated interventions targeting
cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed
death receptor-1 (PD-1) on T lymphocytes, and the principal
ligand (PD-L1), has recently caught much attention in the field of
cancer therapy for its high efficiency for reversing the tumor-
induced immunosuppression and yielding a durable clinical
response for a wide range of tumor types. ICIs are now used as
single agents or combined with chemotherapies as first or second
lines of treatment for about 50 cancer types (1). There are more
than 3,000 active clinical trials evaluating ICIs by now,
representing about 2/3 of all oncology trials (2).

A major limitation of tumor immunotherapy, especially
those based on the ICI, lies in that only a fraction of cancer
patients could respond to the therapy (3, 4), and severe immune-
related adverse events (irAEs) are frequently seen in some
patients undergoing the ICI therapy (5). These adverse events
are mainly due to the inhibition of immune checkpoints
that reinforce the normal physiological barriers against
autoimmunity, leading to various local and systemic
autoimmunity (5).

Therefore, the development of the biomarkers evaluating the
responsiveness of a patient to the ICI therapy is key for the
application of immune therapy in a wider range. Several
biomarkers have been proposed, including the tumor mutation
burden (TMB) (6), the neoantigens (7, 8), the overexpression of
targeting genes such as PD-L1 (9, 10), and the amount and
composition of the tumor-infiltrating immune cells (11, 12).
However, the predictive powers of these biomarkers are still not
applaudable with unwanted tumor type specificity. For example,
TMB failed to predict the responsiveness to PD-L1 ICI treatment
in non-small-cell lung cancer (NSCLC) (13, 14). The objective
response rate to anti-PD-L1 treatment of colorectal cancer
(CRC) patients with high microsatellite instability (MSI) values
was also only about 40 to 70% (15).

Other than biomarkers mentioned above, DNA methylation
could potentially be a rich source of biomarkers for ICI
responsiveness (13). Besides its role in tumorigenesis by
regulating gene expression (16, 17) and promoting somatic
mutations and structural variations (18, 19), DNA methylation
profiles have long been recognized as indicators for the status of
tumor immune microenvironment as well. For instance,
demethylation of transcription start sites (TSSs) of key effector
genes, such as Interferon Gamma (IFNG), Granzyme B (GZMB),
C-C Motif Chemokine Receptor 7 (CCR7), and Transcription
Abbreviations: ICI, immune checkpoint inhibitors; CTLA-4, cytotoxic T
lymphocyte antigen-4; PD-1, programmed death receptor-1; PD-L1, the
principal ligand; irAEs, immune-related adverse events; TMB, tumor mutation
burden; NSCLC, non-small-cell lung cancer; CRC, colorectal cancer; MSI,
microsatellite instability; TSSs, transcription start sites; IFNG, Interferon
Gamma; GZMB, Granzyme B; CCR7, C-C Motif Chemokine Receptor 7; TCF7,
Transcription Factor 7; OS, overall survival; TCGA, the Cancer Genome Atlas;
TGF-b, transforming growth factor b; GEO, Gene Expression Omnibus; DMP,
differential methylated probes; MCC, Matthews correlation coefficient; AUC, area
under the receiver operating characteristic curve.
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Factor 7 (TCF7), indicates the stimulation of naive CD8+ T cells
(20). Genome-wide DNA-methylation landscape defines
specialization of regulatory T cells (21). Clonal expansion of T
cells from naive T cells to effective T cells is associated with
distinct DNA methylation landscapes (20). The tumor immune
infiltration analysis based on DNA methylation profiles has been
successful in a variety of tumor types (22). It has also been
pointed out recently in an NSCLC cohort that the global DNA
methylation loss is tightly related to the poor outcome of ICI
therapy (13).

We first showed the potential of DNA methylation profiles in
predicting the responsiveness to ICI therapy and then selected a
combination of methylation sites with prediction power. Next,
we built a machine learning model to predict immune therapy
responsiveness based on the selected methylation features. The
model has high prediction accuracy at both pan-cancer level and
tumor type specific level. The performance was validated in an
independent cohort and is comparable to that of previously
reported models based on gene expression profiles. We also
showed that the combination of DNA methylation and gene
expression profiles overtops models based on single types of
biomarkers, indicating the possibility to improve the prediction
accuracy by combining different types of biomarkers.
MATERIALS AND METHODS

Datasets
We downloaded the DNA methylation data measured by
Illumina Infinium HumanMethylation450 BeadChip (b
values), together with the gene expression data measured by
RNA-seq (read counts), the somatic mutation data (MC3 public
version), and the overall survival (OS) information of 32 tumor
types from the Cancer Genome Atlas [TCGA, downloaded from
the GDC data portal (portal.gdc.cancer.gov) in October 2020].
There were 7,131 cases in total. The name, abbreviations, and
number of cases of each tumor type are listed in Supplementary
Table S1.

The tumor mutation burden (TMB) was calculated as
described before with some small modifications (23). In each
case, mutations annotated as “Frame Shift Ins”, “Nonsense
Mutation”, “Frame Shift Del”, and “Splice Site” were defined as
truncation mutations, while those annotated as “Missense
Mutation”, “In Frame Del”, “In Frame Ins”, and “Nonstop
Mutation” were defined as non-truncation mutations. TMB
value was then calculated as

TMB =
1
45

� (2� (truncation) + nontruncation) :

The distribution of calculated TMBs is shown in
Supplementary Figure S1.

The microsatellite instability (MSI) state for each case was
calculated by the MSIpred package as stable or unstable (24).

The cases that simultaneously satisfy the following two
criteria are defined as responsive to ICI treatment (positive),
and the rest were defined as non-responsive to the treatment
December 2021 | Volume 12 | Article 796647
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(negative). First, the TMB value of the case should be higher than
the upper quartile of TMB values in all cases ignoring tumor
types. Second, the transforming growth factor b (TGF-b) score
[defined in (25) as the weighted average of normalized
expression of genes in the TGF-b signaling pathway
summarized in (26), taking the regularity direction between
genes as weights] should be smaller than the median of the
values in all cases ignoring tumor types. It has been shown that
both the TMB and the TGF-b score were fine and independent
measurements of the responsiveness to ICI treatment (27–31),
and the combined measurement has also been successfully used
in other pan-cancer studies (32). It is also a practical
consideration to define the responsiveness indirectly since
there is no large pan-cancer ICI treatment cohort with DNA
methylation levels measured for building the models to the best
of our knowledge. The number of cases labeled as positive in each
tumor type is shown in Supplementary Figure S2. It was
noticeable that this definition led to severe class imbalance,
with 9.86% cases labeled as positive. This issue was solved by
the random oversampling scheme in the model-building step
described below.

The NSCLC validation cohort data were retrieved from
literature (13) and (33). The clinical information was
downloaded from the Supplementary Tables in corresponding
literature. The DNA methylation profiles were downloaded from
the associated datasets (GSE119144 and GSE126043) in Gene
Expression Omnibus (GEO). Missing values were imputed as
described in the raw pieces of literature (Supplementary
Table S2).

Differential Analysis
To perform differential analysis of methylation data, each b value was
first transformed into M-value by the transformation,M = log ( b

1−b).
Then differential analysis was carried out using limma package as
common practices (34). Probes with absolute logFC > 1 and adjusted
p-value less than 0.01 were determined as differential methylated
probes (DMP).

RNA-seq read counts for each gene were directly inputted
into the DESeq2 package for differential expression analysis (35).
Genes with log2 fold change greater than 1 and adjusted p-value
less than 0.01 were determined as differentially expressed.

Predictive Model Building
Feature Selection
There are two notable features of DNA methylation data that
complicate the analysis. First, the data are high dimensional, with
the number of probes (features) amounting to 480K in Illumina
Infinium HumanMethylation450 BeadChip. Second, there was
also strong collinearity among different probe groups. These two
points made most popular ad hoc feature selection methods
inefficient, which hindered the prediction model building
process. Here we describe a feature selection process based on
prior knowledge. The basic idea behind this process was that
cases in most tumor types could be grouped into two clusters
based on the immune infiltration analysis from DNA
methylation profiles (22). The two clusters differed in the
Frontiers in Immunology | www.frontiersin.org
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compositions of immune cells and potentially in the
responsiveness to immune therapies. In particular, we applied
the analysis pipeline described by Hyunchul et al. to the 32
TCGA tumor types separately (22). In each tumor type, cases
were clustered using PAM clustering into two groups, and the
group with longer mean survival time was set as cluster 2. The
best number of clusters were inspected using a combination of 13
indicators with R package “NbClust,” and an optimal value 2 was
observed in 20 out of 32 tumor types (36). For the remaining
types, cases were also clearly separated into two groups by
visual inspection.

To evaluate the potential relationship between the immune
infiltration–based clustering of cases and the responsiveness of
the ICI treatment, we selected three indicators of the
responsiveness: the overall survival time (OS), the TMB, and
the expression level of PD-L1 (CD274) gene. The three indicators
were then subjected to appropriate tests for calculating the p-
value of differences between the two clusters for each tumor type
(log rank test for OS, Mann Whitney U test for TMB, and
directly taken from the differential expression results for PD-
L1 expression).

For each indicator, differentially methylated probes (DMPs)
between the two clusters with significance together with the
directions of the differences were extracted in each tumor type.
DMPs with the same direction in half or more such tumor types
were selected as features. We also added the 1152 probes in the
signature used in the immune infiltration analysis with positive b
value in at least one case (22) to make the final selected
feature set.

Model Building
We evaluated a series of commonly used machine learning
algorithms [logistic regression with L1 regularization (LR),
support vector machine classifier (SVM), random forest (RF),
and k-nearest neighbor classifier (kNN)]. The best parameter
combinations for each model were selected by performing a grid
search in their spaces. Each parameter combination was
evaluated using 5-fold cross-validation. For the SVM model,
we used the radial basis function as the measurement of the inner
product. The scale parameter of the basis function was taken as
the mean variance of all features, and only the multiplier l was
tuned for the tune of the scale parameter led to few
improvements of the model performance (data not shown). In
the model training step, a random oversampling step was added
to deal with the severe class imbalance (37). This scheme
resampled the positive training cases with replacement to the
number of negative ones and then used these balanced training
data for model training. The performance of the best models was
evaluated by averaging the results of tests on 100 times’ random
80 vs 20% train test splits. The F1 score, Matthews correlation
coefficient (MCC), and area under the receiver operating
characteristic curve (AUC, if decision scores exist) were
calculated as the measurements of the model performance in
each test. These measurements were reported to be stable when
the classes were severely imbalanced (38). The feature selection
and model building processes were illustrated in Figure 1.
December 2021 | Volume 12 | Article 796647
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RESULTS

The Responsiveness of Tumor Cases to
the Immune Checkpoint Inhibitor Was
Highly Related to the Methylation Level of
a Small Set of Methylation Sites
This study was focused on predicting the responsiveness of
immune checkpoint inhibitor (ICI) at the pan-cancer level. To
achieve this goal, the 7,131 TCGA cases from 32 tumor types with
both DNA methylation (measured by Illumina Infinium
HumanMethylation450 BeadChip, about 480K probes measured
in total) and gene expression (measured by RNA-seq) data were
Frontiers in Immunology | www.frontiersin.org 4
downloaded (in October 2020). Cases with high tumor mutation
burden (TMB, see the distributions of TMBs in Supplementary
Figure S1) and low TGF-b expression were defined as responsive
to ICI (positive) and the others as without responsiveness (negative)
as previously suggested (Methods, see Supplementary Figure S2A
for the number of cases marked as positive in each tumor type) (27–
29, 32) since large pan-cancer tumor immunotherapy cohort with
DNA methylation level measured was lacking. A series of well-
known biomarkers, such as the concentration of CD8+ T cells, the
expression level of PD-1 and CTLA4 genes, were significantly
separated between positive and negative cases (all with p < 0.01,
Supplementary Figures S2B–D), elucidated the rationality of our
FIGURE 1 | The flow chart describing the process of the feature selection and model building.
December 2021 | Volume 12 | Article 796647
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classification. It was reported that the clustering based on immune
infiltration analysis using DNA methylation data in most tumor
types grouped cases into two clusters, and the clusters were shown
to be related to the outcome of immunotherapy (22). Based on this
background knowledge, we designed an efficient feature selection
scheme to select 1,495 methylation probes from the total 480K
candidate methylation probes, which distinguished cases with ICI
responsiveness and those without (see Methods for detail). In the
first step of the feature selection, the analysis was restricted to tumor
types with more than 5 cases marked as positive (13 types in total).
Tumor cases were clustered into two clusters based on the immune
infiltration profiles derived by the DNA methylation profiles. The
size of the two clusters for each used tumor type is shown in
Supplementary Table S1. Then we tested differences between the
two clusters in each tumor type for three indicators for the
responsiveness of ICI treatment, overall survival (OS), tumor
mutation burden (TMB), and the PD-L1 gene expression level.
After applying the Benjamini-Hochberg FDR correction scheme, we
obtained 6, 7, and 7 tumor types with significant differences of these
indicators, respectively (FDR<0.01, see Supplementary Figures
S3A–C for each indicator Supplementary Figure S3D for the
overlap of tumor types selected for the three indicators). For each
indicator, we selected those methylation probes which differentially
methylated with the same direction in at least half of these tumor
types with significant differences in the indicators between groups.
We got 890, 862, and 534 feature probes for the indicators OS,
TMB, and PD-L1 expression, respectively (Supplementary Figure
S3E). So far, 11 tumor types andmore than 85% of positive cases are
covered (Supplementary Figures S2A and S3D). We then merged
the feature probes selected for each indicator to obtain 1,495 final
probes (the selected features are listed in Supplementary Table S3).
The 1,152 probes in the signature used in the immune infiltration
analysis (22) were added and yielded a final feature set with
2,546 probes.

The efficiency of the 2,546 features was revealed by the distinct
methylation profiles between cases with ICI responsiveness and
those without by visual inspection of the methylation pattern of
all cases clustered by the methylation pattern (Figure 2A). This
pattern was also illustrated by the mutual dependence between
the responsiveness of neighboring cases along the dendrogram of
the hierarchical clustering (p < 10-52, c2 test). Moreover,
compared to randomly selected, equal-sized control feature sets,
clustering based on methylation pattern of selected probes is
much better at separating cases with and without ICI
responsiveness. In 100 times of such comparisons, the selected
features outperformed 92 and 99 random controls when the
separation was measured using F1 score and Matthews
correlation coefficient (MCC) score, comparing the
responsiveness and cluster labels when clustering the cases into
two clusters with the methylation patterns (Figure 2B). Also, a
large portion of selected probes were under differential
methylation between cases with and without responsiveness.
When performing the differential methylation analysis among
all 32 tumor types, there were 8.76% of selected probes with
differential methylation, compared with 5.22 to 7.62% in the 100
randomly selected control features under the threshold of
Frontiers in Immunology | www.frontiersin.org 5
adjusted p-value less than 0.01 (Figure 2C). At last, the GO
and KEGG enrichment analysis of genes in which the selected
probes located showed enrichment of terms related to immune
activity and immunotherapy outcome, such as “T cell activation”,
“adaptive immune response”, and “regulation of lymphocyte
activation” in the GO enrichment analysis, and “primary
immunodeficiency” and “Th1 and Th2 cell differentiation” in
KEGG enrichment analysis (Figure 2D).
The Responsiveness of Cases to ICI
Treatment Could Be Predicted by the
Selected Probes
After the prediction potentials for the selected methylation sites
for the ICI treatment responsiveness were elucidated, a
prediction model was built and tested from various aspects.
Here we tested a series of commonly used machine learning
models, including the support vector machine (SVM), logistic
regression with L1 regularization (LR), the random forest (RF),
and k-nearest neighbor classifier (kNN). The hyper-parameters
of each model were tuned by 5-fold cross-validation. In each
model training, the positive cases were oversampled to the size of
negative cases to deal with the severe class imbalance (37). The
performances of the optimized models were assessed by
randomly splitting the raw data into 80% training and 20% test
datasets for 100 times. For comparison, we also added a naive
predictor based on the clustering results derived from the
immune infiltration analysis based on the DNA methylation
profiles. In each tumor type, the naive predictor declared the
cluster of cases with higher average TMB as positive and the
other cluster as negative.

Among the four assessed models, SVM got the highest
performance. The fine-tuned SVM model in the 5-fold cross
validation (with l = 13) outperformed the other three models
(p = 0.041, 3.83×10-28 and 7.33×10-32 for LR, RF, and kNN,
respective, paired t test) when the performance was measured
using F1 score, and Matthews correlation coefficient (MCC,
p = 0.011, 1.30×10-25 and 8.11×10-33, Figure 3A). All the machine
learning–based models significantly outperformed the naive
predictor in both measurements (all with p < 10-30, Figure 3A).

The prediction power of the model cannot be achieved by
randomly selected probes. To show this, we randomly selected
methylation probe sets of the same size as the selected probe set
for 100 times. The performances were measured by repeatedly
training models on 80% randomly chosen samples and tested on
the other 20% 100 times along all the regularization parameter l
values of the SVM model searched in the cross-validation step (1
to 20). The performances of models based on the selected probes
were consistently and significantly higher than those of random
controls when the performance was measured by F1 score, while
the same conclusion held under most ls (17 out of 20) when the
performance was measured using MCC score (Figure 3B).

The probes selected by the four indicators were all important
to the model performance. This was shown by retraining and
evaluating the SVM model with probes selected by only one
indicator. The performances were all significantly decreased
December 2021 | Volume 12 | Article 796647
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compared to the full model no matter measured by the F1 score
or the MCC score (Figures 3A, C, all with p < 10-4, paired
t tests).

To exclude the possibility that the model performances were
due to overfitting, we tested our prediction model with 100
randomly permuted datasets and expected a sharp shrink of
model performances in these permutated datasets. We trained
and evaluated SVM models with the same super-parameters in
each permutated dataset as described above. The performances
(measured by both F1 and MCC scores) of models in these
permutated datasets were only slightly higher than the
performance measurements calculated by comparing the
responsiveness and its random permutation (Figure 3D).

At last, we assessed the separation of a series of well-known
biomarkers for ICI responsiveness between groups predicted as
positive and negative independent from those used to label the
Frontiers in Immunology | www.frontiersin.org 6
cases. The comparisons were made under the test sets of the 100
randomly trained models in the model evaluation step. First, the
PD-1 and CTLA4 gene expression levels were significantly
higher in cases predicted as positive than those predicted as
negative (both with p < 10-32, Mann Whitney U test, Figures 3E,
F). Second, there were also outstandingly more CD8+ T cells in
cases in the positive cases than negative ones (p < 10-52, t test,
Figure 3G). Last, there were higher proportions of cases with
microsatellite instability (MSI) (39) in those positive cases than
in those negative ones (p < 10-52, t test, Figure 3H).

In conclusion, the fine-tuned SVM model based on the
selected probes came up with high performances in prediction
of the ICI responsiveness in this pan-cancer cohort. The
prediction accuracy is remarkably better than randomly
selected probe sets of the same size, and we confirmed the
improvement cannot be achieved by overfitting.
A B

C

D

FIGURE 2 | The methylation profiles of selected probes indicated the differences between cases with and without responsiveness to ICI treatment. (A) The
methylation profiles (M-value) of selected probes of all samples. The samples (rows) and probes (columns) were all rearranged according to hierarchical clustering.
Cases with responsiveness to ICI were marked as red at the right panel. (B) The comparison of separation between cases with and without responsiveness to ICI
based on hierarchical clustering of methylation profiles of selected probes and the randomly selected probes as controls. (C) The volcano plot showing the results of
differential methylation analysis of selected probes. (D) The functional enrichment analysis (left: GO, right: KEGG) of genes where the selected probes were located.
The top 10 terms were shown. The size of circles represents the logged FDR values, while colors represent the p-values.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Methylation-Based ICI Response Prediction
The Prediction Model Based on
Methylation Data Was Comparable and
Complementary to That Based on Gene
Expression Profiles
It was reported previously that the ICI responsiveness could be
predicted by the gene expression levels of genes indicating the
immune state of the cases in the pan-cancer level (32). Here we
compared the performances of the model based on DNA
methylation levels with that of models based on gene
expression level (32). The gene expression level–based model
was built exactly the same as reported before (32), except for
Frontiers in Immunology | www.frontiersin.org 7
taking the advantage of random oversampling to account for the
class imbalance. The accuracy of the native built model was
consistently higher than that originally reported [the mean and
95% confident interval MCC score under the 100 random test
splits were 0.445 (0.371, 0.501) and 0.296(0.287, 0.306), for the
native built one and originally reported, respectively] (32).

The performance of the methylation-based model was
competitive with that based on gene expression levels. When
assessing the performances using 100 times random splits during
the model evaluation step, the methylation-based model got
better performances when measured by F1 score (with mean F1
A

B

C D

E F G H

FIGURE 3 | The responsiveness of cases to ICI treatment were predicted by the selected probes. (A) The SVM model outperformed the other models when the
performances were measured by F1 score or MCC score. (B) The SVM model performances when only probes selected by single indicator involved. (C) Differences
of the model performances between SVM models trained from the selected probes and random chosen controls among all super-parameter ls searched in the
cross-validation step of the model building. In each comparison, samples were randomly split into 80% training and 20% testing set. (D) Comparisons between
performances of the trained models and those when the respondent (responsiveness) of the samples were randomly shuffled. “Predicted random” meant the
predicting performance of SVM models with same setting when the respondent was shuffled. “Total random” meant direct measurement of the similarity of
respondents before and after shuffling when the similarity was measured by F1 score or MCC score. (E–H) Differences of biomarkers for ICI treatment
responsiveness which is independent with those used in model build for the cases predicted as positive and negative in the 100 random test sets. Each point
represented the average value in one test set.
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score 0.4971 and 0.4844, p = 2.82×10-4 Wilcoxon signed rank
test, Figure 4A). The performances were not notably different as
measured by MCC score (with mean MCC score 0.4516 and
0.4446, p = 0.06, Figure 4B), while lower when measured using
AUC score (with mean AUC score 0.8914 and 0.8949 p = 0.01,
Figure 4C). The comparability between the performances of two
models was also indicated by the closely located ROC curves
between the two models (Figure 4D).

The genes in which the selected methylation sites located were
then compared with those selected in the gene expression–based
model. An enormous distinction between the two gene sets was
observed. Only 189 out of 2,023 genes selected in the methylation
Frontiers in Immunology | www.frontiersin.org 8
model were found in the genes selected in the expression-based
model (2,614 in total). The two gene sets also enriched few
common GO and KEGG terms (Figures 2D and 4E). These
observations indicated that the prediction power of DNA
methylation and gene expression profi les could be
complementary, and combining the two profiles would further
enhance the prediction power.

To validate our assumption of complementarity of DNA
methylation and gene expression profile, we further developed
an SVM model based on the combination of the methylation
levels of the selected methylation sites and the gene expression
levels in the gene expression–based models. The best super-
A B

C D

E

FIGURE 4 | The methylation-based model was comparable and complementary to the gene expression based one. (A–C) The performances of models based on
methylation levels, the expression levels, and the combination of the two along the 100 times random split of the whole cohort into 80% trainings and 20% testing
sets. (D) The ROC curves of the three models. The shades were 95% confidence intervals along the 100 times splits. (E) The top 10 enriched GO (left) and KEGG
(right) terms of the genes involved in gene expression–based model.
December 2021 | Volume 12 | Article 796647

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Methylation-Based ICI Response Prediction
parameter l was selected using 5-fold cross-validation.
Performances of the selected model were again assessed in a
100 times random split of the cases into 80% training and 20%
testing sets.

The combined model surpassed both the methylation-based
and gene expression–based ones under all performance measure
[all with p < 10-10 for measurement F1, MCC, and AUC scores
(Figures 4A–C), Wilcoxon signed rank test, with mean scores
0.5773, 0.5340, and 0.9327, respectively]. The high performance
of the combined model was also validated by the ROC
curves (Figure 4D).

These observations have implicated a scheme to enhance the
predictive models of ICI responsiveness by assembling the multi-
omics data.

The Methylation-Based Model Accurately
Predicts ICI Responsiveness at Specific
Tumor Type Level
To evaluate the performance of the methylation-based prediction
model in each tumor type, we tested the model in tumor types
with more than 5%, and 20 cases marked as positive (10 types in
Frontiers in Immunology | www.frontiersin.org 9
total: SKCM, BLCA, UCEC, CESC, COAD, LUAD, LIHC,
STAD, LUSC, HNSC, ordered by the proportion of cases
marked as position, Figure 5A).

One important characteristic of responsiveness to ICI
treatment was that the effective rate differed from tumor type
to tumor type (40). As in the TCGA dataset, the proportion of
cases marked as positive varied largely, from 37% in SKCM to
zero in five other types (Figure 5A and Supplementary Table
S1). So, we first investigated that whether the methylation-based
model could predict this variation. We calculated the proportion
of cases in each tumor type predicted as positive and compared
the numbers with the true proportions in the 100 times random
test sets. Although due to the high false positive rate, which was
the common characteristic of such kind of models (41, 42), the
predicted proportion of cases marked as positive were always
higher than the ground truths (Figure 5A), the two correlated
tightly, with average Spearman’s correlation coefficient 0.74
[with 95% confidence interval (0.46,0.93) among the 100
random test sets, Figure 5A, embedded panel].

Next, we assessed the performances of the model in each
tumor type using F1 and MCC scores. We compared the
A C

B

D

FIGURE 5 | The methylation level–based prediction model was highly performed at specific tumor type level. (A) The proportions of cases marked as positive in the
10 investigated tumor types. Bars and error bars indicated the mean and 95% confident intervals among the 100 randomly split test sets. The distribution of the
correlation coefficients of these proportions in each test set were shown in the embedded panel. (B) The differences of the performance measurements (F1 score
and MCC score) in each tumor type among the 100 randomly split test sets (upper) measuring between model based on the selected probes and randomly selected
probes. The significance of these differences (-log10 p-value) were shown in the lower panel. The dashed line marked p=0.1. (C) The ROC curve of the independent
validation cohort. (D) The survival curves of cases predicted as responsive and non-responsive in the validation cohort.
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performances of the model based on the selected probes in the
100 randomly split train and test datasets with the performances
of the models based on randomly selected probes of the same
number, under the same hyper-parameter l = 13, which was
optimal for the selected probes-based model (Figure 5B, upper
panel). A paired t test was used to compare the performance
between the two types of models. As expected, in 4 out of 10
tumor types, the performance of model based on selected probes
was notably higher than that of model based on randomly
selected probes (with significant level p < 0.1, Figure 5B, lower
panel). These tumor types included SKCM and HNSC, which
were commonly admitted as tightly related to the immune
checkpoint evasion and may benefit from the ICI treatment
(Figure 5B, lower panel) (43, 44). On the other hand, only 2 and
3 tumor types were tested with significantly lower F1 and MCC
scores than the random ones (p < 0.1) with the paired t test. This
result further illustrated the high performance of the pan-cancer
prediction model in tumor type level.

At last, we tested the performance of the methylation-based
prediction model in an independent validation cohort. The
cohort was taken from two newly published research on non-
small-cell lung carcinoma (NSCLC) patients accepting anti-PD-
1/PD-L1 treatments with clinical responses measured (13, 33).
There were 60 and 18 cases included in the two datasets, with 14
and 6 being identified as responsive to the treatments,
respectively. It was worth noticing that this cohort was not
included in the TCGA cohort used for model building, and
mutation burden was tested as a poor predictor for treatment
responsiveness (13). This was the only publically available tumor
immunotherapy cohort with DNA methylation levels measured
to the best of our knowledge. The methylation levels in this cohort
were measured using Illumina Infinium HumanMethylation850
BeadChip. We extracted the probes in the feature set existing in
this chip and retrained the model in TCGA data. No significant
drop of the performance of the model was observed (with average
F1 and MCC score 0.4949 and 0.4503, with standard deviation
0.0288 and 0.0308). After applying the retrained model in this
cohort, it got F1 = 0.4255,MCC = 0.1899, and AUC = 0.6742. The
performance was also indicated in the ROC curve (Figure 5C).
The progression-free survival time (PFS) was also significantly
prolonged for cases predicted as positive compared with the
negative ones (Figure 5D), though the p-value (p=0.06, log
rank test) was not so significant due to the limited positive
cases (only 20 cases predicted as positives). The performance of
the model in this totally independent cohort demonstrated its
efficiency at both pan-cancer level and for specific tumor type. It
also indicated that the information the model caught was indeed
the responsiveness itself other than its indicators such as TMB
since the model retained its performance when TMB was not
predictable to the responsiveness (13).
DISCUSSION

In this work, we first proposed the potential of the DNA
methylation profiles to predict case responsiveness to the
Frontiers in Immunology | www.frontiersin.org 10
immunotherapy using the immune checkpoint inhibitors. Then
we designed a feature selection scheme to extract the methylation
sites with the prediction power based on the commonly used
Illumina Infinium HumanMethylation450 BeadChip
measurements of the methylation levels in the pan-cancer level
on 32 types of TCGA data. Next, we built a machine learning
prediction model for the responsiveness using the methylation
levels of these selected sites. The performance of this model was
shown both at pan-cancer level and for specific tumor types. The
model performance was also compared with that of the existing
pan-cancer model based on the gene expression profiles and
proved to be comparable and complementary to that model. The
combination of the two models was shown to perform better
than the single ones. At last, the performance of the model was
further shown using a cohort of NSCLC patients. Neither the
patients nor the tumor type was involved in the model-
building process.

The uncertainty of the outcome and possibility of severe
immune-related adverse events were the major issues for the
immunotherapy based on the ICIs (3–5). There has been a large
number of biomarkers for the prediction of the responsiveness
both at genome level and at transcriptome level, such as the
tumor mutation burden (6), the microsatellite instability (39),
the neoantigens (7, 8), the PD-L1 expression (9, 10), and the
tumor immune microenvironments based on the gene
expression profiles (11, 12). But the discussion of such
biomarkers based on epigenetic signals were far less discussed.
The tight relationship between the DNA methylation profiles
and the responsiveness to the ICI treatment was only recently
shown in separated tumor types (13, 14). Although the close
correlation between the DNA methylation profile and the tumor
immune microenvironments in the pan-cancer level has been
introduced recently (22), there are no direct, systematic
discussion of the prediction power to the cases’ responsiveness
at this level to the best of our knowledge. Our conclusion of the
high performance of the methylation level–based model both at
the pan-cancer level and for specific tumor types further
illustrated the close relationship between the DNA methylation
profiles and the tumor immunotherapy. It also directly offered a
framework for outcome prediction of cases that received the ICI
treatment. Moreover, it shows the important role of the
epigenetic markers in the tumor immunotherapy. On one
hand, we should also acknowledge that despite the model
performance was applaudable, it still got a high false positive
rate, just like other pan-cancer models did (32). This major issue
would be improved by the ensemble of multiple types of
biomarkers, and we also showed the power of this kind of
ensemble by integrating the methylation level and gene
expression profiles. On the other hand, other frameworks such
as the anomaly detection may help in tumor types with small
proportions of cases responding to ICI treatment. The
integration of these supervised and unsupervised frameworks
may further improve the model performance. Finally, the
performance of the model would certainly be improved with
the appearance of large tumor immunotherapy cohorts with
direct measurements of the responsiveness to the treatments.
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The models involved in these studies were all commonly used
ones with limited simplicity. We admitted that the model
performance would be further improved if more complicated
models such as deep neural networks were applied. We did not
apply the deep neural networks because the main goal of this
study was to deduce the feasibility of the DNA methylation
profiles in the prediction of responsiveness of patients in ICI
treatments and to introduce the model-building framework. The
SVM model, whose performance was high, comparable with and
complementary to that of the gene expression–based ones, was
suitable enough for these goals. The more powerful models will
be discussed in follow-up studies when more high-quality
immunotherapy cohorts are available.

We should also acknowledge that the indirect definition of the
responsiveness to the ICI treatments introduced irremediable
bias of the model. This, together with limited samples in the
NSCLC cohort, led to the degradation of the model performance.
Unfortunately, there were few currently available tumor
immunotherapy cohorts with responsiveness annotated in the
pan-cancer level. It is unpractical to build such models with
directly defined responsiveness now.

Compared with the state-of-the-art biomarkers, the
epigenetic markers such as DNA methylation profiles, histone
modifications, chromatin structure, accessibility, and the
nucleosome positioning come up with a lot of advantages, such
as the low patient invasiveness. For many of epigenetic markers
can be measured in liquid biopsies and body fluids (45), contain
rich information of life habits and conditions of patients (46),
and reveal the origin and evolution of a given disease they carried
(47). Their close correlation with the tumor immune
microenvironment and importance in the tumor immunotherapy
have received more and more attention recently. A series of
epigenetic biomarkers for immunocompetent phenotypes have
also been established (48). The thorough study of the roles of
these markers will certainly mark a new dawn in the
tumor immunotherapy.

In conclusion, the DNAmethylation profiles were predictable
to the responsiveness to the ICI treatments. The built SVM
model were well-performed both at pan-cancer level and for
specific tumor types. The performance of our model was
comparable with and complementary to that of the gene
expression–based model.
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