
Research Article
Quantitative Assessment of the Physiological
Parameters Influencing QT Interval Response to Medication:
Application of Computational Intelligence Tools

Sebastian Polak ,1,2 BarbaraWiVniowska,1 Aleksander Mendyk ,3

Adam PacBawski,3 and Jakub Szlwk 3

1Department of Pharmacoepidemiology and Pharmacoeconomics and Department of Social Pharmacy,
Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
2Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
3Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9 St,
30-688 Kraków, Poland

Correspondence should be addressed to Jakub Szlęk; j.szlek@uj.edu.pl

Received 20 September 2017; Accepted 3 December 2017; Published 4 January 2018

Academic Editor: David A. Winkler

Copyright © 2018 Sebastian Polak et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human heart electrophysiology is complex biological phenomenon, which is indirectly assessed by the measured ECG signal.
ECG trace is further analyzed to derive interpretable surrogates including QT interval, QRS complex, PR interval, and T wave
morphology. QT interval and its modification are the most commonly used surrogates of the drug triggered arrhythmia, but it
is known that the QT interval itself is determined by other nondrug related parameters, physiological and pathological. In the
current study, we used the computational intelligence algorithms to analyze correlations between various simulated physiological
parameters and QT interval. Terfenadine given concomitantly with 8 enzymatic inhibitors was used as an example. The equation
developed with the use of genetic programming technique leads to general reasoning about the changes in the prolonged QT. For
small changes of the QT interval, the drug-related IKr and ICa currents inhibition potentials have major impact. The physiological
parameters such as body surface area, potassium, sodium, and calcium ions concentrations are negligible. The influence of the
physiological variables increases gradually with the more pronounced changes in QT. As the significant QT prolongation is
associated with the drugs triggered arrhythmia risk, analysis of the role of physiological parameters influencing ECG seems to
be advisable.

1. Introduction

Human heart electrophysiology is a complex biological phe-
nomenon, which is indirectly assessed by the measured ECG
(electrocardiography) signal and its derivatives. The latter,
includingQT interval, QRS complex, PR interval, and Twave
morphology information, are main noninvasive clinical risk
markers determining patent’s cardiac risk and are widely used
in clinical practice for the diagnosis of cardiac disorders.
Analysis of the electrographic biomarkers modification is
also important from the drug development point of view,
namely, assessment of drug cardiovascular safety, as it allows
for quantification of drugs’ and drugs candidates’ influence

on the human heart electrophysiology [1]. This is possible
because of the well-known correlation between the drugs
triggered ionic currents disruption, ECG modification, and
subsequent increase in the risk of arrhythmia occurrence [2].
Probably the best established and widely used predictor of
the arrhythmia risk is theQT interval prolongation compared
to the baseline (delta QT or dQT) [3]. Despite the criticism
that the specificity of this proarrhythmia risk surrogate is
not ideal, it is still commonly used in the drug development
process as well as in the clinic.

The surface ECG is a representation of the electrical
activity of cardiomyocytes. The QT interval reflects the ven-
tricular action potential duration (APD)which is determined
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by the flow of ionic currents across the cell membrane.
The ionic currents underlying ventricular depolarization and
repolarization can be disrupted by many drugs that block
ion channels or ion channels trafficking. Although inhibition
of the hERG channel (human ether-a-go-go-related gene)
regulating the major repolarizing current in the heart, IKr
(delayed inward potassium current), is the most common
mechanism of QT prolongation [4, 5], it can also be caused
by the drug triggered inhibition of other channels, that is,
potassium (Kv7.1), sodium (Nav1.5), or calcium (Cav1.2) [6–
9].

It is also known that, apart from the drug of interest,
there are other parameters influencing QT interval duration.
They can be divided into external (e.g., other medications
taken concomitantly, which may potentiate cardiac risk by
influencing the pharmacokinetics (PK) of QT-prolonging
drug leading to the increase in its concentration or by the
additive impact on ion channels), and internal (physiological
and pathological) parameters.

The current study aimed to analyze the data frommultiple
virtual clinical trials simulated with the use of the biophysi-
cally detailed model of human cardiac cells physiology. The
endpoint of interest was QT interval length, and the ana-
lyzed independent parameters covered external and internal
parameters.

2. Materials and Methods

2.1. Data Set. Population of virtual patients exposed to
terfenadine alone or in combination with various metabolic
inhibitors (clarithromycin, erythromycin, itraconazole, keto-
conazole, fluconazole, fluoxetine, and paroxetine) during
the simulated clinical trials was used to analyze factors
influencing the observed inter-individual variability [10–16].
Simcyp (version 14.1) platform was used for the PK simula-
tions. Electrophysiological response to drug was simulated
in ten Tusscher-Noble-Noble-Panfilov human ventricular
cardiomyocyte model [17] implemented in Cardiac Safety
Simulator� (CSS v2.0, Certara USA, Inc.). The modeling
procedure was described in detail in the recently published
paper [18]. In brief, seven clinical studies focused on the
electrophysiological consequences of the drug-drug interac-
tions of terfenadine were mimicked in silico with the use
of mechanistic models describing drugs pharmacokinetics
and pharmacodynamics (PD).The inhibitors interactingwith
terfenadine covered strong, moderate, and weak inhibitors
of CYP3A4-dependent terfenadine metabolism and strong
CYP2D6 inhibitors.The perpetrators have diverse propensity
to block hERG channel and are associated with QT pro-
longation and TdP risk. Fluoxetine and paroxetine are also
known to block other ionic currents influencing cardiomy-
ocyte electrophysiology, that is, ICaL (late calcium current,
Cav1.2) and ICaL (late calcium current, Cav1.2) with INa
(peak sodium current, Nav1.5), respectively. The endpoint of
interest was QTc modification: a QT interval prolongation
(as compared against a baseline), corrected for the heart
rate according to the Fridericia equation [19]. Developed
PK model enabled both generation of individual patient
data (drugs’ time-concentration profiles with corresponding

values of physiological parameters influencing PK, e.g., CYP
abundance) and simulation of individual pseudoECG signals
dependent on i.a. age, gender, and heart parameters.

A set of 48 factors influencing the obtained differences
in QTc values were analyzed. This included human related
parameters (demographic, anatomical, and physiological),
drug-related parameters (inhibition values of four main
cardiac ionic currents), and study-dependent parameters
(time of the day when the drug was taken). All of the above-
mentioned parameters were generatedwith the use of Simcyp
Simulator. The final data set consisted of 10,360 records
representing QT interval durations for 63 patients taking
terfenadine alone or with the concomitant drug in different
time points of clinical studies [18].The final data set consisted
of 10,360 records and its summary is shown in Table 1.

Then the data set was preprocessed to overcome several
potential pitfalls:

(i) data set was split according to the 8-fold cross-
validation scheme, in each fold the data belonging
to the particular metabolic inhibitors was excluded;
as a consequence the developed model was forced to
predict the dQTc of the unknown combination of the
terfenadine-drug interaction (noted as “8cv”), which
mimics the real-life application for the unknown
combination,

(ii) noise addition to prevent models from overfitting,
(iii) noised data records were produced numerically with
±5% amplitude for each variable value and two times
more records number,

(iv) linear scaling of the data in the range of ⟨0.1; 0.9⟩
was applied to match nonlinear activation functions
of ANNs (Artificial Neural Networks).

2.2. Modeling. Modeling was carried out with the use of
computational intelligence tools available as packages in the
Open Source statistical environment 𝑅 [20], namely, fscaret
[21], monmlp (Monotonic Artificial Neural Networks) [22],
Cubist [23], randomForest (RF, Random Forest) [24], earth
(MARS, Multivariate Adaptive Regression Splines) [25], rgp
(Genetic Programming and Symbolic Regression) [26], and
nloptr [27]. All models were of multiple-input-single-output
(MISO) type. The whole procedure was carried out in the
following steps (Figure 1):

(i) reduction of the input vector based on feature ranking
produced by fscaret,

(ii) selection of the input vector yielding the lowest
error among four types of models, namely: monmlp,
Cubist, RF, and MARS,

(iii) development of the mathematical equations with the
use of the GP and symbolic regression based on the
selected input vector,

(iv) selection of the mathematical equation, optimization
of its parameters and analysis of its variables on the
differences in QTc values to create general conclu-
sions regarding the terfenadine-drugs interaction.
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Table 1: The summary of the data set.

Input number Labels Min 1st quantile Median Mean 3rd quantile Max
(1) CYP1A2 0 0 0 695159 0 11963910
(2) CYP2A6 0 0 0 0 0 0
(3) CYP2B6 0 0 0 86155 0 9129915
(4) CYP2C8 0 0 0 0 0 0
(5) CYP2C9 0 0 0 347459 0 16469809
(6) CYP2C18 0 0 0 0 0 0
(7) CYP2C19 0 0 0 179400 0 5511004
(8) CYP2D6 0 252231 399478 506695 676312 2185456
(9) CYP2E1 0 0 0 0 0 0
(10) CYP2J2 0 0 0 0 0 0
(11) CYP3A4 1552693 5716140 8459929 9833766 12016781 32307836
(12) CYP3A5 0 0 0 272853 0 13728653
(13) CYP3A7 0 0 0 0 0 0
(14) Gut CYP2C9 8210 1430 10037.216 10089.122 10148.391 10388.032
(15) Gut CYP2C19 0 0 0 299 0 7330
(16) Gut CYP2D6 0 484.7 674.4 818.4 994.5 3156
(17) Gut CYP2J2 0 0 0 0 0 0
(18) Gut CYP3A4 11214 35540 55975 62911 80376 217447
(19) Gut CYP3A5 0 0 0 807.2 0 55106.1
(20) Sex Code 0 1 1 0.7718 1 1
(21) Age 19 25 28 28.39 32 52
(22) Weight 44.52 69.43 78.31 79.04 89.17 127
(23) Height 149.4 168.6 174.3 173.6 179.7 200.5
(24) BSA 1.422 1.802 1.937 1.929 2.048 2.432
(25) Brain Weight 1040 1230 1354 1388 1524 2057
(26) Kidney Weight 164.1 269.1 325 329.1 382.6 752
(27) Liver Weight 1052 1544 1700 1740 1938 2699
(28) BMI 16.13 22.87 26.22 26.19 28.8 45.31
(29) Cardiac Output 249.7 315.1 339.4 337.5 357.2 424.5
(30) Haematocrit 32.12 38.99 41.73 41.46 43.68 51.05
(31) HSA 35.11 42.88 45.74 45.75 48.57 58.08
(32) AGP 0.3971 0.7137 0.8035 0.7982 0.8851 1.207
(33) Serum Creatinine 33.64 62.09 73.26 72.61 81.2 122.95
(34) GFR 70.97 112.12 129.74 133.34 153.5 243.16
(35) Renal Function 0.59 0.92 1.079 1.089 1.271 1.87
(36) Cardiomyocyte area 652.5 1384.3 1701.1 1824.4 2146.8 5353.7
(37) Cardiomyocyte volume 1852 4494 5630 6217 7346 20339
(38) Sarcoplasmic reticulum volume 111.1 269.6 337.8 373 440.7 1220.3
(39) Capacitance 17.33 36.77 45.18 48.46 57.02 142.2
(40) String length 0.8772 1.1814 1.293 1.2878 1.4064 1.8619
(41) K 3.053 4.079 4.268 4.261 4.451 5.363
(42) Na 135.1 139.6 140.4 140.3 141.1 143.3
(43) Ca2 2.007 2.237 2.388 2.394 2.546 2.789
(44) IKr inhibition 0.0047 0.0484 0.1172 0.2378 0.3841 1
(45) IKs inhibition 0 1𝐸 − 04 1𝐸 − 04 0.0002684 0.0003 0.008
(46) INa inhibition 0 0.0003 0.0007 0.001493 0.0016 0.0353
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Table 1: Continued.

Input number Labels Min 1st quantile Median Mean 3rd quantile Max
(47) ICa inhibition 0 0.0009 0.0022 0.01782 0.0061 0.5217
(48) Stimulation Period 432 735 825 836.1 925 1570
Output dQTc −15.707 1.713 6.591 10.572 14.69 78.142
Where CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP3A7, corresponding
patients’ abundance of cytochromes in the liver [pmol/mg of protein]; Gut CYP2C9, Gut CYP2C19, Gut CYP2D6, Gut CYP2J2, Gut CYP3A4, Gut CYP3A5,
corresponding patients’ abundance of cytochromes in the gut [nmol/small intestine]; Sex Code, patients’ gender [male = 0/female = 1]; Age, patients’
age [years]; Weight, patients’ weight [kg]; Height, patients’ height [cm]; BSA, patients’ body surface area [m2]; Brain Weight, patients’ brain weight [g];
Kidney Weight, patients’ kidney weight [g]; Liver Weight, patients’ liver weight [g]; BMI, patients’ body mass index; Cardiac Output, patients’ cardiac
output [L/h]; Haematocrit, patients’ specific haematocrit [%]; HSA, AGP, patients’ specific level of human serum albumin and alfa-acid glycoproteins
in the plasma [g/L]; Serum Creatinine, patients’ specific creatinine level [𝜇mol/L]; GFR, the Glomerular Filtration Rates of the simulated individual
(mL/min/1.73m2); Renal Function, the ratio of individual’s GFR to that of the normal value of 120mL/min/1.73m2 for male or 130mL/min/1.73m2 for
female; Cardiomyocyte area, patients’ specific area of the cardiac myocyte [𝜇m2]; Cardiomyocyte volume, patients’ specific volume of the cardiac myocyte
[𝜇m3]; Sarcoplasmic reticulum volume, patients’ specific volume of the cardiac myocyte sarcoplasmic reticulum [𝜇m3]; Capacitance, patients’ specific cardiac
myocyte electric capacitance [pF]; String length, patients’ specific thickness of the left heart wall [cm]; K, Na, Ca2, patients’ specific concentration of ions in
plasma [mM]; IKr inhibition, IKs inhibition, INa inhibition, ICa inhibition, patients’ and drugs’ specific ionic current inhibition; Stimulation Period, time
gaps between stimulaitons [ms]; dQTc, patients’ QTc interval modification as compared against baseline.

Feature ranking obtained with the use of fscaret package
of the R environment was employed to reduce the number
of variables in the data set. The main advantages of the
package are the vast number of available models for feature
ranking creation, automation, and models verification based
on the results obtained in earlier research, where the number
of input variables was successfully reduced to 2% or 5% of
the original vector [28, 29]. The fscaret work cycle involves
training models, scaling each one according to the global
performance, namely, mean squared error (MSE) or root
mean squared error (RMSE), and summarizing results into
the feature ranking. The main settings of the package were
as follows: regression mode was turned on, time-limiting
option (myTimeLimit) of single model development was set
to 12 hours, and if possible all available functions were used.
After the feature ranking was produced the cut-off points,
which were limiting the number of the inputs, were selected
according to the criteria that the decrease of the input’s
importance is more than 5% of its sum.

Both linear and nonlinear methods such as Cubist,
monmlp, RF, and MARS were selected for screening the
input vector, mainly due to their low computational cost and
effective generalization ability in the regression problems.

An𝑅 environment tree basedmodeling approach utilized
for the study was Cubist [23]. As a result of its application,
the tree which consists of a set of linear models for each
node is obtained. On a given training data a tree is generated
which combines IF-THEN rules and linear regressionmodels
[30]. A maximum number of rules was fixed at 100, and the
number of committees varied from 1 to 100.

Another tree based algorithm used was a Random Forest
(RF) [31]. It is an ensemble learning method where multiple
tree predictors are built on a randomly sampled vector of
variables, and then they are merged to form one model. The
sample distribution is kept same for all the trees [24]. The
number of terminal nodes and trees in the single model
varied from 10 to 1000. Random variables sampled for each
tree were established from one to the maximum number of
variables in an input vector.
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Figure 1: Workflow diagram presenting modeling methodology.

Monotonic multilayer perceptrons (monmlp [22]) are
generalized feed forward neural networks which are trained
using nonlinear Newtonian-type minimization algorithm.
The advantage of monmlp package is its ability to build
models aggregated in expert committees. All created models
were composed of two hidden layers, the number of neurons
ranged from 4 to 50, and all models consisted of 10 ensemble
networks. As a transition function hiperbolic tangent and
linear function were applied to hidden and output layer,
respectively. The number of iterations varied from 10 to 1000.

Multivariate adaptive regression splines (MARS) is an
analysis introduced by Friedman in 1991 [32]. The model is
a weighted sum of constant and basic functions multiplied
by coefficients. The basic function in MARS is the hinge
function. The function max(0, 𝑋 − constant) returns value
𝑋 − const if 𝑋 is greater than a constant, or 0 otherwise.
Themodel is built in two steps. First, the model development
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Table 2: The results (NRMSE) of four algorithms applied on the eight input vectors. Corresponding coefficients of determination (𝑅2) are
shown in brackets.

Input vector Cubist monmlp RF MARS
9in RMSE 3.8 (0.93) 4.0 (0.92) 6.1 (0.85) 5.8 (0.79)
10in MSE 3.9 (0.93) 3.9 (0.93) 6.0 (0.83) 6.0 (0.77)
13in MSE 3.9 (0.93) 3.9 (0.93) 6.0 (0.83) 5.9 (0.78)
14in RMSE 4.0 (0.93) 3.9 (0.93) 6.1 (0.82) 5.8 (0.78)
18in MSE 3.7 (0.94) 4.0 (0.93) 6.2 (0.80) 5.8 (0.78)
19in RMSE 3.7 (0.94) 4.0 (0.93) 6.1 (0.81) 5.8 (0.78)
23in MSE 3.8 (0.93) 4.0 (0.93) 6.0 (0.84) 5.8 (0.78)
23in RMSE 3.8 (0.93) 4.0 (0.93) 6.0 (0.85) 5.8 (0.78)

starts from a single intercept and is extended iteratively by
adding pairs of hinge functions. This process leads to model
overfitting. Then the basic functions are removed from the
model to improve generalization ability of the final model
[33].Earth package for R environmentwas used in the present
work as an example of the multivariate adaptive regression
splines method [25].

The goodness of fit was expressed as the normalized root
mean squared error (NRMSE) (see (1)) and the coefficient of
determination (𝑅2).

Equation (1) is as follows:

NRMSE =
√(∑𝑛𝑖=1 (pred𝑖 − obs𝑖)

2) /𝑛
𝑋max − 𝑋min

× 100, (1)

where obs𝑖 and pred𝑖 are the observed and predicted values,
respectively, 𝑖 is the data record number, 𝑛 is the total
number of records, and𝑋max and𝑋min are themaximum and
minimum observed values of dQTc.

The genetic programming (GP), in opposite to other
algorithms, produces fully transparent models (white-box)
which can be expressed in a form of the mathematical
equations. Apart from clear mathematical formulation of
the model, GP also offers potential of automatic variables
selection, thus further narrowing down the most important
variables set obtained by fscaret. The GP and the symbolic
regressionmode available in the rgp package [26] of theOpen
Source statistical environment 𝑅 [20] were used in order to
develop equations. Two heuristic strategies available as rgp
options were applied concurrently:

(i) makeAgeFitnessComplexityParetoGpSearchHeuris-
tic()

(ii) makeArchiveBasedParetoTournamentSearchHeuris-
tic()

For both strategies all parameters were set to defaults.
Genetic programming (GP) is a method of automatic

computer program creation. Lisp language was chosen as the
main programming language for GP, because of its highly
symbol-oriented structure. Therefore the algorithm was able
to manipulate symbolic expressions to find a solution based
on general problem definition [34].

A symbolic regression, which is based on evolutionary
algorithms, was used during the research. Symbolic regres-
sion is a process of fitting the observed data by amathematical

formula. A chromosome encodes solution, namely, mathe-
matical equation, which is further modified using genetic
algorithms operations like crossover and mutations. The rgp
package of𝑅 environmentwas used in this work [26]. Popula-
tion sizewas set to 100 and a total number of steps in evolution
process were set to 100 million. During the evolution, after
a predefined number of fitness function evaluations (1000
∗ population size) an elite of solutions was tested with 8-
fold cross-validation scheme to produce generalization error.
The adjustable parameters of the equations were randomly
reinitialized and fitted using multivariate optimization pro-
vided by nloptr package [27]. Additionally, a noised data
set based on the whole database was introduced for model
testing in order to determine its stability. The maximum
length of a chromosome, parameter “individualSizeLimit”
of rgp, which defines a maximum degree of complexity of
the solution varied from 10 to 100. The goodness of fit for
evolved solutions during evolution process was assessed with
root mean square error (RMSE). After the modeling step the
resulting equationswere sorted according to their complexity,
number of parameters, and the error obtained on the 8-fold
and noised data. The final model was selected according to
multivariate criterion encompassing minimum complexity,
the number of adjustable parameters, and generalization
error (RMSE).

All scripts utilized in the study are available to download
from “R scripts for multivariate analysis” resource page at
SourceForge.net [35].

Computations were performed on the servers arranged
in the grid structure and working under Linux operating
systems control.

3. Results and Discussion

3.1. Results. The first stage of the research was to reduce
the input vector based on the feature ranking produced by
the fscaret package. According to the feature ranking created
by fscaret, eight reduced input vectors containing 9, 10, 13,
14, 18, 19, and 23 independent variables were selected to
perform modeling with the use of heuristic tools, namely,
monmlp, Cubist, RF, and MARS.The results of the screening
are presented in Table 1. The results obtained using the
computational intelligence tools had an NRMSE of 8cv in a
range from 3.8% to 6.2% (Table 2). The lowest generalization
error was achieved for the model developed with Cubist
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Table 3: Input vector selected for GP modeling.

Orig input number Equation (2) label Label Description
(1) - CYP1A2 Liver CYP1A2 abundance [pmol/mg of protein]
(11) - CYP3A4 Liver CYP3A4 abundance [pmol/mg of protein]
(14) - Gut CYP2C9 Gut CYP2C9 abundance [pmol/mg of protein]
(20) - Sex Code Patients’ gender [male/female]
(22) - Weight Patients’ weight [kg]
(24) 𝑋6 BSA Patients’ body surface area [m2]
(29) - Cardiac Output Patient’s cardiac output [L/h]
(41) 𝑋8 K Patients’ plasma potassium concentration [mM]
(42) 𝑋9 Na Patients’ plasma sodium concentration [mM]
(43) 𝑋10 Ca2 Patients’ plasma calcium concentration [mM]
(44) 𝑋11 IKr inhibition Patients’ and drugs’ specific IKr current inhibition [0–100%]
(45) 𝑋12 IKs inhibition Patients’ and drugs’ specific IKs current inhibition [0–100%]
(46) 𝑋13 INa inhibition Patients’ and drugs’ specific INa current inhibition [0–100%]
(47) 𝑋14 ICa inhibition Patients’ and drugs’ specific ICa current inhibition [0–100%]
(49) dQTc dQTc Output (QTc interval modification as compared to baseline)

algorithm trained on a vector with 18 inputs. The results
obtained in this step indicate that there was a good potential
for implementation of GP models.

Within this list, a vector of 14 inputs was selected for GP
computations as it contained all crucial parameters related
to the physiology (Table 3). Therefore expert knowledge
was combined with the automated feature ranking tool for
final crucial variables set. Further feature elimination was
performed during the GP modeling and will be described
later in the text. The most important parameters for dQTc
included gender, weight, body surface area, cardiac output,
CYPs abundance, electrolytes concentrations, and ionic cur-
rents inhibition (Table 3).

Equation (see (2)) derived from a data set consisting of
14 inputs (Table 3) yielded a generalization error in eightfold
cross-validation (NRMSE) of 3.97% and coefficient of deter-
mination (𝑅2) of 0.923. The results were comparable to the
previously developed best model (Cubist, 3.7%). Therefore it
was considered as not overfitted.The equation was character-
ized by 4 parameters (see (2)).Moreover, during the evolution
process, the GP algorithm further reduced the number of
necessary variables by eliminating input numbers: 1, 11, 14,
20, 22, and 29 (Table 3). The simplified mathematical model
retained eight input variables, yet its predictive performance
was comparable to the more complex Cubist model.

Equation (2) is as follows:

dQTc = sin (𝑋14 ⋅ 𝑋9 + 𝐶2 ⋅ 𝑋13 ⋅ 𝑋14 ⋅ 𝑋8
⋅ sin ((𝑋6 + 𝑋14) ⋅ 𝑋8) + sin (𝐶1) ⋅ 𝑋12 ⋅ 𝑋214 + 𝑋11

⋅ 𝑋14) + sin (𝑒𝐶4) ⋅ 𝑋14 ⋅ 𝑋9 + 𝑋11 ⋅ 𝑒𝑒
𝑋11 + 𝐶3 ⋅ 𝑋11

+ 2 ⋅ sin (𝑋210) ,

(2)

where dQTc is the difference in QTc value and 𝑋6, 𝑋8, 𝑋9,
𝑋10, 𝑋11, 𝑋12, 𝑋13, and 𝑋14 correspond to the labels in
Table 2. Based on the optimization on the whole data set the
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Figure 2: Predicted versus observed values for dQTc calculated
according to (2).

adjustable parameters of (2) were as follows:𝐶1 = −14.09525,
𝐶2 = 7.706551, 𝐶3 = 46.69071192, and 𝐶4 = 4.587024.
Figure 2 shows predicted versus observed values for dQTc
calculated according to (2).

To analyze the influence of each variable of (2) on the
dQTc a response analysis was performed. Each time a variable
was chosen and its values were iteratively changed in a range
fromminimum tomaximum as in the data set.The values for
the remaining variables were the first, the second, the third,
the fourth, and the fifth quantile (0, 25, 50, 75, and 100%). As
a result, the plots were drawn for each variable versus dQTc.
The plots are presented in Figures 3–7.
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Figure 3: Changes in dQTc calculated according to (2), where the rest variables are of 1st quantile (0%). BSA = 1.422, K = 3.053, Na = 135.144,
Ca2 = 2.007, IKr inhibition = 0.005, IKs inhibition = 0, INa inhibition = 0, and ICa inhibition = 0.
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Figure 4: Changes in dQTc calculated according to (2), where the rest variables are of 2nd quantile (25%). BSA = 1.802, K = 4.079, Na =
139.578, Ca2 = 2.237, IKr inhibition = 0.048, IKs inhibition = 0, INa inhibition = 0, and ICa inhibition = 0.001.

The model was tested on the data extrapolated for two
most pronounced channel inhibition effects, namely, IKr and
ICa. The inhibition values for both channels were sampled
in the range 0 to 1 with an increment of 0.01 setting all the
remaining variables on their median values. The resulting

dQTcF values were plotted as one channel versus another
matching their inhibition values.

There is a strong linear relationship between the obtained
results allowing concluding on the strengths of the observed
effects. The same extent of ICa inhibition produces roughly
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Figure 5: Changes in dQTc calculated according to (2), where the rest variables are of 3rd quantile (50%). BSA = 1.937, K = 4.268, Na =
140.445, Ca2 = 2.388, IKr inhibition = 0.117, IKs inhibition = 0, INa inhibition = 0.001, and ICa inhibition = 0.002.
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Figure 6: Changes in dQTc calculated according to (2), where the rest variables are of 4th quantile (75%). BSA = 2.048, K = 4.451, Na =
141.094, Ca2 = 2.546, IKr inhibition = 0.384, IKs inhibition = 0, INa inhibition = 0.002, and ICa inhibition = 0.006.
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Figure 7: Changes in dQTc calculated according to (2), where the rest variables are of 5th quantile (100%). BSA = 2.432, K = 5.363, Na =
143.332, Ca2 = 2.789, IKr inhibition = 1, IKs inhibition = 0.008, INa inhibition = 0.035, and ICa inhibition = 0.522.

an effect of twice the magnitude of the IKr inhibition. Since
both effects are contradictory, it is important information
for future drug development in regard to the safety of the
therapy.

3.2. Discussion. The applied methodology, which is an adap-
tation of the CRISP-DM protocol, confirmed the high quality
of the developedmodel. Combination of feature selection tool
(fscaret) and fast modeling techniques (Cubist, monmlp, RF,
and MARS) allowed reducing the input vector by more than
50% of variables. Moreover, the obtained errors below 6.3%
in the 8-fold cross-validation protocol lead to the conclusion
that the developed models have not only the interpolation
but also the extrapolation ability. Additionally, the equation
development process and its selection assure the high quality
of the GP model.

Further analysis of the equation developed by the GP
technique leads to general reasoning about the changes in
dQTc. It is clearly depicted that when dependent variables
have small values, from the first and the second quantile
(Figures 3 and 4), the differences in QTc are influenced by
the IKr and ICa inhibition potentials. Moreover, the phys-
iological parameters such as body surface area, potassium,
sodium, and calcium ions concentrations have very little or
none impact on the dQTc. The influence of these variables
increases gradually from quantile third to fourth (Figures 5
and 6) and the highest changes in dQTc are observed when
independent variables are in the fifth quantile (Figure 7).
Within the data range IKs and INa inhibition currents have
limited impact on the differences in QTc values (Figures
3–7). The influence of the physiological variables increases

gradually with the more pronounced changes in QT. As
the significant QT prolongation is associated with the drugs
triggered arrhythmia risk, analysis of the role of physiological
parameters influencing ECG seems to be advisable.

It is also worth noting that all the above-presented results,
except the data set, were obtained with the use of the
Open Source software, namely, 𝑅 statistical environment and
external packages. This study is an example of how Open
Source might be exploited to create sophisticated models and
modeling strategies. Use of these tools is worth consideration
to provide reliable and reproducible solutions at the low cost
of their development.

4. Conclusions

In this work, we have shown how data processing and
exploration with various computational intelligence tech-
niques reveal hidden relationships suitable for identification
of physical mechanisms relevant to the electrophysiological
properties of the human cardiomyocyte. Moreover, empirical
development of mathematical equations provides a conve-
nient way to the formulation of scientific hypotheses both
of the qualitative and quantitative nature. The latter was
demonstrated i.a. with estimation of the relative impact of the
IKr versus ICa inhibition in their antagonist influence on the
QT prolongation (Figure 8).
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[28] B. Wiśniowska, A. Mendyk, J. Szlek, M. Kołaczkowski, and S.
Polak, “Enhanced QSAR models for drug-triggered inhibition
of the main cardiac ion currents,” Journal of Applied Toxicology,
vol. 35, no. 9, pp. 1030–1039, 2015.

[29] J. Szlęk, A. Pacławski, R. Lau, R. Jachowicz, P. Kazemi, and A.
Mendyk, “Empirical search for factors affecting mean particle
size of PLGAmicrospheres containing macromolecular drugs,”
Computer Methods and Programs in Biomedicine, vol. 134, pp.
137–147, 2016.

[30] J. R.Quinlan, “Learningwith continuous classes,” inProceedings
of the 5th Australian Joint Conference on Artificial Intelligence,
pp. 343–348, 1992.

[31] A. Liaw and M. Wiener, “Classification and regression by
randomforest,”The R Journal, vol. 2, no. 3, pp. 18–22, 2002.

[32] J. H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[33] W. Zhang and A. T. C. Goh, “Multivariate adaptive regression
splines and neural network models for prediction of pile
drivability,” Geoscience Frontiers, vol. 7, no. 1, pp. 45–52, 2016.

[34] J. R. Koza, Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection, MIT Press, Massachusetts,
Mass, USA, 1992.

[35] “R scripts for multivariate analysis,” 2017, https://sourceforge
.net/projects/rscriptsmultivariate/files/.

http://cran.r-project.org/web/packages/monmlp/index.html
http://cran.r-project.org/web/packages/monmlp/index.html
http://CRAN.R-project.org/package=Cubist
http://CRAN.R-project.org/package=Cubist
http://cran.r-project.org/web/packages/earth/index.html
http://cran.r-project.org/web/packages/earth/index.html
http://CRAN.R-project.org/package=rgp
http://cran.r-project.org/web/packages/nloptr/index.html
http://cran.r-project.org/web/packages/nloptr/index.html
https://sourceforge.net/projects/rscriptsmultivariate/files/
https://sourceforge.net/projects/rscriptsmultivariate/files/

