
engineered organotypic models: they do
not reproduce themselves; many of the
systems are assembled as artisan pieces
with many parameters that can affect the
model so it can be difficult to teach; many
different biomimetic systems or variations
would be expected to emerge to highlight
different biological events and this cus-
tomization inherently may limit wider
adoption of each specific system; and it
remains unclear which models scientists
should congregate around versus leave
Health Microphysiological Systems Program focuses on
a critical challenge in the drug discovery pipeline. Stem Cell
Res. Ther. 4 (Suppl. 1), I1

9. National Center for Advancing Translational Sciences. Tis-
sue Chip for Drug Screening. www.ncats.nih.gov/
tissuechip

10. Zhang, S. (2016) Chips that mimic organs could be more
powerful than animal testing. Wired. Published online
June 7, 2016. http://www.wired.com/2016/06/
chips-mimic-organs-powerful-animal-testing/

11. Nguyen, D-H.T. et al. (2013) Biomimetic model to reconsti-
tute angiogenic sprouting morphogenesis in vitro. Proc.
Natl Acad. Sci. U.S.A. 110, 6712–6717

12. Moya, M.L. et al. (2013) In vitro perfused human capillary
networks. Tissue Eng. Part C Methods 19, 730–737

13. Zervantonakis, I.K. et al. (2012) Three-dimensional
microfluidic model for tumor cell intravasation and endo-
thelial barrier function. Proc. Natl Acad. Sci. U.S.A. 109,
13515–13520

sitional ‘fuzziness’.

An often overlooked feature of subcellular
organization is that it results from affinities
and equilibria, in other words is quantitative
and not qualitative. Membranes act as bar-
riers but also need to be permeable. The
nuclear envelope, for example, is perme-
able to proteins smaller than �40 kDa.
However, larger proteins might also make
an uncontrolled entry into the nucleus,
for example by having some affinity to
the nuclear import machinery or at the
end of mitosis, when the endoplasmic
under-investigated.

Despite these hurdles, the eventual incor-
poration of these synthetic biomimetic cul-
ture systems into biomedical research
laboratories is inevitable. The confluence
of technological advances in the engineer-
ing and biological communities appears to
be a virtual perfect storm that will push us
to continue establishing engineered 3D
organotypic cultures. On the biological
side, iPSC technologies and stem cell biol-
ogy are coming together to advance
access to human cell types and the appli-
cation of genomic editing technologies
offers the possibility of both modeling
human genetic diseases and mechanisti-
cally implicating molecular players in these
culture systems. On the engineering side,
a suite of technologies have been estab-
lished that can be used to build various
types of system for organ-on-chip appli-
cations, including the development of bio-
materials that can begin to mimic and
decouple aspects of the ECM, the appli-
cation of microfabrication and nanofabri-
cation tools such as microfluidics to
support cell-based systems, advances
of 3D printing and other technologies to
organize cells in three dimensions, micros-
copy advances to observe living cells in 3D
contexts, and the use of insights gained by
tissue engineers to assemble cells and
ECM. The dire need for better models of
human physiology and disease than either
traditional cell culture or animals also pro-
vides a pull to advance these systems.
Last, while ultimately these systems may
become a primary platform for preclinical
testing, their development will play a major
800 Trends in Cell Biology, November 2016, Vol. 26, No. 1
role in our basic understanding of life's
design principles. Analogous to the in vitro
reconstitution of subcellular processes,
the iterative effort that leads to the syn-
thetic reconstitution of multicell-type mor-
phogenetic events will reveal the key
components and subsystems necessary
to generate such behaviors. Thus, one
can only presume that these efforts will
lead to a more complete understanding of
how cells organize and stabilize within
their surroundings and will at a minimum
become a mainstay approach alongside
standard reductionist and animal models
to deepen our understanding of life.
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Proteomic studies find many pro-
teins in unexpected cellular loca-
tions. Can functional components
of organelles be distinguished from
biochemical artefacts or mis-
guided cellular sorting? The clue
might reside in compositional
changes that follow biological
challenges and that can be
decoded by machine learning.

The Fuzzy Cell
Textbook views of cellular components,
from protein complexes to organelles, fol-
low the paradigm ‘localization = function’.
If a protein is found at a cellular location it
also functions there. Consequently, the
focus of organelle proteomics has been
to get the localization right. For decades
this was attempted by subcellular fraction-
ation and by sorting out assumed contam-
inants. However, protein location may
have other reasons than function: cellular
components possess an intrinsic, compo-
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bound organelles in a single experiment [15].
reticulum associates with the decondens-
ing chromatin to reform the nuclear
envelope. Proteins associated with chro-
mosomes are included in this space,
regardless of whether they are functional
chromatin proteins or hitchhikers which
decorate mitotic chromosomes as a result
of their exposure to cytoplasm [1]. Possibly
as a result of these processes, nonspecific
association of proteins with genomic DNA
has been observed also in interphase [2,3].

The potential impact of dynamic equilibria
is particularly obvious for the composition
of non-membrane-enclosed compart-
ments such as nuclear bodies and cyto-
plasmic granules. Proteins arrive there by
diffusion and stay as a result of a prefer-
ence for the environment of the respective
compartment. However, it is highly
unlikely that concentration gradients and
local affinity will generate a binary sorting
result, placing only proteins in those com-
partments that the cell needs to have there
for functional reasons. For example, pro-
teins appear not to exclusively localize to
nucleoli, despite their enrichment there [4].

The cell does tolerate sorting noise. Possi-
bly it is an essential part of evolution, allow-
ing proteins to acquire a local function
under some selection pressure. Proteins
can acquire new subcellular localizations
during evolution, as seen for duplicated
gene pairs in yeast, which frequently pos-
sess functions in different organelles [5].
Proteins can also occupy multiple subcel-
lular compartments as a result of their bio-
synthesis, transport, maturation, storage,
or regulation. These processes are neces-
sary for proteins to arrive in mature form at
the location where they function. Conse-
quently, transitory locations are ‘true’ loca-
tions of these proteins but not the sites of
their function. Finally, multifunctional pro-
teins exist that localize and function in mul-
tiple organelles, such as the mitochondrial
prohibitins that ‘moonlight’ as nuclear tran-
scription factors.

In the most recent draft of an organellar

map of proteins it was noted that almost
half of the observed proteins could not be
assigned to discrete cellular locations [6].
Therefore, fuzziness appears to be a wide-
spread phenomenon. If these proteins are
to be placed onto a cellular map a different
approach is needed. We propose a new
concept to describe cellular organization,
which combines indicators of protein
function with localization data in a proba-
bilistic framework.

A Potential Solution: Adding
Function to Localization
Methods will have to be developed that
can distinguish between proteins that
function at a location and those that are
present owing to biological leakiness or
imperfections in purification. This requires
spatial data (colocalization or co-fraction-
ation) to be combined with sources of
protein function. One potential way of
achieving this is to use machine-learning
algorithms to integrate a variety of data
sources that include this information
(Box 1).

Using this approach, many studies have
built on mRNA or protein covariation
across multiple biological experiments as
the source of functional data. To
generate a compendium of mitochondrial
proteins, mitochondrial fractionation prote-
omics has been combined via naïve Bayes
machine learning with additional data,
including mRNA coexpression and
sequence features such as the presence
of mitochondrial target peptides or charac-
teristic protein domains [7]. For mitotic

Box 1. Machine-Learning Tools in Organelle P

Machine learning is concerned with the implementatio
[12]. In a typical scenario of organelle proteomics,
proteomics data, often including categorical data (e.g
machine learning, a positive training set (known com
(proteins known not to be part of that organelle) are us
components. Algorithms used include random forests
interphase chromatin [3], a naïve Bayes framework fo
support vector machines for a combination of organ
machine learning. These algorithms do not require train
of proteins. Unfortunately, these clusters do not nece
component analysis (PCA) has been used as the ma
clathrin-coated vesicles [14] and multiple membrane-
chromosomes, a combination of

Tre
oteomics

n of computer software that can learn autonomously
organelle composition is learned from quantitative
., the presence of a localization signal). In supervised
ponents of an organelle) and a negative training set
d to train the algorithm to identify additional unknown
o define components of mitotic chromosomes [1] and

 mitochondria [7], as well as k-nearest neighbors and
lles [6,13]. An alternative approach is unsupervised
ing sets and instead divide data into clusters or groups
sarily coincide with what one is looking for. Principal
in algorithm for this approach, for example to define
proteomic data and domain annotation
was used to segregate putatively functional
components from hitchhikers [1]. This led
to the observation that function at a sub-
cellular location can also be inferred from
proteomics data alone. This follows a two-
step procedure: first, proteins are quanti-
fied across multiple biochemical isolations
of a cellular structure, obtained from differ-
ently perturbed cells as starting material
[3,8]. Second, one determines the covari-
ation of all identified proteins with known
functional components of that organelle
(Figure 1). Proteins with similar functions
tend to behave more similarly to each other
than to unrelated proteins across different
biological conditions, for example in
response to drug treatments or cell differ-
entiation. The ‘behavior similarity’ or covari-
ation can be measured using multi-
classifier combinatorial proteomics (MCCP)
[1], which is based on another machine-
learning approach, random forests. So far,
both chromatin components [1,3] and
mitochondrial proteins [8] can be deter-
mined on the basis of their covariation,
suggesting this could be a general method
to determine functional organelle composi-
tion and an alternative to approaches
based on co-fractionation. Indeed, covari-
ation was better suited to distinguish func-
tional from non-relevant chromatin-bound
proteins than classical, purification-based
approaches [3]. Protein covariation can
also inform on organelle composition for
organelles that contaminate the biochemi-
cal purification of another organelle [8]. In
principle, the more different biological con-

ditions that are tested for the composition
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of an organelle, the better one can cap-
ture its constitutive, functional compo-
nents. Importantly, instead of choosing
an arbitrary cutoff to separate genuine
organelle components from contami-
nants, machine-learning scores could
be turned into a probabilistic version of
gene ontology that fuses functional and
localization considerations. A first exam-
ple could be seen in interphase chromatin
probability (ICP), possibly rephrasing
ICPs as ‘integrated compartment proba-
bilities’ [3] (Figure 1C). ICPs can be gen-
erated relatively easily for cellular
structures of interest, provided that train-
ing sets and proteomics data for the spe-
cies are available. The outcome is a list of
all proteins detected in the analysis
together with their probability of being a
functional component of that organelle.
An ICP of 0.8 predicts that 8 of 10 unchar-
acterized proteins with this value have a
functional link to the organelle. One limi-
tation of this approach is that it only works
for organelles with sufficiently well-char-
acterized components, although training
sets do not need to be large because
MCCP has been applied to protein com-
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Figure 1. Functional Organelle Components Can 

conditions, for example following drug treatments [3]. (A
which are unlikely to have chromatin-based functions (b
show coordinated changes between different experime
an organelle [3]. (C) Proteins can be assigned to an org
how similar their behavior is to known functional compon
put in relation to that of proteins that definitely do not fu
higher scores, whereas proteins without chromatin-base
correspond to the probability with which any uncharacte
(B) are SSRP1, MCM7, RFC1, RPA1, and REPIN1. Th
plexes [9,10].
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Experiment

DNA replica�on factors
Key:

Mitochondrial proteins

2 3 4 5 6 7 8 9 10 
Application of Compartment
Probabilities in Targeted Studies
ICPs are being applied. Proteomics experi-
ments typically distinguish between rele-
vant proteins and background through
quantitative comparison. For example,
DNA replication factors could be identified
because they are enriched on replicating
chromatin over mature chromatin. How-
ever, because these two chromatin states
differ in their protein composition they also
attract different background proteins [11].
Consequently, not all proteins that differ
significantly between these two states
are related to DNA replication. More than
half of 1000 well-characterized proteins
enriched on replicating chromatin were
classified as biochemical contaminants
because they were known to function else-
where in the cell. This made it difficult to
select candidates for novel DNA replication
factors among the 300 co-enriched
uncharacterized proteins. Filtering the
dataset for proteins with high chromatin
ICPs removed 90% of the contaminants,
while retaining 90% of the known replica-
tion factors, and pinpointed 93 uncharac-
terized proteins as promising candidates

e Identified Through Covariation. In this example, c
) Chromatin fractions contain both bona fide chromatin p
lue: e.g., mitochondrial proteins) and uncharacterized fa
ts. Such covariation patterns can be used by machine-
nelle using integrated compartment probability (ICP). T
ents of the organelle. To turn the score into a probability, t
nction in the organelle. In this example, the distribution o
d functions, such as cytoplasmic, metabolic enzymes, te
ized protein (grey) in a given score window will have a fun
e mitochondrial proteins are ATP5A1, TOMM70A, FH,
for follow-up studies. Experimental

1

validation for seven uncharacterized pro-
teins enriched on replicating chromatin
confirmed that three with high ICPs were
indeed chromatin-based, and four with low
ICPs were indeed background [11]. Like-
wise, ICPs guided the analysis of Cdk-
dependent changes in S-phase chromatin.
Of 114 proteins whose chromatin associ-
ation was significantly and reproducibly
dependent on Cdk activity, more than half
were considered to be contaminants and
90% of these could be removed by ICP-
based filtering [3]. Interestingly, the con-
cept of protein covariation can also inform
on the inner organization of organelles. For
example, the relationship between protein
complexes and novel complex compo-
nents could be studied in the context of
intact mitotic chromosomes [1,10].

Concluding Remarks and Future
Directions
Not every cellular localization of every
protein has a functional consequence,
and we need tools that will allow us to
disentangle those that do from those
that do not. This will enhance our ability
to study cellular processes, and will

(C)

Machine-learning score
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hromatin was enriched from cells grown under different
roteins (red: e.g., DNA replication factors) and proteins
ctors (white). (B) Proteins with similar functions tend to
arning algorithms to identify functional components of
e machine-learning score ranks proteins according to
e score distribution of known functional components is
f known chromatin factors is strongly skewed towards
d to score low. The proportions of the two distributions
tion in chromatin. The DNA replication factors shown in
LONP1, PDHB, and HADHA.
increase our appreciation and



understanding of the cell at a systems
level. As more evidence for proteins
existing in multiple cellular components
accumulates, purely qualitative annota-
tions will become more limited. Such
annotation efforts have been essential
for biological research in the past, but
categorical annotation, without informa-
tion on functionality for many proteins,
risks becoming meaningless. While we
currently have only acquired probabilities
for chromatin- and for mitochondria-
based function, future experiments will
reveal the probability with which these
and other proteins function in other
organelles. Over time, it could lead to
a quantitative, big-data-driven map of
the cell, describing where each protein
is present, and more importantly, where
their functions are.

Acknowledgments
We would like to thank Carl Wu for prompting this

manuscript through his questions at the Gordon
Research Conference on Chromatin Structure and

Function, Les Diablerets, Switzerland, 2016. This work

was supported by the Wellcome Trust (grants

103139, 092076, 108504).

1Wellcome Trust Centre for Cell Biology, University of

Edinburgh, Edinburgh EH9 3BF, UK
2Chair of Bioanalytics, Institute of Biotechnology,

Technische Universität Berlin, 13355 Berlin, Germany

*Correspondence: Juri.Rappsilber@ed.ac.uk

(J. Rappsilber).

http://dx.doi.org/10.1016/j.tcb.2016.08.012

References
1. Ohta, S. et al. (2010) The protein composition of mitotic

chromosomes determined using multiclassifier combinato-
rial proteomics. Cell 142, 810–821

2. van Bemmel, J.G. et al. (2013) A network model of the
molecular organization of chromatin in Drosophila. Mol. Cell
49, 759–771

3. Kustatscher, G. et al. (2014) Proteomics of a fuzzy organ-
elle: interphase chromatin. EMBO J. 33, 648–664

4. Boisvert, F-M. et al. (2010) A quantitative proteomics
analysis of subcellular proteome localization and changes
induced by DNA damage. Mol. Cell. Proteomics 9,
457–470

5. Marques, A.C. et al. (2008) Functional diversification of
duplicate genes through subcellular adaptation of encoded
proteins. Genome Biol. 9, R54
Tre
6. Christoforou, A. et al. (2016) A draft map of the mouse
pluripotent stem cell spatial proteome. Nat. Commun. 7,
8992

7. Pagliarini, D.J. et al. (2008) A mitochondrial protein com-
pendium elucidates complex I disease biology. Cell 134,
112–123

8. Kustatscher, G. et al. (2016) Multiclassifier combinatorial
proteomics of organelle shadows at the example of mito-
chondria in chromatin data. Proteomics 16, 393–401

9. Montano-Gutierrez, L.F. et al. (2016) Nano random forests
to mine protein complexes and their relationships in quan-
titative proteomics data. bioRxiv Published online May 1,
2016. http://dx.doi.org/10.1101/050302

10. Ohta, S. et al. (2016) Proteomics analysis with a nano
random forest approach reveals novel functional interac-
tions regulated by SMC complexes on mitotic chromo-
somes. Mol. Cell. Proteomics 15, 2802–2818

11. Alabert, C. et al. (2014) Nascent chromatin capture prote-
omics determines chromatin dynamics during DNA repli-
cation and identifies unknown fork components. Nat. Cell
Biol. 16, 281–293

12. Jordan, M.I. and Mitchell, T.M. (2015) Machine learning:
trends, perspectives, and prospects. Science 349, 255–
260

13. Breckels, L.M. et al. (2016) Learning from heterogeneous
data sources: an application in spatial proteomics. PLoS
Comput. Biol. 12, e1004920

14. Borner, G.H.H. et al. (2012) Multivariate proteomic profiling
identifies novel accessory proteins of coated vesicles. J.
Cell Biol. 197, 141–160

15. Dunkley, T.P.J. et al. (2004) Localization of organelle pro-
teins by isotope tagging (LOPIT). Mol. Cell. Proteomics 3,
1128–1134
nds in Cell Biology, November 2016, Vol. 26, No. 11 803

mailto:Juri.Rappsilber@ed.ac.uk
http://dx.doi.org/10.1016/j.tcb.2016.08.012
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0080
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0080
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0080
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0085
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0085
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0085
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0090
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0090
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0095
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0095
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0095
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0095
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0100
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0100
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0100
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0105
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0105
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0105
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0110
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0110
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0110
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0115
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0115
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0115
http://dx.doi.org/10.1101/050302
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0125
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0125
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0125
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0125
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0130
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0130
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0130
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0130
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0135
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0135
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0135
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0140
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0140
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0140
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0145
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0145
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0145
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0150
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0150
http://refhub.elsevier.com/S0962-8924(16)30130-1/sbref0150

	Alfred L. Goldberg: Probing the Proteasome<?
	What was known about proteasomes at the time of writing this review?
	How has the use of proteasome inhibitors evolved since this review?
	What is the future of this tool in cell biology or other fields?
	What characteristics do you feel make a review valuable?
	What advice would you offer researchers who are writing a review?
	References

	Donald E. Ingber: Engineering the Culture Microenvironment
	What was known about 3D culture techniques at the time of writing this review?
	How has the use of 3D culture models evolved since this review?
	What is the future of these models in biological research?
	What characteristics do you feel make a review valuable?
	What advice would you offer researchers who are writing a review?
	References

	Interdisciplinary Team Science in Cell Biology
	Resources
	References

	3D Biomimetic Cultures: The Next Platform for Cell Biology
	Compositional Dynamics: Defining the Fuzzy Cell
	The Fuzzy Cell
	A Potential Solution: Adding Function to Localization
	Application of Compartment Probabilities in Targeted Studies
	Concluding Remarks and Future Directions
	Acknowledgments
	References


