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ABSTRACT
Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal 
microbiome. A microbiome “imbalance” or dysbiosis in inflammatory bowel disease (IBD) is linked 
to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly 
depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre- 
post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti- 
Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed 
dietary intake throughout the study. We applied advanced computational approaches to define 
and model complex interactions between the foods reported and the microbiome. A dense dataset 
comprising 553 dietary records and 340 stool samples was obtained from 22 participants. 
Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance 
of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific 
foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., 
GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive 
analytics, this study represents the first steps to detangle diet-microbiome and diet-immune 
interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.
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Introduction

The etiology of inflammatory bowel disease (IBD) 
is thought to be linked to an inappropriate immune 
response to an altered or dysbiotic gut microbiome 
in genetically susceptible individuals. Dysbiosis in 
IBD patients is characterized by depletion of 
Clostridia and Bacteroides.1–6 These bacterial spe-
cies are known to maintain gut homeostasis via the 
production of short-chain fatty acids (SCFAs).7–11 

Dietary interventions represent an ideal strategy to 
revert gut dysbiosis in IBD patients as diet change is 
often more embraced by individuals than 
medication.12 Also, diet is safe, does not require 
FDA approval 12 , and has been proven to rapidly 
change the microbiome.13

Recent trials have demonstrated that dietary 
therapy is effective for pediatric patients with 
Crohn’s disease (CD). The diets tested as 
a therapy for pediatric patients included the 
Specific Carbohydrate Diet (SCD), the modified 
SCD (mSCD, which includes oats), the Crohn’s 
disease exclusion diet with partial enteral nutrition 
(CDED+PEN), and the exclusive enteral nutrition 
(EEN) diet.14–22 A recent randomized trial com-
paring treatment with either SCD, the mSCD, and 
whole foods found that 100% of children complet-
ing 12 weeks on either treatment achieved 
remission.14 The latest multicenter randomized 
trial comparing treatment of children with 
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CDED+PEN or EEN showed that either treatment 
resulted in 63% and 67% remission rates after 3 
and 6 weeks of treatment, respectively.15 Diet 
treatment favored increased abundance of 
Clostridia species, including Faecalibacterium 
prausnitzii, Roseburia hominis, and Eubacterium 
eligens.14–16

In adults with CD, a recent randomized trial 
that included interventions with either the SCD 
or the Mediterranean diet has also demon-
strated a remarkable effect of diet in inducing 
remission.23 Specifically, after only 6 weeks on 
either diet half of the patients in the trial 
achieved symptomatic remission with ≥30% 
showing reduction of fecal calprotectin 
levels.23 For ulcerative colitis (UC), a catered 
nutritious low-fat/high-fiber diet has been 
shown to improve the overall quality of life, 
lower inflammatory markers, decreased dysbio-
sis, and specifically favor Faecalibacterium 
prausnitzi.24 We created the IBD-Anti- 
Inflammatory Diet or IBD-AID.25,26 The IBD- 
AID has been designed to revert dysbiosis in 
patients with IBD, through increased consump-
tion of prebiotics and probiotics foods,26 bene-
ficial foods necessary for human nutrition27, 
and avoidance of foods known to trigger intest-
inal symptoms and dysbiosis.25,26,28–34 In 
a retrospective study, we reported that adult 
patients, both CD or UC patients, adopting 
the IBD-AID experienced reduction of disease 
activity and lowered their medication intake 
only after 4 weeks on the diet.26

In this current work, our primary outcome is to 
rigorously establish whether the IBD-AID can 
revert dysbiosis by favoring SCFA-producing bac-
teria that are depleted in patients with IBD. To 
achieve this primary outcome we took into account 
the fact that there is highly interpersonal variability 
of microbiome,35 also individual-specific response 
to diet,36 and the fact that consuming a placebo diet 
is not an option for a control group.37 Thus, we 
conducted a prospective, single-arm, pre-post 
intervention trial, where participants were used as 
their own control, as previously done.13,38 We 
leveraged our robust and validated predictive ana-
lytic and mathematical modeling 39–41 to perform 

fine-scale analysis focused only on bacterial species 
favored by specific foods during an 8-week dietary 
intervention with the IBD-AID.

Results

Demographics of the participants of the study

We enrolled 25 subjects with CD or UC to com-
plete an 8-week IBD-AID dietary intervention 
(Figure 1). A total of 22 participants completed 
the baseline period (age average = 40.5 ± 12.8. 
Table 1). Nineteen subjects continued to complete 
the intervention period (12 CD and 7 UC). The 
average body mass index (BMI) for participants in 
the study was 27.9 ± 5.8 (overweight and obese), 
which is comparable to the average BMI among 
Americans.42 Only 1 UC participant was under-
weight (BMI = 17.9). Except for 2 CD participants 
reporting no IBD-related medications, participants 
were using biologics (31.8%), aminoacylates 
(27.2%), steroids (22.7%), and immunomodulators 
(13.60%).

Subjects profoundly changed their diet during the 
intervention

At baseline, we obtained 134 and 89 unique 24- 
hour IBD-AID Food Querys from 14 CD and 7 
UC participants, respectively. We observed that all 
the participants reported similar diets at baseline 
(Mann–Whitney test, p-value >0.5. Supplementary 
Table S2), except for intakes of lean animal protein 
(included in beneficial foods on the IBD-AID), 
which was higher in UC patients. As expected, 
participants reported a low intake of fruits and 
vegetables comparable to an average American 
(<2 servings).43

At the intervention, we obtained 218 and 112 
unique 24-hour IBD-AID Food Querys from 
11 CD and 7 UC participants, respectively. We 
observed that overall, participants profoundly 
changed their diet reporting an average of 1.8-fold 
increase in prebiotics consumption, a 1.5-fold 
increase in probiotics consumption, a 1.6-fold 
increase in beneficial foods consumption, and 
a 3.7-fold reduction in adverse foods consumption 
(Figure 2. Table 2). More detailed analyses showed 
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a)

b)

Figure 1. A) Participant inclusion and exclusion during the study duration. B) A schematic representation of the study design which 
involved bi-weekly stool samples collection and completion of 24-hour IBD-AID Food Querys up to three times a week throughout the 
study. At the beginning of the baseline and the end of the intervention, blood samples were collected.
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that participants significantly increased their intake 
of all foods contained in the prebiotic category, 
fermented dairy products within probiotic foods, 

and omega 3 fatty acids from the beneficial foods 
category. In contrast, participants significantly 
reduced consumption of most of the foods included 
in the adverse food category with exception of 
artificial sweeteners (Figure 2). We also observed 
that changes in food intake occurred within the first 
weeks of the intervention (Figure 2), suggesting 
rapid adaptation to the diet.

Separating by disease phenotype, we observed 
that CD and UC participants reported a similar 
increase in intake of foods encouraged during the 
intervention, except for oats and vegetable protein, 

Table 1. Demographic description of all the participants recruited for the study between February 2017 and January 2019.

Patient information

Participants included in analyses (n = 22) Enrolled participants (n = 25)

Crohn’s disease (n = 15) Ulcerative colitis (n = 7) Crohn’s disease (n = 16) Ulcerative colitis (n = 9)

Demographics
Average age (years) 41.7 ± 13.3 37.8 ± 11.5 41.4 ± 12.9 39.6 ± 11.5
Average weight (lbs) 173.6 ± 31.4 190.1 ± 57.0 171.5 ± 31.3 190.1 ± 57.0
Average BMI 29.3 ± 5.4 25.4 ± 6.7 29.5 ± 5.2 25.4 ± 6.7
Female sex (%) 11 (73.3%) 2 (28.5%) 12 (75%) 3 (33%)
White race (%) 14 (93.3%) 6 (85.7%) 14 (87.5%) 8 (88.8%)
IBD Medications
Current use of Amisosalicylates 3 (20% 3 (42.8%) 3 (18.7) 4 (44.4%)
Current use of Biologics 6 (40%) 1 (14.2%) 6 (37.5%) 1 (11.1%)
Current use of Immnomodulators 1 (6.6%) 2 (28.5%) 1 (6.2%) 2 (2.22%)
Current use of Steroids 2 (20%) 2 (28.5%) 4 (25%) 3 (33%)
Other Medications
Current use of Antihistamine 4 (26.6%) 0 5 (31.2%) 0
Current use of SSRI 4 (26.6%) 2 (28.5%) 4 (25%) 3 (33%)
Current use of Diuretic 4 (26.6%) 0 5 (31.2%)
Current use of Vitamin D supplement 4 (26.6%) 2 (28.5%) 4 (25%) 4 (44.4%)

Figure 2. Participants adhere to the IBD-AID. A) Boxplot of the serving sizes reported for each food category consumed by CD and UC 
participants at baseline (BSL) and intervention (INT). B) Reported servings per week of foods with increased consumption during the 
intervention (Multiple T-test, p-value < 0.05). The mean servings per study period: BSL (in red) and INT (in blue), was calculated on the 
average intake per food category per week. Each circle represents the mean intake per food category grouped in 2 weeks intervals.

Table 2. Mean servings reported on the 24-hour IBD-AID Food 
Query at baseline and intervention.

Food 
categories

Mean servings/d 
reported at BSL

Mean servings/d 
reported at INT

Difference between 
means (BSL – INT) ± 

SEM

Prebiotics 4.08 7.51 3.44 ± 0.58
Probiotics 1.09 1.59 0.50 ± 0.17
Beneficial 

foods
3.88 6.13 2.26 ± 0.37

Adverse 
foods

12.64 3.42 −9.23 ± 0.86
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which were only significantly increased during the 
intervention in UC or CD participants, respec-
tively. Intakes of processed fried animal protein, 
corn, and starchy vegetables were only significantly 
decreased during the intervention on CD partici-
pants; and selected avoided condiments (i.e., 
wheat-based soy sauce, condiments high in fructose 
corn sugar, containing carrageenan, maltodextrin 
or/and emulsifiers 44–47) only decreased in UC par-
ticipants (Supplementary Tables S3 and S4) during 
the intervention. CD participants reported no con-
sumption of artificial sweeteners in all the study 
periods while UC participants did consume this 
food item in both baseline and intervention. This 
might explain the lack of differences described 
above.

Lastly, during the intervention alcohol consump-
tion was reported higher for CD participants 
(Mann–Whitney test, p-value <0.01. 
Supplementary Table S3). However, there were no 
differences in alcohol consumption between study 
periods. In UC participants, there was a trend of 
decreasing alcohol consumption during the inter-
vention (Mann–Whitney test, p-value = 0.1. 
Supplementary Table S4), which might explain the 
differences in alcohol intakes between the CD and 
UC participants.

In sum, we observed that overall participants can 
rapidly adopt the IBD-AID.

The IBD-AID favors SCFA-producing bacterial 
species

We collected a total of 340 stool samples: 143 at 
baseline and 197 during the intervention. The aver-
age number of stool samples per participant was 
6.5 ± 2.1 at baseline (n = 22) and 10.3 ± 5.1 at 
intervention (n = 19). At baseline, we observe 
high microbiome inter-personal variability among 
participants with no differences by disease pheno-
type (CD vs UC) in alpha and beta diversity 
(Supplementary Figure S1) nor in microbiota 
representation (BH p-value >0.05, data not shown).

We then investigated the impact of the IBD-AID 
intervention on the gut microbiome. First, we did 
not find differences in alpha and beta diversity 
between samples collected at baseline vs. interven-
tion (Supplementary Figure S2). However, 

compared to baseline, we found specific bacterial 
species have a reduced or increased abundance 
during the intervention window (BH-adjusted 
p-value <0.05). The top 10 bacteria with increased 
abundance in both CD and UC participants during 
intervention are SCFA-producing bacteria mostly 
belonging to the Clostridia class (Figure 3). Overall, 
the increased abundance of Roseburia hominis dis-
tinguished the highest likelihood of samples being 
collected during the intervention. Conversely, 
reduced abundance of members of the 
Bacteroidia, Coriobacteriia, Clostridia, and 
Negativicutes classes predicted the highest likeli-
hood of samples being collected during the inter-
vention (Figure 3).

We then investigated whether different species 
could be enriched by disease phenotype during the 
intervention (Supplementary Table S5). In patients 
with CD, the top bacteria with significantly 
increased abundance during the intervention were 
mostly species members of the Clostridia, 
Bacteroidia, and Coriobacteriia classes, and two 
Firmicutes species (Figure 3). Bacterial species sig-
nificantly reduced during the intervention 
belonged not only to Gammaproteobacteria and 
Negativicutes classes, but also to Clostridia, 
Bacteroidia, and Coriobacteriia classes (Figure 3). 
Despite the overlap of bacterial classes as being 
positively or negatively affected during the IBD- 
AID intervention, there were specific species within 
those classes that seemed to be directionally altered 
by the intervention. These results suggest that spe-
cific foods affect the abundance of bacteria at the 
species level and are consistent with previous 
studies.33,48,49

In subjects with UC, similar results were 
observed. The abundance of specific Clostridia 
and Bacteroides species known to be depleted in 
UC patients (i.e., Eubacterium eligens, 
Faecalibacterium prausnitzii, Fusicatenibacter sac-
charivorans, Bacteroides dorei, Bacteroides ovatus, 
and Bacteroides vulgatus) were significantly 
increased during the intervention. Conversely, 
other Clostridia and Bacteroides were significantly 
decreased during the intervention (Figure 3).

Taken together, these findings show an overall 
shift of the microbiome during the intervention 
that differs by disease phenotype and is specie spe-
cific. The top bacteria favored by the IBD-AID 
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intervention were two major butyrate 
producers Roseburia hominis and 
Faecalibacterium prautnizii 50 in CD and UC sub-
jects, respectively (BH p-value >0.05). Two acetate 
producers species, Eubacterium eligens and 
Bacteroides dorei, 51 were enriched during interven-
tion in both CD and UC (BH p-value >0.05); while 
Parabacteroides distasonis was consistently 
decreased in all participants regardless of disease 
phenotype during the intervention (BH 
p-value >0.05).

The IBD-AID favors a microbiome with 
anti-inflammatory capacity

We next evaluated the functional capacity of the 
microbiome during the intervention. At baseline, we 
found that the metagenomic capacity varied greatly by 

participant, with most samples clustering by partici-
pant (data not shown). However, we observe that 
during the intervention the microbiome exhibited an 
increased genetic capacity for 1) biosynthesis of several 
key amino acids (i.e., histidine, lysine, threonine, 
methionine, serine, glycine, isoleucine, and argi-
nine); 2) degradation of mannan (a dietary fiber); 
and 3) β-oxidation for fatty acid degradation (Figure 
4). Roseburia sp. and Faecalibacterium sp. – both 
favored during the IBD-AID intervention are main 
degraders of dietary mannan ultimately producing 
SCFA.52,53 Mannans are found in the endospermic 
tissue of nuts (homopolymeric mannan), barley, oats 
(β-glucans or mannoproteins), coffee beans, coconut 
palm, tomato, and legume seeds (galactomannan).54 

Similarly, increased microbiome gene capacity for 
oxidation of fatty acids during the intervention also 
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Figure 3. Mixed effect random forest classification analysis identified microbes affected by the intervention. Bar plots show the 
variance of the importance of bacterial species found to be enriched (in green) or depleted (in gray) during the intervention in all (A 
and B), CD (C and D), and UC (E and F) subjects completing the intervention (BH p-value >0.05).
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suggests increased availability of SCFAs. Thus, we 
further investigated the impact of IBD-AID on the 
pool of microbial genes involved in SCFA production 
during the intervention.

As previously done by us,55 we created specific 
databases that included all the bacteria genes 
involved in the production of the main three 
SCFAs in the gut: butyrate, acetate, and propionate. 
We found that subjects completing the intervention 
displayed an increased abundance of specific genes 
involved in the production of butyrate, mostly from 
members of the Clostridia class (Figure 4); and 

acetate, specifically from Roseburia hominis and 
Eubacterium eligens species (Figure 4). Lastly, 
genes linked to propionate production were not 
enriched during the intervention. On the contrary, 
genes involved in propionate metabolism were aug-
mented in baseline along with Ruminococcus tor-
ques, Flavonifractor plautii, and Parabacteroides 
distasonis (data not shown).

In sum, the diet-dependent changes of the 
microbiome were accompanied by increased 
microbial genomic capacity for butyrate and acetate 
metabolism during the intervention.
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Figure 4. The IBD-AID increases the microbiome capacity for SCFA production. Bar plots represent the variance importance of the: A) 
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Foods responsible for the microbiome changes

We next sought to identify the foods reported on the 
24-hour IBD-AID Food Querys that associate with 
specific bacteria abundances during the intervention. 
To do this, we first apply mixed effect random forest 
modeling to predict the abundance of each micro-
biome species as a function of the number of ser-
vings for each food category reported. To control for 
the effect of non-diet and other clinical covariates 
(i.e., age, gender, and BMI) we included them in the 
model as additional fixed effects. Similarly, to 
account for possible diagnosis-specific effects, we 
included in the model as additional fixed effects the 
interaction between every food category and the 
diagnosis. To determine the significance of the deter-
mined associations we run Permutated Importance 
(PIMP) analysis (see Methods). To determine the 
strength and direction of the association we then 
run Repeated Measure Correlations on the associa-
tions with a PIMP-associated p-value less than 0.05. 
We investigated the bacteria:food correlation of the 
top bacterial species enriched at either baseline or 
intervention in CD and UC participants. For these 
bacteria:food correlation analyses, we also included 
bacteria enriched in both CD and UC participants at 
intervention or baseline (i.e., B. dorei and 
P. distasonis, respectively. Figure 5). As expected, 

consumption of prebiotics, probiotics, and beneficial 
foods positively correlated with Clostridia and 
Bacteroides species both enriched during the inter-
vention but negatively correlated with species 
enriched at baseline. Opposite correlations were 
observed with the consumption of adverse foods. 
A list with all the significant bacteria:food correla-
tions are shown in Supplementary Table S6. Of 
interest, increased consumption of lean animal pro-
teins (included in beneficial foods) during the inter-
vention has a negative correlation with Roseburia 
hominis in UC but not in CD participants.

Overall, our results show that increased con-
sumption of prebiotics, probiotics, and beneficial 
foods during the intervention do favor Clostridia 
and Bacteroides species depleted in IBD patients. 
We observed that the effect of some foods on bac-
teria abundance is dependent on disease 
phenotype.

Immune modulation by food category

We obtained blood samples from nine patients 
before and after the intervention to measure circu-
lating cytokines relevant to inflammation. Similar 
to previous report demonstrating correlation of 
specific foods with cytokine levels,38 we 

Figure 5. Significant correlations of foods with bacterial species enriched at baseline (red) or intervention (blue) in A) CD participants 
and B) UC participants.
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hypothesized that certain food categories encour-
aged (i.e., fruits) or discouraged (i.e., foods and 
beverages high in sugar) during the IBD-AID inter-
vention could associate with levels of the serum 
cytokines regardless of study period. Thus, we 
determined the correlation of the reported food 
intakes during the study with the levels of cytokines 
(Supplementary Figure S3). Consistently, we 
observed that participants reporting high con-
sumption of prebiotics and beneficial foods exhibit 
lower levels of inflammatory cytokines (i.e., IL-6 
and IL-8) while higher levels of GM-CSF (Figure 
6 A-E). Conversely, participants reporting high 
consumption of adverse foods exhibit higher levels 
of IL-8 and TNF-alpha (Figure 6F-J). In this sub-
group of participants (n = 9), none of the 14 cyto-
kines assessed changed from baseline to post- 
intervention (Supplementary Figure S3).

In sum, we observed that higher consumption of 
foods encouraged on the IBD-AID (regardless of 
study period) do negatively correlate with pro- 
inflammatory cytokines and positively correlate 
with levels of colitis protective GM-CSF. 
Independent of study period, high consumption 
of foods discouraged on the IBD-AID consistently 
relates to higher levels of pro-inflammatory cyto-
kines. We did not see an overall shift on circulatory 
cytokines after the IBD-AID intervention in the 
sub-group of participants included in this analysis.

Discussion

Here, we demonstrate that IBD patients can rapidly 
and dramatically change their diet and in doing so 
revert dysbiosis and modulate important cytokines 
driving IBD pathogenesis. Specifically, our results 
demonstrate that increased consumption of prebio-
tics (fiber-rich foods such as fruits, vegetables, oats, 
and honey), probiotics (fermented dairy products), 
and beneficial foods (lean animal protein and 
omega 3 fatty acids) can favor potent SCFA- 
producing Clostridia and Bacteroides species with 
known anti-inflammatory activity 9,11,39,50,56–64 and 
which are known to be reduced in numerous 
cohorts of IBD patients across the world.5,6,10,65–73

High-fiber diets are related to healthy-like 
microbiomes 74–76 and have received increasing 
attention to reducing IBD risk and 
symptoms.24,77–80 Here, increased consumption of 

fruits, vegetables, honey, and oats favored bacteria 
commonly depleted in IBD, namely: Roseburia 
hominis,F. praustnizii,E. eligens, F. saccharivorans, 
B. dorei, B. vulgatus. As with increased intakes of 
prebiotics vegetables and fruits, vegan and vegetar-
ian diets have been also associated with increased 
microbiome capacity for biosynthesis of essential 
amino acids 81 that leads to the production of 
butyrate and acetate.82–87 Similarly, we observed 
that microbial gene pathways for biosynthesis of 
amino acids along with pathways involved in buty-
rate and acetate production were enriched along 
with participants’ increase in fruits and vegetable 
consumption.

Fermented foods have been shown to play an 
important role in microbiome diversity and conco-
mitant immune tone on the host.38 In our cohort, 
there was a modest increase in the intake of fer-
mented foods (average 0.5 servings per week), espe-
cially dairy products (i.e., yogurt, kefir). Despite the 
modest change in consumption, fermented dairy 
products in UC patients correlated with increased 
abundance of Fusicatenibacter saccharivorans, 
a bacteria known to be depleted on active UC 
patients.88

Within the beneficial foods, we found that 
increased intakes of MUFAs and omega-3 fatty 
acids also support potent SCFA-producing 
Clostridia and Bacteroides species. Omega-3 
fatty acids have previously been found to reduce 
dysbiosis.89–94 Of interest, we observed that lean 
animal proteins, included in the beneficial foods 
for the IBD-AID, are negatively associated with 
Roseburia hominis in UC patients. In line with 
this observation, the International Organization 
for the Study of Inflammatory Bowel Diseases, 
recommends limiting animal protein intake for 
UC patients but not CD.95 Together, this high-
lights the importance of personalization of diet 
therapy based on the patient’s disease manifesta-
tion. Moreover, our results also emphasize the 
importance of a dietary approach for treating 
IBD that includes adding needed food compo-
nents such as prebiotics, probiotics, and benefi-
cial foods.

As expected, avoidance of foods also played an 
important role in shifting the microbiome during 
the intervention. We found that bacteria enriched 
at intervention (i.e., Faecalibacterium prausnitzii, 
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Firmicutes CAG 65) negatively correlated with 
consumption of adverse foods. Conversely, bac-
teria species enriched at baseline (i.e, Collinsela 
stercoris, Parabacteroides distonis) were positively 
correlated with increased intakes of adverse foods. 
The abundance of Collinsella species has pre-
viously been associated with low-fiber diets 74,96 

and processed foods.97 Moreover, Collinsella sp. 
isolated from IBD patients conferred significant 
susceptibility to colitis in germ-free mice.98 Thus, 
we speculate that the increase of prebiotics rich in 
fiber and reduction of adverse processed foods at 
intervention reduces Collinsella fitness;97 leading 
to an outgrowth of SCFA-producing bacteria as 
a result of “new” nutrient availability.99–101 

Parabacteroides distonis, enriched at baseline in 
both CD and UC participants in this cohort, 
have been also found abundant in IBD patients 
102 and it has been implicated in worsening DSS- 
induced colitis in mice.103

Comparable to a previous report,38 we also pro-
vide evidence of food-immune correlations. Namely, 
we observed that foods encouraged by the IBD-AID 
(i.e., prebiotics and beneficial foods) negative corre-
late with IL-6 and IL-8. Both cytokines have a major 
role in pro-inflammatory signaling, are elevated in 
patients with either CD or UC, and are correlated 
with mucosal inflammation.104–110 Recently, reduc-
tion of IL-6 was associated with clinical response to 
biological therapy.111 Prebiotics intakes was posi-
tively correlated with GM-CSF, a cytokine involved 
in myeloid cell development and maturation and 
dendritic cell differentiation. There is growing evi-
dence that lower levels of GM-CSF are associated 
with the pathogenesis of CD.112–118 On the other 
hand, foods discouraged by the IBD-AID were posi-
tively correlated with IL-8 and TNF-alpha. TNF- 
alpha is a pro-inflammatory mediator that plays an 
integral role in the pathogenesis of IBD. Several 
available biological therapies for IBD are centered 
in blocking TNF-alpha. Altogether, this suggests that 
diet can be used as adjunctive therapy to treat IBD.

A limitation of this study is the fact that we 
purposely enrolled patients with varying disease 
severity in a small cohort, therefore we do not 
intend to test the efficacy of the diet in symptomatic 
or clinical remission, nor we expected to see a large 
clinical effect. Other limitations include: the lack of 
a direct measure of butyrate and acetate 

production, which we speculate is increased due 
to our metagenomic results (i.e., increase of SCFA- 
producing bacteria and enrichment of microbial 
SCFA genes); and our online food journal: the ‘24- 
hour IBD-AID Food Query’, used for recording of 
food consumption, have not been rigorously vali-
dated. Overall, none of these limitations pertain to 
the primary outcome of the study which was to 
evaluate changes in the microbiome composition 
after IBD-AID intervention.

In conclusion, we demonstrate that the IBD-AID 
can favor bacteria commonly depleted in IBD 
patients which are key for maintaining immune 
tolerance and homeostasis in the gut via SCFA 
production. We demonstrated that foods encour-
aged/discouraged by the IBD-AID are linked to 
modulation of the immune tone. Moreover, the 
results provide evidence for further adjustments of 
the foods allowed on the IBD-AID according to the 
disease phenotype and immune target.

Methods

Power calculation

The primary outcome is to evaluate the effect of the 
IBD-AID in the increased abundance of SCFA- 
producing bacteria. Using Monte-Carlo simula-
tions of empirical power and type-I-error for 
a Wilcoxon-signed rank test (paired; R package 
MKpower 119) we determined that 10 independent 
subjects (pre-post) will detect 0.005 ± 0.005 changes 
in the relative abundance of bacteria, with a power 
of 0.80. Our secondary outcome was associations 
between IBD-AID food categories and the micro-
biome. An unweighted Spearman correlation 
power analysis (R package genefu 120) determined 
that 14 independent samples will be sufficient to 
achieve a significance of 0.05 and a correlation 
coefficient of 0.1.

Participants

We recruited 25 subjects with an IBD diagnosis of 
either Crohn’s disease (CD) or ulcerative colitis 
(UC, Figure 1). Of the 19 subjects who completed 
the study, 7 CD and 2 UC subjects were in remis-
sion at enrollment. The remaining 10 subjects 
exhibited either mild, moderate, or active disease. 

GUT MICROBES e2046244-11



Exclusion criteria included: use of the antibiotic 
within 3 months at the time of recruitment, pre-
sence of infection precipitating colitis (i.e., 
C. difficile), and pregnancy. For more inclusion 
and exclusion criteria see Supplementary Table S1. 
None of the participants reported antibiotic treat-
ment during the study. The study was approved by 
the IRB at UMASS (Docket Number H00008033). 
ClinicalTrial.gov registry website: https://clinical 
trials.gov/ct2/show/NCT04757181

Trial number: NCT04757181.

The IBD-AID

As published elsewhere,25 the IBD-AID supports 
the avoidance of certain carbohydrates (sucrose 
and starches) from the original SCD.121 Before the 
mSCD, the IBD-AID was the first IBD diet to 
include oats as a source of fiber. The IBD-AID 
encourage the increased intakes of monounsatu-
rated and polyunsaturated omega-3 and fatty 
acids while decreasing other saturated fats and 
eliminating trans-fatty acids.77,89,122–128 Moreover, 
the IBD-AID eliminates the consumption of pro-
cessed and ultra-processed foods which have been 
associated with IBD risk.129 The IBD-AID includes 
prebiotics: foods rich in non-digestible fiber that 
serve as food for beneficial bacteria colonizing the 
colon.130,131 Epidemiological evidence 132–135 and 
results from a recent clinical trial study 38 support 
the role of fermented foods containing live active 
bacteria (probiotics) in health, microbiome diver-
sity, and an anti-inflammatory immune status.38 

Thus, the IBD-AID also encourages the consump-
tion of probiotics. Finally, to avoid nutrient defi-
ciencies that could be caused by restrictive diets, the 
IBD-AID also encourages the intake of nutritious 
foods recommended by the Dietary Guidelines for 
Americans;136 which includes a variety of foods 
rich in essential vitamins and minerals. The diet 
can be prepared at home and is designed to be 
healthful long term for the entire family.

Intervention

Due to the high interpersonal variability of the 
microbiome,35 the individual-specific response to 
diet,36 and the fact that consuming an ‘inert’ pla-
cebo diet is not an option for a control group,37 we 

conducted a prospective, single-arm, pre-post 
intervention trial, where participants were used as 
their own control, as previously done.13,38 After 
a baseline period of 6 weeks, the dietary interven-
tion was initiated and continued for 8 weeks 
(Figure 1). To receive dietary instructions, subjects 
met in person with trained registered nutritionists 
at the beginning of the intervention and completed 
at least one counseling session per week throughout 
the 8-weeks intervention period.

Dietary assessment

Dietary intake is difficult to measure, and any 
single method cannot assess dietary exposure per-
fectly. We developed the 24-hour IBD-AID Food 
Query to address the main challenges of recording 
dietary intake by: collecting actual intake on spe-
cific days; reducing the burden of memory to only 
recall foods consumed in the past 24 hr, and we 
obtained repeated recordings per week to better 
estimate usual intake. The data obtained from this 
instrument was used to achieve our secondary 
outcome to determine associations between IBD- 
AID food categories and the microbiome. The 24- 
hour IBD-AID Food Query was programmed in 
REDCap and consists of 240 food items grouped 
in four main food categories: 1) prebiotic foods, 
including fruits, vegetables, legumes, oats, and 
honey; 2) probiotic foods: fermented dairy pro-
ducts, and fermented nondairy foods; 3) beneficial 
foods: fatty acids rich in monounsaturated and 
omega-3 polyunsaturated fatty acids, vegetable 
and lean animal proteins; and 4) adverse foods: 
wheat, corn, lactose, high fat animal and vegetable 
proteins, processed fried foods, artificial sweet-
eners, foods, and beverages high in sugar, high- 
fat processed foods, selected starchy vegetables, 
selected gluten-free grains, and certain condi-
ments (i.e., wheat-based soy sauce, condiments 
high in fructose corn sugar, containing carragee-
nan, maltodextrin or/and emulsifiers, known to 
trigger gastrointestinal symptoms).[44–47] Alcohol 
consumption was accounted for in a separate cate-
gory. A link to the electronic 24-hour IBD-AID 
Food Query was sent to the participants to be 
filled out 3 times per week (see Supplementary 
material for details on the 24-hour IBD-AID 
Food Query). The serving sizes recorded on each 
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24-hour IBD-AID Food Query were assigned to 
the individual food categories mentioned above 
and the serving sizes reported were averaged per 
week for analysis.

Sample collection

Subjects were provided materials and instructions 
for at-home self-collection using OMNIgene•GUT 
collection kits (#OM-200, DNA Genotek Inc., 
Ottawa, Canada). We also obtained blood samples 
at baseline and the end of the intervention. Once in 
the laboratory, samples were aliquoted and then 
stored at −80°C until processed.

DNA isolation and sequencing

DNA isolation was performed using the 
MagAttract PowerSoil DNA Kit (#27,100-4-EP, 
Qiagen, Germantown, MD, USA) on Eppendorf 
epMotion 5075 liquid handlers following the 
manufacturer’s instructions. Libraries for DNA 
sequencing were prepared using the Nextera 
XT DNA Library Preparation Kit (#FC-131- 
1096, Illumina, San Diego, CA, USA) and were 
sequenced on the Illumina NextSeq 500 platform 
using 150-nt paired-end reads. We obtained an 
average of 4,926,661 reads per sample. Read data 
were quality trimmed and filtered of host DNA 
using KneadData (version 0.7.2; https://bit 
bucket.org/biobakery/kneaddata/wiki/Home) 
against a prebuilt bowtie2 index for the human 
genome, hg19. All the filtered sequences gener-
ated were deposited in NCBI, BioProject: 
PRJNA642308.

Metagenomic profiling

We performed shotgun metagenomic sequencing 
of stool samples as previously described by us and 
others.55,137–139 Community composition was pro-
filed using MetaPhlan2 (version 2.9.14; database 
mpa_v292_CHOCOPhlAn_201901).140 To assess 
the abundance of microbiota-encoded metabolic 
pathways we used HUMAnN2 (version 2.8).141 

We used ShortBRED142 to profile metagenomics 
reads for the abundance of proteins involved in 
the production of SCFAs (e.g., butyrate, acetate, 
propionate) as we have previously described.55,143

Inflammatory markers

We used the Discovery Assay® Human High 
Sensitivity T-Cell Discovery Array 14-Plex 
(#HDHSTC14, Eve Technologies Corp, Calgary, 
Canada) to simultaneously quantified 14 cytokine/ 
chemokine/growth involved in inflammation.

Mathematical modeling:

Microbiome associations with study periods: To 
determine the bacterial species impacted by the 
IBD-AID we applied mixed-effect random forest 
classification by adapting the MERF R engine.144 

This framework enables to account for the repeated 
sampling nature of the dataset and is appropriately 
suited for this type of “large p, small n” multi-omics 
dataset common in clinical research.145 We classify 
a sample i from patient s as Intervention vs. Baseline 
(Yis = 1,0) as a function of microbiome abundance 
in that sample as a fixed effect (Xis) and controlling 
for the individual patient as a random effect (Z): 
Yij ¼ f Xið Þ þ bjZþ 2 . Compared to traditional lin-
ear mixed-effect modeling regression here f is 
a general function that is learned using a random 
forest model. The expectation-maximization algo-
rithm runs via alternative optimization, in which, 
at the turn, one parameter is fitted while the other 
ones are fixed with the process running until 
convergence.144 This analysis was repeated using as 
predictors species abundances, metabolic pathways 
abundances, and SCFAs pathways, independently. 
Permutated importance (PIMP) analysis was used 
to estimate the significance of each microbiome 
feature in the classification analyses.137,146

Microbiome associations with food categories: We 
determined the effect of food categories on the 
microbiome by first applying mixed-effect random 
forest regression modeling while also controlling 
for other clinical and not-diet related covariates 
(i.e., age, gender, and BMI).144 To account for diag-
nosis (UC, CD)-dependent effects of food cate-
gories on the microbiome, we also consider the 
interactions between food-category (as number of 
servings, numerical) and the diagnosis (categorical) 
in the modeling. As above, PIMP analysis was used 
to estimate the significance of each model covariate 
in predicting the abundance of every modeled 
microbial feature 145,136. For the food covariates 

GUT MICROBES e2046244-13

https://bitbucket.org/biobakery/kneaddata/wiki/Home
https://bitbucket.org/biobakery/kneaddata/wiki/Home


displaying a PIMP-associated p-value <0.05, we run 
repeated measure correlation for UC and CD indi-
viduals independently to determine the direction 
and significance of the identified association.

Statistical analysis

We used Prism 9 to perform the statistical analyses. 
We used the Mann–Whitney test with individual 
ranks computed per comparison of food intakes by 
study phase using the two-stage linear step-up pro-
cedure of Benjamini, Krieger, and Yekutieli correc-
tion. Wilcoxon matched-pairs signed-rank was 
used to evaluate differences in cytokine concentra-
tion in serum before and after the diet intervention; 
due to the low sample size (n = 9), p values of 0.1 are 
reported as trends. Simple linear regressions were 
calculated between the average of intakes of each 
food category and the levels of cytokines at each 
study period. We used the R package Phyloseq 
v1.19.1 147 to calculate the Shannon diversity 
index 148,149 and Bray-Curtis dissimilarity. 
Statistical significance of Bray-Curtis distances 
was assessed using PERMANOVA in R.150

Abbreviations

Inflammatory bowel disease (IBD); Crohn’s disease (CD); 
Ulcerative colitis (UC); Inflammatory bowel disease Anti- 
Inflammatory Diet (IBD-AID); Short-chain fatty acids (SCFAs); 
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