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Background: Magnolia officinalis cortex has been traditionally used to treat stomach and intes-

tine diseases in traditional Korean medicine. In this study, we investigated the effect of water

extract of M. officinalis cortex (WEMC) on osteoclast differentiation and function.

Methods: Phytochemical characterization of WEMC was performed by high-performance

liquid chromatography analysis. Osteoclast differentiation of bone marrow-derived

macrophages was determined by tartrate-resistant acid phosphatase activity assay. Recep-

tor activator of nuclear factor-�B ligand (RANKL) signaling factors and transcription factors

regulating osteoclast differentiation were analyzed by Western blot and real-time poly-

merase chain reaction. Bone resorption function of mature osteoclasts was examined by

using culture plate coated with inorganic crystalline calcium phosphate. Furthermore, the

in vivo effect of WEMC on osteoporosis was examined using RANKL-induced bone loss model,

characterized by micro-computed tomography and bone metabolism marker analysis.

Results: WEMC inhibited RANKL-induced osteoclast differentiation and the bone resorbing

activity of mature osteoclasts. WEMC contains gallic acid and honokiol as active constituents

contributing to the inhibitory effect of WEMC on osteoclast differentiation. Further, WEMC
suppressed RANKL-induced activation of p38 and nuclear factor-�B pathways and expres-

sion of osteoclastogenic transcription factors such as c-Fos for AP-1 and nuclear factor

of activated T cells cytoplasmic 1. Ectopic overexpression of a constitutive active form of

ivated T cells cytoplasmic 1 rescued the antiosteoclastogenic effect of
nuclear factor of act
WEMC. Consistent with the in vitro results, WEMC suppressed RANKL-induced trabecular

bone loss in mice.
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Conclusion: WEMC might have a therapeutic potential to treat pathological bone diseases

due to increased osteoclast differentiation and function.
© 2015 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access
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cillin/streptomycin in the presence of M-CSF (60 ng/mL) as
. Introduction

egulation of bone remodeling between osteoclastic bone
esorption and osteoblastic bone formation is critical to

aintain bone mass, bone structural integrity, and mineral
omeostasis in adults. Imbalance of the bone remodeling
y excess osteoclastogenesis results in bone loss, as seen
n various bone destructive diseases such as osteoporosis,
heumatoid arthritis, and osteolytic bone metastasis.1,2 Osteo-
lasts are multinucleated bone resorbing cells derived from
ematopoietic monocyte/macrophage precursor cells. Recep-
or activator for nuclear factor (KF)-�B ligand (RANKL), a tumor
ecrosis factor ligand superfamily member, is a key cytokine

or osteoclast differentiation and function.3,4 The binding of
ANKL to RANK receptor on osteoclast precursors recruits
umor necrosis factor receptor-associated factor 6 to the cyto-
lasmic tail of RANK to trigger downstream signaling cascades

ncluding NF-�B and mitogen-activated protein kinase (MAPK)
athways. They subsequently lead to the activation of key
ranscription factors, AP-1 and NF of activated T cells cyto-
lasmic 1 (NFATc1), to regulate osteoclastic transcription.5–8

There is a growing interest in medicinal herbs that have
he potential to prevent or treat bone diseases with fewer
ide effects.9 Magnolia officinalis cortex named as Hubak in
raditional Korean Medicine has been used to strength the
astrointestinal tract, to treat ulcer, and to induce sedative
ffect.10 M. officinalis cortex is a key ingredient of several
raditional medicines such as Pyengwisan and Banhahubak-
ang that are commercially available and widely prescribed
t traditional medicine clinics in Korea.11,12 Previous studies
ave shown that M. officinalis extracts have antibacterial,13

ntiatherogenic,14 antineuroinflammatory,15 and anticancer
ffects.16 Moreover, M. officinalis cortex has several biological
ctive components, including magnolol and honokiol, to have
eneficial effects on ligature-induced periodontitis or arthri-
is by inhibiting osteoclastogenesis, suggesting an inhibitory
otential of M. officinalis cortex on inflammatory-induced bone
isease.17,18 However, the effect of water extract of M. offi-
inalis cortex (WEMC) on bone metabolism or RANK-related

olecular mechanism has not been studied. In this study,
e investigated the effects of WEMC on RANK signaling reg-
lating osteoclast differentiation and function in osteoclast
recursor cells to elucidate underlying action mechanism of
EMC. We also examined the in vivo effect of WEMC on

steoclast-mediated bone destruction using a murine model
f RANKL-induced osteoporosis.

. Methods
.1. Reagents and antibodies

. officinalis cortex was purchased from Yeongcheon herb
Yeongcheon, Korea). Alpha-modified minimal essential
article under the CC-BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

medium (�-MEM), fetal bovine serum, and penicillin/
streptomycin were purchased from Gibco BRL Life Tech-
nologies (Grand Island, NY, USA). Macrophage colony-
stimulating factor (M-CSF) and RANKL were obtained as
described previously.19 Antibodies against phospho-JNK1/2
(Thr183/Tyr185), JNK, phospho-p38 (Thr180/Tyr182), p38,
phospho-I�B� (Ser32), and I�B� were from Cell Singling Tech-
nology (Danvers, MA, USA). Antibodies against �-actin, c-Fos,
and NFATc1 were from Santa Cruz Biotechnology (Santa Cruz,
CA, USA).

2.2. Preparation of WEMC

M. officinalis cortex was authenticated by Prof. K.H. Bae (Chung-
nam National University, Chungnam, Korea). A voucher
specimen of M. officinalis cortex (No. W172) was deposited in
the herbal bank of KM-Based Herbal Drug Research Group,
Korea Institute of Oriental Medicine, Daejeon, Korea. M. offi-
cinalis cortex (50 g) was boiled for 3 hours in 1 L of distilled
water. After filtration using testing sieves (150 �m; Retsch,
Haan, Germany), the extract was lyophilized and stored at
−20 ◦C prior to use. To prepare WEMC, the lyophilized powder
(yield: 6.72%) was resuspended in distilled water, centrifuged
at 10,000 × g for 15 minutes, and filtered through a 0.2 �m
sterile filter.

2.3. High-performance liquid chromatography
analysis

High-performance liquid chromatography (HPLC) analysis of
WEMC was performed using the Waters HPLC 2695 sys-
tem (Waters Co., Milford, MA, USA) consisting of a pump,
autosampler, column oven, and photodiode array detector 996.
Chromatographic separation was achieved in a RS-tech C18
column (4.6 mm × 250 mm, 5 �m, 35 ◦C). The mobile phase
was 0.1% TFA (A) and 100% acetonitrile (B) with a step gradi-
ent elution (5 minutes, 5% B; 65 minutes, 100% B; 75 minutes,
100% B; 86 minutes, 5% B) at a flow rate of 1.0 mL/min. A mix-
ture of marker components (gallic acid, syringin, honokiol,
and magnolol; each 100 �g/mL) and WEMC (50 mg/mL) were
dissolved in methanol and filtered through a 0.2 �m filter. For
each sample, 10 �L was injected for the HPLC analysis.

2.4. Bone marrow macrophage culture and osteoclast
differentiation

Bone marrow macrophages (BMMs) were obtained from
mouse bone marrow cells and cultured in �-MEM complete
medium containing 10% fetal bovine serum and 1% peni-
described previously.20 Cell viability of BMMs was determined
using Cell Counting Kit-8 (Dojindo Molecular Technologies
Inc., Rockville, MD, USA), after 2 days of BMM culture (1 × 104

cells/well in a 96-well plate) with WEMC and M-CSF (60 ng/mL).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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To induce osteoclast differentiation from BMMs, BMMs (1 × 104

cells/well) were cultured with M-CSF (60 ng/mL) and RANKL
(100 ng/mL) for 4 days in 96-well plates. Cells were replen-
ished with fresh medium and treatments on Day 3. To identify
osteoclasts, cells were fixed in 10% neutral buffered forma-
lin (Sigma-Aldrich, St. Louis, MO, USA) in phosphate-buffered
saline (PBS), permeabilized with 0.1% Triton X-100 in PBS, and
then stained with tartrate-resistant acid phosphatase (TRAP)
buffer (50 mM sodium tartrate and 0.12 M sodium acetate,
pH 5.2) containing naphthol AS-MX phosphate (0.1 mg/mL,
Sigma-Aldrich) and fast red violet LB salt (0.5 mg/mL, Sigma-
Aldrich). TRAP-stained cells were washed with distilled water
and observed under a light microscope. TRAP-positive mul-
tinucleated cells containing more than three nuclei and >
100 �m in diameter were counted as osteoclasts.

2.5. Western blot analysis

BMMs were washed twice with ice-cold PBS and lysed in a
protein extraction buffer (Millipore, Billerica, MA, USA) con-
taining protease and phosphatase inhibitor cocktails (Roche
Applied Science, Indianapolis, IN, USA) at 4 ◦C. Total cell
lysates were obtained by centrifugation at 10,000 × g for
15 minutes at 4 ◦C. Protein concentration of lysates was deter-
mined with a BCA Protein Assay Kit (Thermo Fisher Scientific
Inc., Rockford, IL, USA). Protein samples (30 �g) were subjected
to sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis and transferred to polyvinylidene fluoride membranes
(GE Healthcare, Little Chalfont, Buckinghamshire, UK). Mem-
branes were blocked with blocking buffer, 5% nonfat dry
milk in TBST (10 mM Tris-HCl pH 7.5, 150 mM NaCl, and 0.1%
Tween 20), for 1 hour at room temperature, probed with the
indicated primary antibodies (1/1000 dilution) overnight at
4 ◦C, and then washed with TBST three times for 10 minutes
each. Membranes were then incubated with horseradish
peroxidase-conjugated secondary antibodies (1/4000 dilution)
for 1 hour at room temperature and washed with TBST three
times. Chemiluminescent signals were detected on a LAS-
4000 Luminescent Image Analyzer (Fuji Photo Film Co., Tokyo,
Japan) with SuperSignal West Femto Maximum Sensitivity
Substrate (Thermo Fisher Scientific Inc.).

2.6. Real-time quantitative polymerase chain reaction
analysis

Total RNA was isolated with RNA-spin total RNA Extraction
Kit (Bioneer, Daejeon, Korea) according to the manufacturer’s
protocol. cDNA was synthesized from 1 �g of total RNA with
AccuPower RT-PreMix (Bioneer) according to the manufac-
turer’s protocol. SYBR green-based quantitative polymerase
chain reaction (PCR) amplification was performed on the
Applied Biosystems 7500 Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA) with cDNA diluted to 1:3,
10 pmol of primers, and AccuPower GreenStar qPCR Master
Mix (Bioneer). The following mouse-specific primer sets were
used: c-Fos, 5′-CGGGTTTCAACGCCGACTAC-3′ (forward) and

5′-AAAGTTGGCACTAGAGACGGACAGA-3′ (reverse); NFATc1,
5′-CCGTTGCTTCCA GAAAATAACA-3′ (forward) and 5′-TGTG-
GGATGTGAACTCGGAA-3′ (reverse); hypoxanthine phospho-
ribosyltransferase, 5′-CCTAAGATGAGCGCAAGTTGAA-3′
Integr Med Res ( 2 0 1 5 ) 102–111

(forward) and 5′-CCACAGGACTAGAACACC TGCTAA-3′

(reverse). The PCR reaction consisted of 40 cycles of 94 ◦C for
20 seconds and 60 ◦C for 40 seconds. All reactions were run in
triplicate, and data were analyzed using the 2−��CT method.
Hypoxanthine phosphoribosyltransferase was used as an
internal control to normalize RNA expression.

2.7. Retroviral gene transduction

To generate retroviral stocks, retroviral vectors, pMX-IRES-
GFP (control vector) and pMX-CA-NFATc1-IRES-GFP encoding
a constitutively active (CA) form of NFATc1, were trans-
fected into Plat-E retroviral packaging cells (Cell Biolabs, San
Diego, CA, USA). Viral supernatant was collected from cul-
ture media 48 hours after transfection. To infect BMMs with
retrovirus, BMMs were incubated with retroviral supernatant
together with polybrene (6 �g/mL, Sigma-Aldrich) and M-CSF
(60 ng/mL) for 12 hours. BMMs infected were washed with �-
MEM, cultured in �-MEM complete medium in the presence of
M-CSF (60 ng/mL) for 1 day, and then treated as indicated.

2.8. Bone resorption assay

Primary calvarial osteoblasts were isolated from calvariae
of newborn ICR mice (Samtako Bio Inc., Seoul, Korea) by
using a sequential enzymatic digestion method described
previously.21 To obtain mature osteoclasts, bone marrow cells
(1.5 × 107 cells) and calvarial osteoblasts (1.5 × 106 cells) were
cocultured with 1�,25-dihydroxyvitamin D3 (10 nM, Sigma-
Aldrich) and prostaglandin E2 (100 nM; Sigma-Aldrich) for 6
days in a 10-cm culture dish coated with collagen gel (Cell-
matrix type I-A; Nitta Gelatin Inc., Osaka, Japan). Mature
osteoclasts were detached with 0.2% collagenase (Sigma-
Aldrich), placed on an Osteo Assay Surface plate (Corning Inc.,
Corning, NY, USA), and allowed to settle for 2 hours, and then
cultured with vehicle or WEMC for another 16 hours. Cells
were stained for TRAP to identify osteoclasts. After removing
cells with sodium hypochlorite, resorption pits were photo-
graphed and analyzed by using ImageJ software (National
Institutes of Health, ML, USA).

2.9. Mouse model of osteoporosis

Animal experiments were handled in accordance with the
Korea Food and Drug Administration Guide for the Care and
Use of Laboratory Animals. The experiments were approved by
the Institutional Animal Care and Use Committee at the Korea
Institute of Oriental Medicine (Approval number; 12-121). Six-
week-old male ICR mice (Samtako Bio Inc.) were housed at
22 ± 1 ◦C and 55 ± 10% humidity on a 12-hour light/dark cycle
with unlimited access to food and water. After acclimatization
for 1 week, mice were orally administered with vehicle (dis-
tilled water, n = 8 per group) or WEMC (0.25 g/kg and 0.75 g/kg
of body weight, n = 7 per group) twice daily for 5 days. RANKL
(1 mg/kg of body weight) or PBS was intraperitoneally injected
on Day 3 and Day 4. After being fasted for 12 hours, blood sam-

ples and the right femora were harvested on Day 7. Serum
C-terminal cross-linked telopeptide of type I collagen (CTX)
and osteocalcin levels were measured using a RatLaps EIA
kit (Immunodiagnostic Systems Inc., Fountain Hills, AZ, USA)

dx.doi.org/10.1016/j.imr.2015.02.002
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Fig. 1 – Effect of WEMC on RANKL-induced osteoclast differentiation in BMMs. BMMs were cultured with vehicle (distilled
water) or WEMC (20–160 �g/mL) in the presence of M-CSF (60 ng/mL) and RANKL (100 ng/mL) for 4 days. (A) Cultured cells
were fixed and stained for TRAP activity. Scale bar, 200 �m. (B) TRAP-positive multinucleated cells containing more than
three nuclei and > 100 �m in diameter were counted as osteoclasts. (C) BMMs were cultured with or without WEMC in the
presence of M-CSF for 2 days, and cell viability was determined using Cell Counting Kit-8 assay. (D) BMMs were cultured in
the presence of M-CSF and RANKL for 4 days. WEMC was added to the cultures at the indicated days, and the number of
osteoclasts was counted on Day 4. (E) HPLC chromatograms of WEMC and a standard mixture of (1) gallic acid, (2) syringin,
(3) honokiol, and (4) magnolol at 254 nm. (F) BMMs were cultured with the indicated compounds in the presence of M-CSF
and RANKL for 4 days, and the number of osteoclasts was counted.
**p < 0.01 versus vehicle-treated control.
BMM, bone marrow macrophage; M-CSF, macrophage colony-stimulating factor; RANKL, receptor activator of nuclear
factor-�B ligand; TRAP, tartrate-resistant acid phosphatase; WEMC, water extract of Magnolia officinalis cortex.
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nd a mouse osteocalcin EIA kit (Biomedical Technologies Inc.,
toughton, MA, USA), respectively. Serum TRAP 5b activity was
etermined using the fluorogenic substrate naphthol AS-BI
hosphate (Sigma-Aldrich) as described previously.19 Micro-
omputed tomography (CT) images of the distal femur of each
ouse were acquired using the In-Vivo Micro-CT (SkyScan

076; SkyScan N.V., Kontich, Belgium) at a resolution of 18 �m.
he beam-hardening errors were corrected to improve the
uality of the micro-CT images by flat-field correction prior to

canning and beam-hardening correction during reconstruc-
ion. Three-dimensional models of the trabecular bones were
econstructed using SkyScan CT Analyzer version 1.13 (Bruker
Inc., WI, USA) to evaluate the alteration of bone. The structural
parameters were measured at the distal femoral metaphysis
between 0.54 mm and 1.46 mm distal to the growth plate.

2.10. Statistical analysis

Values are presented as mean ± standard deviation for the
in vitro study and mean ± standard error of the mean for the

in vivo study. Statistical significance of experimental results
was analyzed by Student t test for comparison of two groups or
analysis of variance followed by Dunnett test for comparison
of multiple groups. A p value < 0.05 was considered significant.
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Fig. 2 – Effect of WEMC on RANKL-induced c-Fos and NFATc1 expression in BMMs. BMMs were pretreated with vehicle or
WEMC (80 �g/mL) for 3 hours, and then further cultured with RANKL (100 ng/mL). Total cell lysate or RNA was obtained at
the indicated time points. (A) Total cell lysates (30 �g) were subjected to Western blot analysis with the indicated antibodies.
�-actin was used as a loading control. (B) mRNA expression levels of c-Fos, NFATc1, and cathepsin K were analyzed by
quantitative polymerase chain reaction. (C) BMMs infected with pMX-GFP (control retrovirus) or retrovirus encoding
constitutively active NFATc1 were cultured with vehicle or WEMC (80 �g/mL) in the presence of M-CSF (60 ng/mL) and
RANKL (100 ng/mL) for 4 days. The number of osteoclasts was counted.
BMM, bone marrow macrophage; M-CSF, macrophage colony-stimulating factor; NFATc-1, nuclear factor of activated T cells

liga
cytoplasmic 1; RANKL, receptor activator of nuclear factor-�B

3. Results

3.1. WEMC inhibits RANKL-induced osteoclast
differentiation

RANKL induces the differentiation of precursor cells such
as mouse BMMs into osteoclasts in the presence of M-CSF.
When BMMs were treated with RANKL for 4 days, TRAP-

positive multinucleated osteoclasts were formed. WEMC
dose-dependently inhibited RANKL-induced osteoclast for-
mation in BMM cultures with nearly complete inhibition at
80 �g/mL (Fig. 1A–B). WEMC up to 160 �g/mL of concentration
nd; WEMC, water extract of Magnolia officinalis cortex.

did not show any inhibitory effect on the growth of BMMs
(Fig. 1C), suggesting that the inhibitory effect of WEMC was not
due to cytotoxicity. When WEMC was added 1 day after RANKL
stimulation, the inhibitory effect of WEMC on osteoclast dif-
ferentiation was markedly decreased. WEMC did not inhibit
RANKL-induced osteoclast formation when added on Day 2
and Day 3 (Fig. 1D). These results suggest that WEMC inhibits
the early stage of RANKL-induced osteoclast differentiation.

Previous phytochemical studies have shown that lignans

and alkaloids are the major components of M. officinalis
cortex.22,23 We identified gallic acid, syringin, honokiol, and
magnolol from WEMC by HPLC analysis, based on their HPLC
retention times and UV absorption spectra (Fig. 1E). We

dx.doi.org/10.1016/j.imr.2015.02.002
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Fig. 3 – Effect of WEMC on RANKL-induced activation of
MAPK and NF-�B pathways in BMMs. BMMs were
pretreated with WEMC (80 �g/mL) in the presence of M-CSF
(60 ng/mL) for 3 hours and then incubated with RANKL (100
ng/mL) for indicated time points. Total cell lysate (30 �g)
was subjected to Western blot analysis with the indicated
antibodies.
BMM, bone marrow macrophage; M-CSF, macrophage
colony-stimulating factor; RANKL, receptor activator of
nuclear factor-�B ligand; WEMC, water extract of Magnolia
.-S. Shim et al/Magnolia officinalis cortex suppresses Osteoclastogenesis

xamined whether these components mediate the antiosteo-
lastogenic action of WEMC. Among them, gallic acid showed
he strongest inhibitory effect (Fig. 1F). Consistent with a pre-
ious report,24 honokiol inhibited RANKL-induced osteoclast
ormation in BMM cultures.

.2. WEMC suppresses RANKL-induced NFATc1
xpression in BMMs

o investigate the mechanisms by which WEMC inhibits
steoclast differentiation, we assessed the impact of WEMC
n the expression NFATc1, the master transcription factor
or osteoclast differentiation.25 WEMC markedly inhibited
ANKL-induced the mRNA and protein expression of NFATc1

nduced by RANKL in BMMs (Fig. 2A, 2B). WEMC also sup-
ressed the mRNA expression of cathepsin K, a downstream
arget of NFATc1 activation (Fig. 2B).26 To examine the antios-
eoclastogenic action of WEMC caused by the downregulation
f NFATc1, BMMs were retrovirally transduced with CA-
FATc1, which carries serine to alanine substitutions in the
onserved serine-rich domain and all three serine–proline
epeats.27 The ectopic expression of CA-NFATc1 blunted the
nhibitory effect of WEMC (Fig. 2C). Since c-Fos is also upregu-
ated during osteoclast differentiation and mainly functions to
nduce NFATc1 transcription,28 we next examined the effect
f WEMC on c-Fos expression. WEMC suppressed RANKL-

nduced mRNA and protein expression of c-Fos (Fig. 2A, 2B).

.3. WEMC affects RANKL-induced NF-�B and p38
ctivation in BMMs

ANKL induces the activation of MAPK and NF-�B path-
ays, and these pathways are involved in c-Fos and NFATc1

xpression.7,8,29 To elucidate the mechanisms underlying the
nhibitory effect of WEMC on c-Fos and NFATc1 expression,
e investigated the impact of WEMC on RANKL-induced
ctivation of MAPK and NF-�B pathways. WEMC suppressed
ANKL-induced phosphorylation of p38, but not JNK. WEMC
lightly suppressed RANKL-induced activation of NF-�B path-
ay assessed by I�B� phosphorylation and degradation (Fig. 3).
hus, our results suggest that WEMC inhibits c-Fos and
FATc1 induction, at least in part, by suppressing RANKL-

nduced activation of p38 and NF-�B pathways.

.4. WEMC inhibits bone resorbing activity of
steoclasts

hen attached to mineralized matrix, mature osteoclasts
olarize their membrane and secrete hydrochloric acid and
roteases into a sealed compartment, which degrades both
he organic and the inorganic components of bone surface.2

e next asked whether WEMC affects bone resorption func-
ion of osteoclasts. Mature osteoclasts obtained from the
oculture of osteoblasts and bone marrow cells were cultured
n a plate coated with an inorganic crystalline calcium phos-

hate in the presence or absence of WEMC. After 16 hours
f incubation, mature osteoclasts treated with vehicle gener-
ted numerous resorption pits. However, WEMC (40 �g/mL and
0 �g/mL) significantly decreased the resorbed area without
officinalis cortex.

affecting osteoclast number (Fig. 4A–C), suggesting that WEMC
directly inhibits bone resorbing activity of mature osteoclasts.

3.5. WEMC attenuates RANKL-induced bone
destruction

Having established that WEMC suppresses osteoclast differen-
tiation and function, we next examined whether WEMC has a
protective effect against bone destruction. We used a RANKL-
induced osteoporosis mouse model. Intraperitoneal injections
of RANKL rapidly induced trabecular bone loss with increases
in serum CTX and TRAP 5b levels, which are markers of bone
resorption and osteoclast number, respectively.30

Consistent with the previous results, intraperitoneal injec-
tions of RANKL caused a severe trabecular bone loss at the
distal femoral metaphysis with decreases in trabecular bone
volume, trabecular thickness, and trabecular number and an
increase in trabecular separation. WEMC at 0.75 g/kg signif-
icantly attenuated RANKL-induced trabecular bone loss and
architectural alterations, except trabecular thickness (Fig. 5A,

5B). In addition, WEMC at 0.25 g/kg and 0.75 g/kg prevented
RANKL-induced increases in serum CTX levels and TRAP 5b
activities. Serum osteocalcin levels, a maker of bone forma-
tion, were unchanged by either RANKL or WEMC (Fig. 5C).
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Fig. 4 – Effect of WEMC on bone resorbing activity of mature osteoclasts. Mature osteoclasts obtained from the coculture of
mouse calvarial osteoblasts and bone marrow cells were cultured on an Osteo Assay Surface plate coated with an inorganic
crystalline calcium phosphate in the presence or absence of WEMC (20–80 �g/mL) for 16 hours. (A) Representative
microscopic images of TRAP staining (upper panel) and resorption pits (lower panel). (B) Quantification of the resorbed
areas. (C) The number of osteoclasts was counted.
*p < 0.05 versus vehicle-treated control.

ract
TRAP, tartrate-resistant acid phosphatase; WEMC, water ext

4. Discussion

M. officinalis cortex has been used to treat liver disease,
gastrointestinal disorders, anxiety, and allergic disease in
traditional Korean medicine.31 In this study, we have demon-
strated that WEMC inhibits osteoclast differentiation by
inhibiting p38 and I�B� phosphorylation needed for NFATc1
expression. Our results also show that WEMC suppresses
osteoclast resorption activity and trabecular bone loss.

NFATc1 expression is regulated by NF-�B, AP-1, and MAPK
signaling, which is critical to determine the cell fate of
osteoclasts at the early phase of RANKL-induced osteo-
clastogenesis. We found that WEMC significantly inhibits
RANKL-induced NFATc1 and c-Fos expression, and partially
inhibits I�B and p38 phosphorylation. Genetic study using
NF-�B p50/p52 double knockout mice suggests that NF-�B is
upstream of c-Fos, which binds to the NFATc1 promoter for

its induction during the early phase of osteoclastogenesis.6,28

In addition, I�B lacking its phosphorylation site blocks osteo-
clast differentiation and activation.32 It has also reported that
of Magnolia officinalis cortex.

an inhibition of I�B kinase (IKK) by IKK regulatory peptide
inhibits RANKL-induced osteoclastogenesis and bone loss in
arthritic model.33 Moreover, p38 activation participates to NF-
�B transactivation by stimulating p65 phosphorylation for
NFATc1 induction.34 Thus, it is reasonable to suggest that
WEMC suppresses osteoclastogenesis by inhibiting NF-�B and
p38 signaling pathway for NFATc1 expression.

When osteoclasts contact bone, they are polarized and
dynamic cytoskeleton reorganization is initiated to form
actin ring, accompanied with the secretion of hydroxycholide
and several proteolytic enzymes to degrade collagenous
bone matrix.35 Inhibitory peptide or genetic knockout of
cytoskeletal signaling molecules mediated ���3 integrin
signaling completely inhibits osteoclast maturation and bone
resorption,36,37 suggesting that cytoskeletal organization for
actin ring formation is critical for bone resorption activity.
We found that WEMC (40 �g/mL and 80 �g/mL) significantly

inhibited RANKL-induced bone resorption by 30% when com-
pared to vehicle-treated control. Thus, it seems that WEMC
might partially inhibit bone resorbing activity of mature osteo-
clasts by affecting actin ring signaling.

dx.doi.org/10.1016/j.imr.2015.02.002
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Fig. 5 – Effect of WEMC on RANKL-induced bone destruction. Mice were orally administrated with WEMC (0.25 g/kg and
0.75 g/kg) twice per day for 5 days, and RANKL (1 mg/kg) was injected intraperitoneally on Day 3 and Day 4. Femora and sera
were collected on Day 6. (A) Representative micro-CT images of the distal femur. (B) Bone volume/tissue volume (BV/TV),
trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) at the distal femoral metaphysis by
micro-CT analysis. (C) CTX levels, TRAP 5b activity, and osteocalcin levels in serum.
*p < 0.05, **p < 0.01, ***p < 0.001.
CT, computed tomography; CTX, serum C-terminal cross-linked telopeptide of type 1 collagen; RANKL, receptor activator of
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uclear factor-�B ligand; WEMC, water extract of Magnolia o

Our micro-CT study demonstrated significantly increased
rabecular bone volume and trabecular number, and
ecreased trabecular separation in WEMC administrated
ice, resulting in the prevention of trabecular bone loss.

t has been reported that intraperitoneal RANKL injection
nduces excess osteoclast number with increased resorption
ctivity, which induces trabecular bone loss in mice.30 WEMC
nhibited serum CTX and TRAP 5b levels, representative

arkers for osteoclast number and bone resorption activity,

hich is consistent with in vitro WEMC inhibitory activity.
hese results suggest that WEMC attenuates the in vivo bone
estruction by suppressing osteoclast differentiation and
one resorption.
alis cortex.

M. officinalis cortex contains several active compounds
such as magnolol, honokiol, and other neolignan compounds,
which have an inhibitory effect on osteoclastogenesis.
Honokiol (3–30 �M) and magnolol (5–20 �M) inhibit RANKL-
induced osteoclast formation in RAW264.7 cells.18,24 Syringin
(20 �M) prevents parathyroid hormone-induced osteoclast
formation in the coculture of osteoblasts and bone mar-
row cells.38 In this study, we found that gallic acid and
honokiol, but not magnolol and syringin, inhibited RANKL-

induced osteoclast formation of BMMs, suggesting that these
components might be active constituents contributing to
the antiosteoclastogenic effect of WEMC. In addition, gallic
acid inhibits proinflammatory cytokine production or gene
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expression by suppressing NF-�B activation.39,40 Honokiol also
inhibits collagen-induced arthritis by reducing the production
of proinflammatory cytokines, MMP expressions, and oxida-
tive stress.17 Given that the significance of inflammatory bone
destruction and the inhibitory effect of active components in
M. officinalis cortex on bone metabolism, further study needs
an in-depth analysis for the therapeutic role of M. officinalis
cortex in inflammatory-induced osteoporotic bone diseases.

In conclusion, we have demonstrated that WEMC inhibits
osteoclast differentiation by suppressing RANKL-induced
signaling pathways and decreasing bone resorbing activity of
mature osteoclasts, thereby attenuating osteoclast-mediated
bone loss. These results suggest that WEMC might be useful
for the treatment of various bone destructive diseases associ-
ated with excessive bone loss.
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