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Detecting microevolutionary responses to natural selection by observing
temporal changes in individual breeding values is challenging. The collec-
tion of suitable datasets can take many years and disentangling the
contributions of the environment and genetics to phenotypic change is
not trivial. Furthermore, pedigree-based methods of obtaining individual
breeding values have known biases. Here, we apply a genomic prediction
approach to estimate breeding values of adult weight in a 35-year dataset
of Soay sheep (Ovis aries). Comparisons are made with a traditional
pedigree-based approach. During the study period, adult body weight
decreased, but the underlying genetic component of body weight increased,
at a rate that is unlikely to be attributable to genetic drift. Thus cryptic micro-
evolution of greater adult body weight has probably occurred. Genomic
and pedigree-based approaches gave largely consistent results. Thus,
using genomic prediction to study microevolution in wild populations can
remove the requirement for pedigree data, potentially opening up new
study systems for similar research.
1. Introduction
When directional selection on a single trait is carried out in an experimental
evolution study, or in animal and plant breeding, the response to selection is pre-
dictable. The breeder’s equation [1], R = h2S, predicts the response (R) as the
product of the strength of selection (S) and the narrow-sense heritability (h2),
and it usually gives a reasonably accurate estimate of the actual observed
response [2]. However, in more complex systems, such as in wild populations,
the response is much harder to predict [3,4]. The reasons why a trait may not
evolve as expected include: (1) unmeasured genetic correlations between the
trait and other fitness-related traits [3,5]; fluctuating environmental conditions
covarying with (2) the heritability of the trait [6] or (3) the strength of selection
[7] (or both [8]); and (4) cryptic microevolution [9], where the trait actually has
responded to selection, but a change in environmental conditions has caused
the phenotypic trend to mask the underlying genetic trend. More generally,
the term ‘paradox of stasis’ has been used to describe the absence of expected
response to selection [4]. The upshot is that identifying microevolutionary
responses to natural selection is non-trivial.

Oneway to detect microevolution in a population is to estimate each individ-
ual’s ‘genetic merit’ or breeding value, and test whether population-wide
breeding values have changed temporally, in linewith predictions frommeasured
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selection differentials. If phenotypic and multigenerational
pedigree data are available then estimated breeding values
(EBVs) can be obtained using restricted maximum-likelihood
(REML) procedures in linear mixed models—‘animal models’
[10–12]. Exploring temporal trends in EBVs rapidly gained
popularity once animal models began to be applied to studies
of natural populations [9,13,14]. Unfortunately, it was not long
before problems and biases with the approach were identified
[15,16]. First, pedigrees in natural populations are usually small
and unbalanced, relative to those used in applied breeding.
Therefore, many individuals lack ‘connectedness’—they have
relatively few phenotyped relatives in the dataset. EBVs of
these individuals are heavily dependent on the individual’s
phenotype, and so environmental influences on the phenotype
can be confounded with genetic effects, causing error and
bias in the EBV [16]. In studies looking at microevolutionary
trends, this can cause spurious evidence for microevolutionary
change, especially when ‘unconnected’ individuals are clus-
tered at the beginning or end of the time series and have
experienced similar environments. A second major problem
is that EBVs from animal models have sometimes been treated
as point estimates, with any uncertainty or error in their
estimate being ignored. Ignoring this uncertainty causes
temporal trends in EBVs to be anti-conservative (i.e. prone
to false positive inferences), especially as errors tend to be
correlated among relatives [17].

To overcome the problems described above, several best
practice steps have been proposed. First, fitting terms such
as year of birth or measurement in an animal model (de-
trending) should reduce the risk of temporal environmental
heterogeneity causing spurious trends in EBVs, although
it may not eliminate it completely [16]. Second, taking a
Bayesian approach to estimate breeding values allows the
uncertainty in estimates to be accommodated in the analysis
of temporal trends [17]. Bayesian animal models return a pos-
terior distribution of EBVs, rather than a point estimate, and
by regressing every posterior sample of cohort mean EBVs
on year, the slope can be estimated with an appropriate,
confidence interval [17]. In their paper demonstrating this
approach, Hadfield and colleagues [17] pointed out that
there are two different questions that can be asked with the
posterior distributions of EBVs. Is the microevolutionary
trend statistically significant? And is the trend of greater mag-
nitude than can be expected due to genetic drift? The second
question is biologically more relevant, in the context of gen-
etic response to selection, and can be tested by simulating
expected changes in breeding values due to drift alone.
Usually, this is done by sampling from the posterior distri-
bution of the trait’s additive genetic variance and randomly
assigning the founders in the pedigree a simulated breeding
value. Simulated breeding values are then transmitted
down the pedigree, by assigning offspring a midparental
EBV. The simulated EBVs can be regressed against time to
estimate the microevolutionary trend. If the process is
repeated for each posterior estimate of the additive genetic
variance, then a null distribution of temporal trends under
a scenario of no selection (and thus no response) is generated
(i.e. the expectation due to genetic drift).

In their paper highlighting how microevolutionary trends
derived from point estimates of breeding values tended to be
anticonservative, Hadfield and colleagues [17] illustrated the
problem with two empirical datasets. One of these was an
example of apparent cryptic microevolution of adult body
size in a free-living population of feral Soay sheep [18]. In
the study population, adult weight is positively associated
with increased winter survival and is heritable [19–21], and
therefore should be increasing in response to directional
selection. In fact, during the period studied by Wilson and
colleagues (1985–2005), adult body weight declined over
time by around 100–200 g per year [18]. By contrast, during
the same period, animal model-derived EBVs for adult
weight increased by around 5–10 g per year. In other
words, microevolution was proceeding as expected but was
masked by non-genetic effects causing body sizes to be smal-
ler [20]. The contrast between phenotypic and genetic trends
is explained by smaller animals having a better survival rate
in the more recent years of the study, perhaps because harsh
winters have become less common and grass growth rates
have improved [20]. Thus, smaller animals that once would
have died have a better chance of surviving and reducing
the population mean weight. Birth year and capture year
were fitted in the animal models, thus de-trending the data
for possible environmental effects on different cohorts, prior
to estimating the temporal trends. Furthermore, the phenoty-
pic and genetic trends were in opposite directions, which is
generally considered to be a sign that apparent microevolu-
tion is not being driven by an unappreciated contribution
of an environmental effect on phenotype [16]. However, the
original analysis was anti-conservative as inference on the
genetic trend failed to properly account for uncertainty
in EBV estimation. Re-analysis by Hadfield et al. using a
Bayesian method to incorporate the posterior distributions
of EBVs yielded an estimate of the temporal increase in breed-
ing values that was quantitatively unchanged, but no longer
statistically significant. Thus, the more conservative (and
correct) analytical approach [17] no longer supported an evol-
utionary response to selection on larger adult body size.

In this paper,we revisit the question ofwhether adultweight
in Soay sheep is responding to natural selection, butwith several
potential improvements over previous investigations. First, we
use a larger dataset (electronic supplementary material, table
S1) that extends the time series studied by Wilson by a further
10 years. Second, and perhaps most obviously different to pre-
vious work, we use genomic prediction rather than a pedigree
to estimate breeding values. Genomic prediction [22], is a tool
widely used in animal and plant breeding to estimate quantitat-
ive genetic parameters from marker data. More recently,
genomic prediction has started to become adopted by research-
ers working onwild populations [23–26]. It works by exploiting
the fact that when marker density is sufficiently high, some
typed SNP markers are in linkage disequilibrium (LD) with
unknown causal loci, and the contribution of each SNP (and
the unknown loci it tags) to phenotypic variation can be esti-
mated. By estimating SNP effects in one part of the dataset
(the training population) and using those estimates to predict
breedingvalues in a seconddataset of genotypedbut not pheno-
typed individuals (the test population) it is possible to obtain
genomic estimated breeding values (GEBVs) that are indepen-
dent of the focal individual’s phenotype. Furthermore, GEBVs
are less influenced by the number of phenotyped close relatives
a focal individual has in the dataset, compared to animalmodel-
derived EBVs [27]. Genomic prediction models can include
known fixed and random effects such as sex, age, year of birth
and year of measurement. We use a Bayesian method to esti-
mate the GEBVs, so posterior distributions of GEBVs can be
used to account for uncertainty in their estimates, in the same
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way, that Hadfield recommends for EBVs derived from Baye-
sian animal models of pedigree data. We compare our results
from genomic prediction-derived EBVs with those obtained
from the traditional pedigree-based animal model approach.
Third, we use a ‘gene-dropping’ simulation approach, to for-
mally test whether any temporal patterns are likely to be due
to a response to selection or are explainable by genetic drift.
However, because the genomic prediction method estimates
the contribution of each SNP to variation in weight, the genetic
drift simulations are explicitly based on a description of the
trait’s genetic architecture (the number and effect size of
causal loci) rather than assuming an infinitesimal model. Here,
haplotypes of causal loci are assigned to founders, and offspring
inherit alleles at each locus according to Mendelian inheritance
and empirically estimated recombination rates between linked
loci. Thus, these simulations are analogous to methods that
simulate the inheritance of breeding values down a pedigree.

Our intention is that, in addition to revisiting a well-
known, but still unresolved, case study of possible cryptic
microevolution, this paper will illustrate a genomic predic-
tion-based framework to study microevolutionary change
that can be readily adopted by other researchers working
on evolution and adaptation in natural populations.
2. Methods
(a) The study population
The Soay sheep is a primitive feral breed inhabiting the St Kilda
archipelago, off the northwest coast of Scotland. Since 1985, the
population in the Village Bay area of the largest island, Hirta
(57 °480 N, 8 °370 W), has been the subject of a long-term individ-
ual-based study [28]. Most of the sheep residents in the study
area are ear-tagged and weighed shortly after birth and followed
throughout their lifetime. Ear punches and blood samples suitable
for DNA analysis are collected at tagging. During the annual
‘catch’ in August, sheep are captured andmorphological measure-
ments are taken. Winter mortality is monitored, with the peak of
mortality occurring at the end ofwinter/early spring, and approxi-
mately 80% of all deceased sheep are found. To date, extensive life-
history data have been collected for over 10 000 sheep.More details
of the study can be found elsewhere [28].

(b) Phenotypes
Weight measurements were taken on live animals, as described
elsewhere [21,29]. Weight datawere restricted to animals captured
in August, that were at least 28 months old, to remove most com-
plications of growth [21,29]. Weight data were pre-adjusted for
non-genetic factors for the genomic prediction analyses (see
below). The inclusion of measurements taken outside of August
would not have resulted in a much larger sample size, but
would have complicated analyses as animals lose weight at differ-
ent rates later in the year. Note that Wilson et al. [18] included
animals aged 0 months, 4 months and 16 months in their analyses
[18], but weight has lower additive genetic variance and heritabil-
ity at these ages. Given that wewere using repeatedmeasurements
taken across an individual’s lifetime, rather than running age-
specific models, it was deemed prudent to restrict the analyses to
older animals. August weights at different adult ages have genetic
correlations of approximately 0.99 [18].

(c) Genotyping
Genotyping of the population was performed using the Illumina
Ovine SNP50 beadchip array, developed by the International
Sheep Genomics Consortium (ISGC) [30] Genotyping was perfor-
med at theWellcome Trust Clinical Research Facility Genetics Core
(Edinburgh, UK). Details about the genotype calling and quality
control of the data and links to the genotype data are available
elsewhere [21,31]. Briefly, pruning of SNPs and individuals was
performed using Plink v. 1.9 [32]. Only autosomal SNPs were
analysed, as BayesR cannot distinguish between autosomal and
sex-linked loci (the sheepX chromosome represents approximately
5% of the total genome). SNPswere removed if they hadmore than
2% missing data, a minor allele frequency less than 0.01 or a
Hardy-Weinberg Equilibrium Test p value < 0.00001. Individuals
were retained if they were typed for at least 95% of SNPs. After
pruning, there were 35 882 SNPs in the dataset. 1168 individuals
were genotyped and phenotyped, and there were an additional
5627 animals that were genotyped but not phenotyped (because
they died or emigrated from the study area before the age of
28 months), whose weight GEBVs could nonetheless be estimated
as a test population (see below).

(d) Genomic prediction of weight GEBVs
Soay sheep adult weight is a polygenic trait with a moderate her-
itability and no individual loci were significant in previous
GWAS [21,26,29]. Genomic prediction of GEBVs was performed
using the BayesR method [33] implemented in the BayesR v. 0.75
software package [34]. We have previously shown that BayesR-
derived GEBVs of Soay sheep morphological traits, including
adult weight, have a high accuracy (approx. 0.64). BayesR
models SNP effects as a mixture of distributions of different
effect sizes, including one of zero effect. We used the default set-
tings that model four distributions of effect size of 0, 0.0001, 0.001
and 0.01 of the phenotypic variance. Dirichlet priors for the
number of pseudo-observations (SNPs) in each distribution
were set to 1, 1, 1 and 5. Priors for the genetic and residual var-
iances were chosen as a scaled inverse-chi squared distribution
with scaling parameters of 1.2 and 2.5 and degrees of freedom
set to 10. Our previous work has shown that GEBVs are not sen-
sitive to the model parameters used [26]. The MCMC chain was
run for a total of 120 000 iterations with a burnin of 20 000 and a
thinning interval of 10, meaning there were 1000 posterior
samples of the GEBVs for each individual.

In the BayesR models all phenotyped and genotyped animals
(n = 1168) were treated as a training population and all animals
for whom we had genotypes but no phenotypes (n = 5627)
were the test population. The phenotypes used in the BayesR
analysis were obtained by first fitting a linear mixed model
(see [26]) that included individual identity (to account for
repeated measures), birth year and capture year as random
effects, and sex and age as fixed effects. The random effect of
individual identity was used as the phenotype.

(e) Pedigree-based prediction of weight EBVs
Previous analyses of Soay sheep microevolutionary trends for
weight have used EBVs derived from animal models of pedigree
and phenotype data [17,18]. While the main motivation of this
study was to explore the potential of GEBVs to study microevo-
lution, meaningful comparison with earlier studies requires a
consistent approach, and so we also estimated EBVs with the
pedigree data. Pedigree-derived EBVs were obtained using the
R package MCMCglmm v. 2.32 [15]. The model included sex
and capture age as fixed effects, and birth year and capture
year as random effects (electronic supplementary material,
table S2). Permanent environment effects were modelled by fit-
ting identity as a random effect and the additive genetic
variance was estimated by fitting a relationship matrix derived
from the pedigree. The model was run for 600 000 iterations
with a burn-in of 100 000 iterations. The posterior distribution
of parameter estimates was obtained by sampling every 500th
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iteration after the burn in. Note that the MCMCglmm runs
required more iterations, a longer burn-in and less frequent
sampling than the BayesR analyses because more terms were
estimated in the MCMCglmm models. However, both types of
analysis finished with 1000 posterior samples. Subsequent ana-
lyses of microevolutionary trends were performed only on
animals who were genotyped, to ensure complete consistency
with the analyses that used GEBVs.
g.org/journal/rspb
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( f ) Measuring microevolutionary change
To test for microevolutionary change we explored whether EBVs
for weight changed as a function of birth year. The cohort mean
EBVs were regressed against birth year, weighting each year by
the sample size. We used all 1000 posterior samples from the
BayesR (genomic EBVs)/MCMCglmm (pedigree EBVs) chain
and determined a 95% confidence interval for the slope of
cohort mean EBV on year (i.e. the approach advocated by
Hadfield et al. [17] and subsequently adopted elsewhere
[35–37]). The probability of stasis or a decline in EBVs was deter-
mined as the proportion of the 1000 models where the slope was
less than or equal to 0. We also explored an alternative approach
of using individual EBVs and fitting linear mixed models with
birth year included as both a fixed effect and as a random
effect. The birth year random term was fitted to account for
between-year heterogeneity of variances in EBVs. In fact, the
birth year random effect explained less than 1% of the variance
in GEBVs and about 4% of the variance in pedigree EBVs, and
the mixed model approach yielded almost identical results to
the regressions of cohort mean EBVs on year (electronic
supplementary material, tables S4, S5).

The main results section reports findings from both the train-
ing and test populations combined, in all cohorts from 1990
onwards. We omitted earlier years because they had less than
100 individuals (electronic supplementary material, table S1)
and earlier cohorts were treated slightly different in the gene-
dropping simulations of drift (see below). However, to enable a
comparison with the previous work, we also report trends
from the same years studied by Wilson (1985–2005). In the elec-
tronic supplementary material, we show results from 1980
onwards and also from 2005 onwards (i.e. in the cohorts born
since Wilson’s study [18]). Similarly, we compare results from
models that contained training and test population individuals
with those that just contained the test population. The main find-
ings are not sensitive to the choice of cohorts or populations used
(electronic supplementary material, tables S4 and S5).
(g) Simulating microevolutionary change under genetic
drift

Simulations to explore microevolutionary changes expected
under genetic drift used an approach where breeding values
were simulated in the pedigreed population, similar in concept
to those introduced by Hadfield et al. [17] and adopted by
others [37]. However, whereas previous methods have trans-
mitted breeding values from parents to offspring down a
pedigree by assigning a midparental breeding value to offspring,
we dropped individual SNPs down the pedigree and then calcu-
lated GEBVs from the estimated effect sizes of SNPs. This has the
advantage that instead of assuming a near-infinitesimal poly-
genic architecture, the GEBVs are predicted using empirical
estimates of the number and effect size of causal loci, as well
as realistic recombination fractions between them. Gene-
dropping was performed using the SimPed program [38].
SimPed can handle SNP genotypes or haplotype blocks of
linked SNPs. To ensure that realistic levels of LD between
linked SNPs was present in the simulated datasets, we used
haplotypes, after first phasing the real data. Phasing was per-
formed and missing genotypes were imputed using Beagle
v. 5.0 [39], assuming an effective population size of 200 [30].
Phased haplotypes were then randomly assigned to founder
individuals in the Soay sheep pedigree. Individuals born before
1990 were treated as founders. The SimPed gene-dropping simu-
lations use known linkage distances between all of the SNPs to
ensure that realistic amounts of recombination occur during
each meiosis. We used previous estimates of recombination frac-
tions in the Soay sheep pedigree [31]. Because SimPed can only
run one chromosome of markers at a time, we concatenated all
of the SNPs from different chromosomes to create one ‘super
chromosome’, but assumed a recombination fraction of 0.5
between the last SNP on one chromosome and the first SNP on
the next chromosome. This effectively ensures independent seg-
regation of unlinked chromosomes. In cases where an
individual was missing parental data, a haplotype was randomly
assigned from an individual of the correct sex that was born
between 2 and 10 years prior. Handling missing data in this
way ensures that complete genotypes were simulated for all indi-
viduals while accounting for any temporal changes in allele
frequencies in the population. Alleles are passed from parents
to offspring following Mendelian rules of independent assort-
ment and recombination. Each SimPed run generates
genotypes at every SNP in every individual in the pedigree. Mul-
tilocus genotypes were converted to GEBVs by summing the
allelic effects at each locus, using the posterior estimated SNP
effects from the BayesR runs of the real dataset. 1000 simulations
were run, each one using an estimate of SNP effect sizes from a
different posterior sample of the BayesR MCMC chain used to
perform the genomic prediction (i.e. the first gene-dropped data-
set used estimated SNP effects from the 1st posterior sample of
the MCMC chain, the second gene-dropped dataset used esti-
mated SNP effects from the 2nd posterior sample, and so on).
This ensures that uncertainty in the posterior estimate of each
SNP effect size is carried into the gene-dropping simulations.

At the end of the gene-dropping process there were 1000
simulated datasets that could be compared to the 1000 MCMC
samples of the real dataset. Thus, it was possible to determine
whether observed changes in GEBVs over time were likely to
be greater than can be expected from genetic drift alone. For
each gene-dropped dataset we regressed the cohort mean
GEBV on birth year weighting each year by sample size, exactly
as in the real dataset. For each of the 1000 comparisons the slope
of birth year from the gene-dropped dataset was subtracted from
the slope of birth year in the real dataset, in order to generate a
posterior distribution of temporal changes in GEBVs relative to
those expected under drift. The probability of the observed
microevolutionary change exceeding that expected from genetic
drift was estimated as the proportion of the 1000 comparisons
where the gene-dropped slope was greater than the real data
slope.

For the pedigree-derived EBVs, the process of comparing
observed trends with those expected under drift was the
method advocated by Hadfield and adopted by others [35–37].
For each of the 1000 simulated datasets, the additive genetic var-
iance was sampled from the posterior distribution of the
MCMCglmm animal model. We used the phensim function of
the R package pedantics v. 1.7 [40] to obtain simulated breeding
values. Founders were assigned breeding values based on the
additive genetic variance and progeny were assigned values by
sampling from a Gaussian distribution with mean equal to the
midparent breeding value and variance equal to half of the
population additive genetic variance (for that sample of the pos-
terior distribution of EBVs). Subsequent comparisons between
the observed and simulated temporal trends in EBVs were per-
formed exactly as for the genomic EBV analyses described
above. Because we have used two different methods to simulate
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patterns of change expected by drift, we distinguish between
statistical tests that employ these two simulated distributions
with the notation pdrift_genomic and pdrift_pedigree.

(h) Genomic prediction using a ‘leave one cohort out’
approach

An additional genomic prediction analysis was run in which each
cohort was treated as a test population (i.e. phenotypes unknown)
and all of the other cohorts were treated as a training population.
Thus, for every individual in the test cohort, the genomic predic-
tion did not use the phenotypes of that individual or any other
individual born in the same year. This ensures not only that the
focal individual’s phenotype does not contribute to its GEBV,
but also reduces the risk that estimated SNP effect sizes are influ-
enced by between-cohort-level covariances between allele
frequencies and adult weight. The results support the main find-
ings and are included in the electronic supplementary material
(electronic supplementary material, table S6).
3. Results
(a) Temporal changes in adult body weight
Adult body weight declined over the course of the study
period (figure 1a), by an average of 0.067 kg per year ( p =
0.003). However, in the period 2005–2015 (i.e. in the cohorts
born since the Wilson et al. [18]), there has been a non-signifi-
cant increase of 0.106 kg per year ( p = 0.23; See electronic
supplementary material).

(b) Microevolutionary changes in body weight GEBVs
Between 1990 and 2015 mean cohort adult body weight
GEBVs increased by approximately 0.011 (95% credible
interval 0.001–0020) kg per year (figure 2a; electronic sup-
plementary material, table S4). The posterior probability of
no genetic change was low (probability = 0.014), using the
conservative approach of regressing the posterior distribution
of cohort mean GEBVs on year. A similar trend was seen
with the pedigree-derived EBVs; an increase of 0.015 (95%
credible interval 0.002–0.029) kg per year, p = 0.013
(figure 2b; electronic supplementary material, table S4). When
comparing the posterior distribution of real cohort mean
GEBVs regressed on year to those generated under gene-drop-
ping genetic drift simulations, the distribution of the difference
between real and gene-dropped regression coefficientswas con-
sistent with the observed trends being larger than expected
from genetic drift (figure 2c,d; electronic supplementary
material, table S7; probability that the GEBV slope is explain-
able by drift alone: pdrift_genomic = 0.057, pdrift_pedigree = 0.028;
probability that the pedigree EBV slope is explainable by drift
alone: pdrift_genomic = 0.042, pdrift_pedigree = 0.022). Thus, while
genetic drift cannot be ruled out as an explanation for the
observed increase in adult weight GEBVs, a response to selec-
tion for greater weights is perhaps more likely. In the
electronic supplementary material we show that the main con-
clusions would be the same if all individuals from the 1980
cohort onwards are included, or if the analysis is restricted to
only test population individuals from either 1980 or 1990
onwards (electronic supplementary material, tables S4 and S5,
and figure S1).

During the period studied byWilson and colleagues (1985–
2005) the trends in GEBVs were similar to those for the longer
1990–2015 period (figure 2e). GEBVs increased by 0.012 (95%
CI –0.002–0.026) kg per year and the posterior probability of
no genetic change was low (p = 0.042). As with the extended
dataset, the possibility that the observed genetic changes
were attributable to genetic drift could not be excluded,
although drift being the explanation seems reasonably unlikely
(pdrift_genomic = 0.084, pdrift_pedigree= 0.062; electronic supple-
mentary material, table S7; figure 2g). Pedigree-derived EBVs
yield very similar findings (figure 2f,h; change in EBVs =
0.020 [CI =−0.000–0.041]; probability of no genetic change =
0.038; probability of genetic change being attributable to gen-
etic drift: pdrift_genomic= 0.056, pdrift_pedigree= 0.035; (electronic
supplementary material, tables S4 and S7).

Intriguingly, when the data are restricted to the period
2005–2015 the genomic and pedigree EBVs give qualitatively
different patterns (electronic supplementary material, table
S4 and figure S1). With the genomic EBVs, the trends are
similar to those described for the longer 1980–2015, 1985–
2005 and 1990–2015 time series (see electronic supplementary
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Figure 2. (a) GEBVs for adult birth weight have increased over the course of the study. Bold blue line is posterior cohort means. Light blue shading shows the 95%
posterior credible interval. Thin grey lines are the 1000 gene-dropped simulations, showing the expected changes in adult weight GEBVs due to genetic drift. (c) The
distribution of the difference in slope of GEBV against year for the real data minus the gene-dropped data. The proportion of slope differences less than 0 gives the
probability that the observed slope is caused by genetic drift. Panels (b) and (d ) show the equivalent results, using pedigreed-derived EBVs rather than genomic
ones, and drift simulations using breeding values rather than the individual loci (see Methods). Data are from training and test population individuals from 1990–
2015. Panels (e)–(h) show the same plots but for the period 1985–2005. (Online version in colour.)
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material, tables S4 and S5). They are no longer significant,
perhaps because the sample sizes are more modest; there
are around half the number of animals as are in the longer
time series. However, with the pedigree EBVs, the trend for
2005–2015 is negative (a decline in EBVs of approximately
0.023 kg per year) and is borderline significant (electronic
supplementary material, table S4 and S5). In the electronic
supplementary material, we provide a possible explanation
of the discrepancy between the genomic and pedigree EBVs
over this period (see ’Is the accuracy of EBV trends affected
by pedigree depth?’)
l/rspb
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4. Discussion
The primary aim of this study was to investigate the use of
genomic prediction as an alternative to a pedigree-based
animal model approach to studying microevolutionary
trends. There are two main advantages to a genomic predic-
tion approach. First, it avoids the necessity of reconstructing a
pedigree, which potentially opens the way to microevolution-
ary studies being conducted in a greater number of systems,
including those with very large population sizes, long
generation times or high rates of dispersal [41,42]. Second,
some of the potential biases associated with pedigree-based
approaches to studying microevolution can be avoided. For
example, when a focal individual is part of a test population,
its phenotype is not used to predict its GEBV, avoiding the
problem that phenotyped individuals with low pedigree
connectedness will tend to have GEBVs that reflect the
environmental contribution to their phenotype [16]. Further-
more, simulations and empirical data have shown that the
accuracy of an individual’s genomic estimated breeding
value is less sensitive to the number of relatives than when
pedigree-based animal models are used [27]. Genomic
approaches often outperform pedigree-based ones, including
in studies of wild populations [25], but especially when close
relatives are absent from the dataset [27]. There are further
improvements that could be made to the approach used
here. Most notably, there is not yet an easy-to-implement
single-stage framework that for allows for Bayesian alphabet
[43] genomic prediction models to be run when there are
repeated measures and other random effects that might be
fitted. Single-step genomic BLUP (GBLUP) methods are
promising, as they can accommodate relationship matrices
built jointly from SNPs and (if available) a pedigree, while
also fitting non-genetic fixed and random effects [44]. How-
ever, we are not aware of current software that does this,
while also outputting the sampled MCMC iterations which
are required to assess the significance of the observed micro-
evolutionary changes. In our dataset, there is little to be
gained from constructing a relationship matrix that combines
genotype and pedigree information as nearly all of the
phenotyped animals are also genotyped. Here, we used a
two-stage approach, running a mixed model to estimate
phenotypes adjusted for non-genetic effects, before running
the genomic prediction models. This does mean that uncer-
tainty in the adjusted phenotypes are not carried through
to the downstream analysis, although uncertainty in the
underlying breeding values is hopefully accounted for. The
pedigree-derived EBVs (which are from a single-stage model)
and the GEBVs (which are not) produced similar conclusions.
In fact, our conclusions from the GEBVs seem to be more
conservative than those from the pedigree EBVs, but of
course we cannot be certain that would be the case in
other systems.

We extended a time series examining whether there was a
microevolutionary response to selection for larger body
weight in Soay sheep. Previous work had suggested breeding
values for adult weight had increased [18], but subsequent
scrutiny suggested the temporal change may be indistin-
guishable from stasis [17]. Here, the addition of 10 more
years of data confirmed that breeding values have increased
by approximately 0.010–0.015 kg per year. Furthermore,
when analysing the same period as the previous study
(1985–2005), the evidence for evolutionary change was now
statistically significant, whether using genomic or pedigree-
derived breeding values. A possible explanation is that the
previous study suffered from the problems caused by EBVs
in the later cohorts being harder to estimate accurately as
those animals lacked phenotyped descendants. Here that pro-
blem is avoided by using either (i) GEBVs whose accuracy is
not dependent on phenotyped descendants, or (ii) pedigree
EBVs where phenotypic records were collected from another
10 years of descendants after the last cohort in the temporal
trend analyses was born, meaning the accuracy of EBVs in
the later cohorts was likely to be improved.

How does this rate of evolutionary change compare to
other studies? After adding the GEBVs to the overall mean
adult August body weight and log-transforming the data, we
estimated adult bodyweight to be evolving at a rate of approxi-
mately 0.049 Haldanes (see electronic supplementary
material). The largest published compilation of rates of micro-
evolutionary change in wild populations [45,46], contains over
3000 estimates measured in Haldanes, albeit mostly estimated
from phenotypic rather than genetic changes. Around 11% of
those estimates exceed 0.049 Haldanes. Clearly, there will be
relativelywide confidence intervals on our (and anyother) esti-
mate of rates of microevolution, but it seems that the rate
observed here is relatively large. Thus, we should be cautious
about whether genomic prediction approaches to studying
microevolutionary change will be able to detect more modest
responses to selection, especially as the accuracy of GEBVs
measured in this population is relatively high [26], but that
may not be the case in other systems. Given these consider-
ations, we are reluctant to prescribe minimum sample sizes
or number of markers required for similar investigations in
other systems. However, we do recommend that researchers
first establish the accuracy of GEBVs by cross-validation, or
attempt to estimate the likely accuracy of GEBVs using for-
mulae that predict the likely accuracy under given genetic
architectures, genome sizes and effective population sizes [47].

Although, the earlier evidence for breeding values
increasing was equivocal [17,18], adult weight at the pheno-
typic level was decreasing. However, this phenotypic
decline seems to have been arrested and possibly reversed
in the years since the earlier study. The causes of the possible
reversal are unclear and are probably a complex combination
of density, demographic and abiotic factors [20,48,49]. It
should be noted that temporal trends in adult weight and
in GEBVs between 2005–2015 are not significant, because
the sample size is considerably smaller than that of the
entire dataset. However, the regression slopes of cohort
mean GEBVs on year are almost identical to those of the
longer time series starting in 1980 or 1990. Thus, while the
phenotypic trends for adult weight have probably changed



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220330

8
since the Wilson et al. [18] study, the genetic trends appear to
have been more constant.

This is not the first study to have used simulations where
breeding values are inherited through a pedigree to test
whether observed microevolutionary trends are greater than
expected by genetic drift [35–37]. However, other studies
have used estimates of additive genetic variance from
animal models to assign founder individuals a breeding
value, under the assumption that the phenotype has a classi-
cal polygenic genetic architecture. Adult weight in Soay
sheep is in fact a polygenic trait [21,29], but nonetheless the
gene-dropping simulations explicitly modelled the number,
effect size and genomic location of causal loci, using esti-
mated SNP effects from each posterior sample of the
genomic prediction analysis. Of course, the accuracy of the
estimated SNP effects is unknown, but by using the posterior
distribution of SNP effect sizes, the uncertainty in the esti-
mates is incorporated into the drift simulations. Gene-
dropping individual loci allow for variable effect sizes, and
accommodates features that cannot be modelled by gene-
dropping breeding values, such as the amount of linkage,
recombination and LD between causal loci. Thus, gene-drop-
ping simulations that explicitly model a trait’s architecture
should give a better reflection of what changes can occur
due to drift, thereby making inferences about whether
trends are due to selection more robust. In the electronic
supplementary material we provide some evidence that
simulations to test whether observed trends exceed expec-
tations under drift are more conservative if the genetic
architecture is explicitly modelled (see ’Comparison of two
methods to simulate evolutionary change expected under
drift’ and table S7).

In summary, we have demonstrated a genomic approach
to studying microevolutionary trends that should be robust
and applicable to other systems. We show that genomic
and pedigree-derived EBVs yield similar results, and where
they do differ, known problems with pedigree-based
methods are a plausible explanation. In the case of Soay
sheep, there is convincing evidence that breeding values for
adult weight have been increasing by around 0.01 kg per
year over a period of more than 30 years, and that the
trend has probably been driven by a response to selection
for larger size rather than genetic drift. The rate of increase
in breeding values has remained constant both during and
after a period when phenotypic values were declining due
to environmental or demographic effects.
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