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Sirt6 overexpression suppresses
senescence and apoptosis of nucleus
pulposus cells by inducing autophagy in a
model of intervertebral disc degeneration
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Abstract
Treatment of intervertebral disc degeneration (IDD) seeks to prevent senescence and death of nucleus pulposus (NP)
cells. Previous studies have shown that sirt6 exerts potent anti-senescent and anti-apoptotic effects in models of age-
related degenerative disease. However, it is not known whether sirt6 protects against IDD. Here, we explored whether
sirt6 influenced IDD. The sirt6 level was reduced in senescent human NP cells. Sirt6 overexpression protected against
apoptosis and both replicative and stress-induced premature senescence. Sirt6 also activated NP cell autophagy both
in vivo and in vitro. 3-methyladenine (3-MA) and chloroquine (CQ)-mediated inhibition of autophagy partially reversed
the anti-senescent and anti-apoptotic effects of sirt6, which regulated the expression of degeneration-associated
proteins. In vivo, sirt6 overexpression attenuated IDD. Together, the data showed that sirt6 attenuated cell senescence,
and reduced apoptosis, by triggering autophagy that ultimately ameliorated IDD. Thus, sirt6 may be a novel
therapeutic target for IDD treatment.

Introduction
Intervertebral disc degeneration (IDD) is an age-related

degenerative disease and the major cause of low back
pain, reducing quality-of-life and creating a large eco-
nomic burden1. Various patient-specific and external
factors, including age, a genetic predisposition, and
mechanical stress, contribute to IDD initiation and

progression2–4. However, the specific molecular mechan-
ism of disease development has not been elucidated and
no effective treatment is available.
The intervertebral disc contains three integrated struc-

tures: the gelatinous inner nucleus pulposus (NP), the
outer annulus fibrosus, and cartilaginous endplates,
facilitating mechanical spinal function. IDD is an abnor-
mal cell-mediated process culminating in structural fail-
ure5,6. Cells of the NP control extracellular matrix (ECM)
metabolism and play a critical role in IDD7. With aging
and degeneration, the number of NP cells decreases,
which is attributable to both cell death and senescence8.
Moreover, increasing evidence shows that prevention of
apoptosis and senescence may ameliorate IDD induced by
factors such as interleukin (IL)-1β and reactive oxygen
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species (ROS). Therefore, studies on NP cell senescence
and apoptosis may allow IDD pathogenesis to be better
understood, and may identify new therapeutic targets.
The sirtuins are a family of NAD+-dependent histone

deacetylases (sirt 1–7), which protect against age-related
diseases, including cancer, neurodegeneration, and car-
diovascular conditions9,10. Sirt6-transgenic mice live
longer than wild-type animals11, and sirt6 −/− mice
exhibit degenerative and metabolic defects reminiscent of
premature aging. In hepatocellular carcinoma cells, sirt6
deacetylates Ku70, blocking the binding thereof to Bax
and reducing apoptosis12. However, to the best of our
knowledge, no study has yet sought a relationship

between sirt6 status, senescence, and apoptosis during
IDD, either in vitro or in vivo.
In the present work, we showed that sirt6 overexpression

ameliorated IDD progression by inhibiting NP cell senes-
cence and stress-induced apoptosis. In vitro, sirt6 countered
IL-1β-induced NP cell senescence and apoptosis, as
revealed using a rat annulus needle puncture model.

Results
Sirt6 level declines in senescent NP cells both in vivo and
in vitro
IDD is strictly age-dependent, and the sirt6 level

declines with aging in many tissues13. Fig. 1a shows that

Fig. 1 Sirt6 level declines in senescent NP cells both in vivo and in vitro. a Immunofluorescence of sirt6 in aging (16 months) group and young
(3 months) group (scale bar: 200 μm). b Immunofluorescence of sirt6 in NP cells that were isolated from aging and young rats (scale bar: 50 μm).
c, d Representative western blots and quantification data of sirt6 in NP cells of each group. e SA-β-gal staining assay was performed in rat NP cells as
treated above (scale bar: 50 μm). f–h Representative western blots and quantification data of p16 and sirt6 in NP cells of each group. Columns
represent mean ± SD. Significant differences between the treatment and control groups are indicated as *P < 0.05, **P < 0.01, ***P < 0.001, n = 5
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sirt6 fluorescence intensity in the NP area was lower in
old rats (16 months) compared with young rats
(3 months). Our immunofluorescence and western blot-
ting data showed that the sirt6 level was lower in second-
passage NP cells from old patients than young patients
(Fig. 1b and c). We also measured sirt6 levels at passages
2, 5, and 15 and evaluated senescence by SA-β-gal activity
and p16 (specific indicators of senescence) level. The SA-
β-gal levels increased as the number of passages rose
(Fig. 1e). Furthermore, sirt6 was downregulated and p16
upregulated in primary NP cultures of rat as the number
of passages increased (replicative senescence) (Fig. 1f–h).
Thus, the Sirt6 level fell as cells entered senescence.

Sirt6 overexpression attenuated replicative senescence of
rat NP cells
We found that sirt6 expression decreased in senescent

NP cells. We thus transfected NP cells with Lenti-sirt6 to
overexpress the sirt6 protein. At passage 15, these cells
exhibited less SA-β-gal activity than control cells (Fig. 2a).
p16 expression was also reduced (Fig. 2b–d), suggesting
that sirt6 played a critical role in NP cell senescence.

Sirt6 overexpression suppressed IL-1β-induced premature
senescence and apoptosis of human NP cells
IDD involves both age-related and stress-induced tissue

damage; cell senescence may be accelerated by stressful
events8. Figure 3a shows that IL-1β significantly increased
the NP cell level of p16, indicating that IL-1β induced

premature senescence, and that this was inhibited by sirt6.
We also measured the levels of Bcl-2, Bax, and cleaved
caspase 3 (markers of apoptosis). Bcl-2 inhibits apoptosis,
Bax is released upon induction of apoptosis, and cleaved
caspase 3 mediates the cleavage of various cellular com-
ponents14,15. Compared with the Lenti-NC group, IL-1β
greatly upregulated the levels of Bax and cleaved caspase
3, but these increases were significantly lower in the
Lenti-sirt6 group. Sirt6 overexpression upregulated pro-
duction of the anti-apoptotic protein Bcl-2 (Fig. 3). Thus,
sirt6 overexpression inhibited IL-1β-induced apoptosis.

Sirt6 overexpression activated human NP cell autophagy
TEM revealed that the numbers of neuronal autopha-

gosomal vacuoles increased after sirt6 transfection, indi-
cating that autophagy was in play (Fig. 4a). The LC3-II/
LC3-I ratio, and the Beclin-1 and P62 levels (markers of
autophagy), were tested via western blot assay. The LC3-
II/LC3-I ratio and the level of Beclin-1 were higher in the
Lenti-sirt6 than the Lenti-NC group, but the level of p62
was lower in the former group (Fig. 4b–f), consistent with
the immunofluorescence data. The Lenti-sirt6 group
showed more accumulation of LC3-positive puncta,
which was the marker of autophagic vacuoles, compared
to Lenti-NC group (Supplementary Figure S2a–c).
Meanwhile, to further confirm this phenomenon, we used
low titer of lenti-sirt6 virus to transfect cells, leading to
uneven transfection distribution (Supplementary Figure
S2d). As shown in Fig. 4g, we noted that the cell that was

Fig. 2 Sirt6 overexpression attenuated replicative senescence of rat NP cells. We passaged NP cells to the 15th generations to detect sirt6 and
p16. a SA-β-gal staining assay was performed in NP cells of each group (scale bar: 50 μm). b–d Representative western blots and quantification data
of p16 and sirt6 in human NP cells of each group; columns represent mean ± SD. Significant differences between the treatment and sham groups are
indicated as **P < 0.01, ***P < 0.001, n = 5
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transfected by lenti-sirt6 had more autophagic vacuoles.
However, the cell that was not transfected by lenti-sirt6
showed lower autophagic vacuoles.
mTOR is a critical regulator of autophagy, which was

induced by a series of molecular events, such as deletion
of biological factors, decrease of intracellular energy, or
amino acid availability, and then transmitted to down-
stream effectors16. The activity of mTOR was measured
via testing the phosphorylation of mTOR. As shown in
Fig. 4b and c, sirt6 overexpression inhibited the phos-
phorylation of mTOR, suggesting that sirt6 regulated the
autophagy via inhibiting the mTOR signaling.

Inhibition of autophagy attenuated the anti-apoptotic
effect of sirt6
To determine whether autophagy was related to the

anti-apoptotic effect of sirt6, NP cells were pretreated
with the classical autophagy inhibitor 3-methyladenine (3-
MA), followed by TUNEL staining. Compared with the
Lenti-NC group, the Lenti-NC+ IL-1β group exhibited a
greater number of apoptotic cells. However, sirt6 over-
expression greatly reduced apoptotic activity, but this
effect was reversed by 3-MA (Fig. 5a and b). Western
blotting showed that the IL-1β-mediated upregulation of
cleaved caspase 3 and Bax was significantly attenuated by
sirt6 overexpression. Combined sirt6 transfection and 3-
MA treatment increased the expression levels of both
cleaved caspase 3 and Bax, and 3-MA significantly
reduced the level of Bcl-2 (Fig. 5c–f). Caspase-3 activity
assay showed that sirt6 overexpression inhibited the IL-

1β-induced activation of caspase-3 activity, which was
reversed by 3-MA (Fig. 5g). To further identify whether
autophagy was involved in the anti-apoptotic effects of
sirt6, chloroquine (CQ), another autophagylysosome
pathway inhibitor, which inhibits autophagosomal and
lysosomal fusion, was used to treated with Lenti-sirt6.
Similarly, CQ abolished the anti-apoptotic sirt6 (Supple-
mentary Figure S2a and b). Together, the results show
that autophagy is essential when sirt6 increases survival.

Sirt6 inhibits stress-induced premature senescence via
autophagy
The cyclin-dependent kinase inhibitors, such as p16, p21,

and p53, were canonical markers of cellular senes-
cence17,18. As shown in Fig. 6, IL-1β significantly upregu-
lated SA-β-gal activity and the radio of p-p53/p53, p21, p16
levels, whereas sirt6 transfection inhibited these effects.
However, inhibition of autophagy with 3-MA abolished the
anti-senescence effects of sirt6. Meanwhile, inhibition of
autophagy with CQ reversed the anti-senescence effects of
sirt6 (Supplementary Figure S2c), further indicating that
sirt6 played a critical role in regulation of stress-induced
premature senescence via autophagy.

Sirt6 regulated the expression levels of degeneration-
associated proteins via autophagy of human NP cells
To explore whether autophagy was associated with

Sirt6-mediated catabolic processes, we measured the
levels of main ECM protein (collagen-II and aggrecan)
and main matrix degrading enzymes (MMP3, MMP13,

Fig. 3 Sirt6 overexpression suppressed IL-1β-induced premature senescence and apoptosis of human NP cells. a–e Representative western
blots and quantification data of p16, cleaved caspase3, Bax, Bcl-2 in NP cells of each group as treated above; columns represent mean ± SD.
Significant differences between the treatment and control groups are indicated as *P < 0.05, **P < 0.01, ***P < 0.001, n = 5
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ADAMT4, and ADAMT5) in human NP cells, using PCR
and immunofluorescence assay. As shown in Fig. 7a–f, IL-
1β greatly reduced the level of messenger RNA (mRNA)
encoding collagen II and aggrecan, but increased the level
of MMP3, MMP13, ADAMT4, and ADAMT5 mRNA.
However, sirt6 attenuated ECM catabolism. These data
were consistent with the immunofluorescence results
(Fig. 7g and h). Of note, all actions of IL-1β were reversed
upon autophagy activation via sirt6 overexpression, as
confirmed by addition of the autophagy inhibitor 3-MA.

Sirt6 overexpression ameliorated puncture-induced IDD
in vivo
The extent of rat IDD was assessed by MRI and

Pfirrmann grading. Figure 8a and b show that, at 8 weeks

after puncture, sirt6 transduction was associated with
higher T2-weighted signal intensities than those of the
control group. The Pfirrmann scores were also sig-
nificantly lower in rats transfected with sirt6 than con-
trols. The transfection efficiency of Lenti-sirt6 (14 days
post transfection) was showed in Supplementary Figure
S3. These data were confirmed by H&E staining (Fig. 8c).
Compared with the Sham+NC (Lenti-NC) group, the
size of the NP in the IDD+NC group was significantly
decreased and the fibrous ring was markedly more irre-
gular (clustered), indicating severe NP cell degeneration.
Lenti-sirt6 transfection significantly alleviated these
degenerative changes (IDD+ Sirt6 group). Importantly,
immunohistochemical staining showed that sirt6 atte-
nuated the expression of cleaved caspase 3 and activated

Fig. 4 Sirt6 overexpression activated human NP cell autophagy. a Transmission electron microscopy showed the autophagosomes (black arrow:
autophagosome) in NP cells after lentivirus transfection. b–f Representative western blots and quantification data of p-mTOR, mTOR, LC3, P62, and
Beclin-1 protein in NP cells of each group; columns represent mean ± SD. Significant differences between the treatment and control groups are
indicated as **P < 0.01, *P < 0.05, n = 5. g Double immunofluorescence of sirt6 (red) and LC3-II (green) in NP cells treated by Lenti-sirt6 (scale bar: 10 μm)
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Fig. 5 Inhibition of autophagy attenuated the anti-apoptotic effect of sirt6. a, b TUNEL assay was performed to assess the apoptosis in NP cells
of each group as treated above (scale bar: 50 μm). c–f Representative western blots and quantification data of cleaved caspase3, Bax, Bcl-2 in NP cells
of each group as treated above. g Caspase3 activity in NP cells of each group. Columns represent mean ± SD. Significant differences between the
treatment and control groups are indicated as *P < 0.05, n = 5
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autophagy in rat disc tissues (Fig. 8d and e), confirming
the in vitro data.

Discussion
Senescence and the associated apoptosis contribute to

the pathological changes characteristic of IDD19. After
chronic prolonged replication, senescence may be a nat-
ural feature of disc aging (replicative senescence). How-
ever, the process may be accelerated by pathological
events including oxidative stress and inflammation
(stress-induced premature senescence)20. Senescence
blocks the cell cycle, reduces cellular viability, and
increases the levels of catabolic cytokines and ECM-
degrading enzymes21,22. During IDD, senescent NP cells
secrete ROS and proinflammatory cytokines (tumor
necrosis factor (TNF)-α, IL-1β, and IL-6), which in turn

accelerate senescence of neighboring cells, increase
inflammation, and trigger apoptosis of intervertebral disc
cells22,23. Chung et al.24 found that telomere extension via
telomerase transduction attenuated premature senescence
of NP cells with recovery of cellular function24. Inhibition
of NP cell apoptosis by hBMP-7, TGFβ1, sirt1, and several
small-molecule drugs such as metformin ameliorated disc
degeneration25–27. Anti-senescence and anti-apoptosis
therapies inhibit IDD.
Sirt6, a member of the sirtuin family of histone deace-

tylases, exert therapeutic effects in many cellular pro-
cesses including inflammation, apoptosis, aging,
metabolism, and stress-resistance. Sirt6 deficiency triggers
cellular senescence and apoptosis28. Cardus et al.29 found
that sirt6 protected endothelial cells from telomere and
DNA damage, preventing the onset of premature

Fig. 6 Sirt6 inhibits stress-induced premature senescence via autophagy. a SA-β-gal staining assay was performed in NP cells of each group as
treated above (scale bar: 50 μm). b–e Representative western blots and quantification data of p-p53, p53, p21, and p16 in NP cells of each group as
treated above; columns represent mean ± SD. Significant differences between the treatment and control groups are indicated as *P < 0.05, **P < 0.01,
***P < 0.001, n = 5
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Fig. 7 Sirt6 regulated the expression levels of degeneration-associated proteins via autophagy of human NP cells. a–f PCR assay of
collegan-II, aggrecan, MMP-3, MMP-13, ADAMT4, and ADAMT5 in NP cells of each group as treated above; columns represent mean ± SD. Significant
differences between the treatment and control groups are indicated as *P < 0.05, **P < 0.01, ***P < 0.001, n = 5. g, h Immunofluorescence of collegan-
II and MMP-3 in NP cells of each group as treated above (scale bar: 50 μm)
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Fig. 8 Sirt6 overexpression ameliorated puncture-induced IDD in vivo. a, b T2-weighted MRI and relative Pfirrmann MRI grade scores of a rat
tail with a needle-punctured disc at 8 weeks in each group (white arrows); columns represent mean ± SD. Significant differences between the
treatment and control groups are indicated as *P < 0.05, ***P < 0.001, n = 5. c HE staining of each group. d, e Immunohistochemical staining of
cleaved-caspase3 and LC3-II expression in the disc samples of each group (scale bar: 200 μm)

Chen et al. Cell Death and Disease  (2018) 9:56 Page 9 of 13

Official journal of the Cell Death Differentiation Association



senescence29. Maksin-Matveev et al.30 found that sirt6
overexpression protected cardiomyocytes from the onset
of necrosis/apoptosis following hypoxia. We previously
showed that sirt6 ameliorated osteoarthritis by inhibiting
cellular senescence and ECM degeneration31. Sirt6 pro-
tects NP ECM metabolism by suppressing NF-κB signal-
ing in vitro32. However, any role for sirt6 in the regulation
of NP cell senescence and apoptosis during IDD has not
been previously explored. We found that Sirt6 expression
declined both in aging humans and rat NP cells. We used
p53, p21, p16, and SA-β-gal levels as canonical markers of
cellular senescence. Sirt6 overexpression reduced the
levels of these markers in NP cells undergoing replicative
senescence; Sirt6 suppressed such senescence.
The levels of proinflammatory cytokines, including IL-

1β and TNF-α, increase in aged and degenerative discs of
both animals and humans33,34. Proinflammatory IL-1β is
the most important cytokine in this context, being directly
involved in the secretion of many proinflammatory factors
such as TNF-α and IL-6, in turn increasing the expression
levels of MMPs, disturbing the balance of ECM metabo-
lism, and impairing ECM turnover in intervertebral
discs35. IL-1β induced both apoptosis and premature
senescence of chondrocytes and NP cells36,37. Here, we
used IL-1β to mimic the pathophysiology of IDD in vitro.
IL-1β increased the level of senescence-related proteins
and NP cell apoptosis. As expected, sirt6 overexpression
reduced the expression of senescence-related proteins and
inhibited the SA-β-gal activity induced by IL-1β. More-
over, sirt6 transfection significantly attenuated NP cell
apoptosis. Sirt6 attenuated the cellular stress that induces
premature senescence and apoptosis.
IL-1β induced apoptosis and autophagy in degenerative

human NP cells. Aging degenerative cells exhibited
increased autophagy, which is also a feature of other
degenerative diseases including osteoarthritis, neurode-
generation, and diabetes38–40. Autophagy features cata-
bolism of dysfunctional organelles and proteins to
maintain cellular homeostasis and prevent cellular
stress16. Increasing evidence suggests that autophagy
protects cells from inflammation, oxidative stress, and
endoplasmic reticulum stress41. Autophagy is closely
associated with aging and apoptosis. Autophagy inhibition
with 3-MA abolished the effects of metformin to protect
NP cells against apoptosis and senescence26. Autophagy
mediated the anti-apoptotic effects of sirt1 induced by
nutrient deprivation of human NP cells42. Sirt6 attenuated
cigarette smoke extract-induced premature senescence of
human bronchial epithelial cells by regulating IGF-Akt-
mTOR-induced autophagy43. He et al.44 found that sirt6
played a critical role in protecting against atherosclerosis,
decreasing foam cell formation via enhancing autophagy
flux. Sirt6 induced autophagy, and sirt6 inhibition atte-
nuated the autophagy of neuronal cells under oxidative

stress45. We thus hypothesize that the potent anti-
apoptotic and anti-senescent effects of sirt6 reflect
autophagy activation. We found that sirt6 transfection
activated NP cell autophagy. We then showed that the
classical autophagy inhibitors, 3-MA and CQ, reversed
the therapeutic effects of sirt6. Furthermore, sirt6 over-
expression in NP cells markedly reduced the increase in
MMP3, MMP13, ADAMT4, and ADAMT5 level induced
by IL-1β, enhanced the collagen II and aggrecan expres-
sion reduced by IL-1β, which were reversed by both
autophagy inhibitors (3-MA and CQ), suggesting that the
protective effects of sirt6 were mediated via autophagy.
Moreover, we noted that sirt6 overexpression inhibited
the mTOR signaling, which played a crucial role in reg-
ulating autophagy, indicating sirt6 promoted autophago-
some formation via regulation of mTOR signaling in NP
cells. In addition, we found, in vivo, that sirt6 transfection
enhanced autophagy and suppressed IDD in the annulus
needle puncture model. Thus, the protective role played
by sirt6 during IDD development is attributable, at least in
part, to activation of autophagy in NP cells.
In conclusion, we found that sirt6 played a critical role

in IDD development by attenuating senescence, including
replicative senescence and stress-induced premature
senescence, and inhibits apoptosis in NP cells by reg-
ulating mTOR/autophagy in a model of IDD. Sirt6 may be
a potential target for future therapeutic interventions
seeking to attenuate IDD.

Methods and materials
Reagents and antibodies
Recombinant human IL-1β was obtained from Pepro-

tech (Rocky Hill, NJ, USA). Antibodies against cleaved
caspase 3, LC3, Beclin-1, and p62 were purchased from
Cell Signaling Technology (Beverly, MA, USA). Anti-
bodies against Bax, Bcl-2, matrix metalloproteinase-3
(MMP-3), p21, p-p53 and p53 were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies
against sirt6, P16 and collagen-II were the products of
Abcam (Cambridge, MA, USA). Other reagents were
obtained from Sigma (St. Louis, MO, USA) unless noted
otherwise.

NP cells culture
All human disc tissues were obtained from patients

undergoing elective spinal surgery. The work was given
official approval by the Ethics Committee of the Second
Affiliated Hospital of Wenzhou Medical University. We
obtained written informed consent from patients or
relatives prior to tissue collection. Human and rat NP
cells were isolated as described previously (Supple-
mentary Figure S4)46. The cells were added to six-well
plates at 1× 105 cells per well. After pretreatment (or
not) with Lenti-sirt6 or Lenti-NC (control) viruses, the
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cells were grown with or without addition of IL-1β (10
ng/ml) and autophagy inhibitor 3-methyladenine (3-
MA, 10 μM) or chloroquine (CQ, 100 μM) for 24 h, at
which time the cells were 70–80% confluent. The cells
were then harvested.

Lentivirus transfection
Sirt6 was overexpressed via transfection of Lenti-sirt6

(Invitrogen, Carlsbad, CA, USA). The cells were trans-
fected with Lenti-sirt6 or Lenti-NC at a confluence of
30–50%; >95% of the cells were viable 12 h later. The
medium was then changed, the cells incubated for a fur-
ther 3 days, and passaged. Transfection efficacies were
measured via western blotting.

Senescence analysis
The level of senescence was measured by senescence-

associated β-galactosidase (SA-β-gal) staining kit (Beyotime,
Shanghai, China) according to the instruction. Aging NP
cells showing higher SA-β-gal activity were stained blue.

Western blot analysis
The proteins of NP cells were extracted using radio-

immunoprecipitation buffer containing protease and
phosphatase inhibitors and the protein concentrations
were measured by the bicinchoninic acid method
(Thermo Fisher Scientific, Rockford, IL, USA). Total
proteins were separated via 8–12% (w/v) sodium
dodecyl sulfate polyacrylamide gel electrophoresis and
blotted onto polyvinylidene fluoride membranes (Bio-
Rad, Hercules, CA, USA). After blocking with 5%
bovine serum albumin (BSA), the bands were subse-
quently incubated with primary antibodies (cleaved
caspase 3, p-mTOR, mTOR, LC3, Beclin-1, p62, Bax,
Bcl-2, sirt6, P16, p-p53, p53, p21, and β-actin), followed
by addition of the appropriate secondary antibodies.
Bands were visualized and analyzed using the Chemi-
DicTM XRS+ Imaging System and the Image Lab
3.0 software (Bio-Rad).

Immunofluorescence staining
At 8 weeks after surgery, the disc tissues were embed-

ded in paraffin. Sections (5 μm thick) were cut, depar-
affinized in xylene, and rehydrated in ethanol. And cells
cultured on microscopic glasses and treated as described
above. After fixation in 4% (v/v) paraformaldehyde, NP
cells or tissue sections incubated in 1% (v/v) Triton X-100
for 10 min, blocked with 5% BSA for 30min, and incu-
bated with primary antibodies against sirt6, LC3, cleaved
caspase 3, and collagen II at 4 °C overnight. Appropriate
secondary antibodies were added for 1 h, followed by 4′,6-
diamidino-2-phenylindole (DAPI) staining (7 min). Ima-
ges were captured with the aid of a Nikon ECLIPSE Ti
microscope (Nikon, Japan).

Apoptosis analysis
The terminal deoxynucleotidyl transferase (TdT) dUTP

nick end labeling (TUNEL) staining was used to measure
apoptosis. After fixation in 4% (v/v) paraformaldehyde for
1 h, and incubation with 3% (v/v) H2O2 and 0.1% (v/v)
Triton X-100 for 10min, the cells were stained with a
reagent of the In Situ Cell Death Detection Kit (Roche
Molecular Biochemicals, Biospace, USA) and DAPI, and
microscopically observed. Caspase-3 activity was mea-
sured using a Caspase-3 Activity Assay Kit (Cell Signaling
Technology, Beverly, USA).

RT-PCR
The total RNA of cells was extracted using the TRIzol

method. The complementary DNA was synthetized and
then amplificated using the PrimeScript-RT reagent kit
and SYBR Premix Ex Taq (Sangon). The level of target
gene was analyzed using the DDCt method, as
described47.

Transmission electron microscopy
After fixation in 2.5% (w/v) glutaraldehyde overnight

and post-fixed in 2% (w/v) osmium tetroxide, the NP cells
were stained with 2% (w/v) uranyl acetate, and dehydrated
in acetone. Semi-thin sectioning and toluidine blue
staining followed. Images were captured with the aid of a
Hitachi transmission electron microscope.

Annulus needle puncture and drug treatment
Adult male Sprague Dawley rats (200–220 g; Animal

Center of Chinese Academy of Sciences, Shanghai, China)
were anaesthetized via injection of 10% (w/v) chloral
hydrate (3.6 mL/kg, ip) and randomly divided into three
groups: SHAM+ Lenti-NC, IDD+ Lenti-SIRT6, and
IDD+ Lenti-NC. Using aseptic techniques, a small
sagittal skin incision was performed to expose the Co7/8
disc, which was then punctured with a 30-gauge syringe
needle as previously described48. The needle was inserted
into the NP of tail (from the dorsal side to ventral side),
parallel to the endplate. Before extraction, the needle was
allowed to penetrate either the entire disc or the disc to a
depth of 5 mm, was rotated through 360°, and then held in
position for 30 s. Next, the Lenti-NC or Lenti-SIRT6
construct was injected into the disc. The SHAM group
received an injection of Lenti-NC only. The rats were then
returned to their cages. All operators were blinded to
mouse grouping.

Immunohistochemical examination
All discs were embedded in paraffin and cut into sec-

tions (5 μm). The sections were deparaffinised in xylene,
rehydrated in ethanol, and blocked by addition of 3% (v/v)
H2O2 for 10min followed by incubation in 5% BSA for 30
min. After incubation with primary antibodies (anti-LC3,
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anti-cleaved caspase 3), the sections were incubated with
the respective second antibodies and counterstained with
hematoxylin. Images were captured using a light
microscope.

Hematoxylin-eosin staining
To measure the extent of IDD after surgery, all rats were

killed 8 weeks after surgery and disc tissues sections (5
µm) were cut and treated as described above for
hematoxylin-eosin (HE) staining. Images were captured
using a light microscope.

Magnetic resonance imaging
Magnetic resonance imaging (MRI) of the coccyx was

performed 8 weeks after surgery. All rats were anesthetised
throughout the examinations, and their tails straightened.
We subjected five rats of each group (total, 15) to sagittal
and horizontal T2-weighted imaging with a 3.0-T clinical
magnet (Philips Intera Achieva 3.0MR). T2-weighted
sections were set as followed: a fast-spin echo sequence
with a time-to-repetition of 5400ms and a time-to-echo of
920ms; a 320 (h)× 256 (v) matrix; a field of view of 260°;
and four excitations. The section thickness was 2 mm and
the gap 0mm. All MR images were analyzed in a blinded
manner using the IDD classification of Pfirrmann et al.49

Data analysis
All data are the means± standard deviations (SDs).

Results were compared via Graphpad Prism (USA) (one-
way analysis of variance and Tukey’s post hoc test). P
values <0.05 were considered statistically significant.
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