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Abstract: The diagnosis method for a weak-fault model with only normal behaviors of each
component has evolved over decades. However, many systems now demand a strong-fault models,
the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault
model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate
possible fault and the process can be expedited when some observed output is consistent with
the model’s prediction where the consistency indicates probably normal components. This paper
solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based
Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency.
At the beginning, the original a strong-fault model is encoded by Boolean variables and converted
into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF
and find multiple minimal conflicts and maximal consistencies when there exists fault. The search
approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results
are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed
theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated
by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed
methods are significantly better than best first and conflict directly with A* search methods.

Keywords: fault diagnosis; model-based diagnosis; truth maintenance system; conflict directed A*;
a strong-fault model

1. Introduction

As human beings rely on sophisticated systems more than ever, keeping their operation safe
is quite significant for the environment, lives and property. Although the systems usually undergo
rigorous tests before deployment, they may still be faulty because of wear, degradation and unexpected
harm. Diagnosing their faults in time can stop the faults from spreading to other parts, resulting in
irretrievable disaster [1–3].

Numerous diagnosis methods have been proposed in the last few decades [4–8] and most of them
come from two domains: Artificial Intelligence (AI) [9] and Control Theory [3]. The methods can
also be divided into two classes based on where system information comes from: the model-based
method [10,11] and the data-driven method [12,13].

This paper only focuses on the Model-Based Diagnosis (MBD) proposed by Reiter [9] in the DX
(Diagnosis from first principle) community, where MBD adopts reasoning methods in AI to diagnose
by discrete model, MBD is composed of modeling (for example, first order logic) and reasoning.
The reasoning can be further separated into two steps: conflict recognition and hitting sets generation.
The hitting sets of all minimal conflicts have been proven to be the diagnoses for a weak-fault model
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theoretically [9]. Kleer and Williams [14,15] also independently found the theory which, however,
focuses on getting all the conflicts by Assumption-based Truth Maintenance System (ATMS) [16,17].
The validity of the theory has been verified by the General Diagnosis Engine (GDE) [15,18]. But GDE
consumes plenty of computation resources when diagnosing complex systems due to “combinatorial
explosion.”

Practically speaking, only a few diagnosis solutions with a high weight are useful, which means
not all the candidates should be analyzed. There are two types of famous approximation approaches
to ignoring low weight candidates: a stochastic approach and a search approach.

The most famous stochastic approach is Safari [19,20] proposed by Feldman. Safari first assumes
that all faults exist. Then it selects one fault randomly, sets it as normal (flip the state value) and obtains
a new candidate. If the candidate causes conflicts, the flip is retreated and selects a fault randomly
again. If there is no conflict, the random selection is applied to the new candidate. A diagnosis solution
(the latest candidate) is obtained if there are conflicts in the last n (a preset parameter) random selection.
Safari is optimal in probability for a weak-fault model and more efficient compared with search-based
diagnosis methods. However, the optimality of Safari is not ensured for a strong-fault model [20].
So, this method is not chosen as the basis of this paper.

Search approaches usually obey the idea of “guess and verify”: they employ a search method to
guess a most probable candidate first and then verify if the candidate is a valid diagnosis. Williams [18]
and Kurien [21] proposed the Best-First (BF) diagnosis method, which utilized a search algorithm to
find the candidate with maximal priori probability first and then checks whether there are conflicts
between the system model, observation and the candidate. A diagnosis is obtained when a candidate
with no conflict is found. Further, Williams proposed the Conflict Directed A* (CDA*) [22] search
method which selected the best candidates based on a priori probability and verified them as well.
But CDA* caches conflict sets recognized by the Logic-based Truth Maintenance System (LTMS) [23]
and the verification for some candidates is skipped if they contain some conflicts. In this way, CDA*
avoids much unnecessary computation and saves a lot of time. As one of the most important factors
for diagnosis, conflict is widely studied. Stern explored the duality between conflict and diagnosis [24]
and some divide and conquer methods [25–27] are proposed to reduce the cost to find conflicts.

The key techniques in the search approaches discussed above are how to utilize a priori
information and conflict, which are also important research points in the DX community recently.
However, much research concentrates too much on conflict to notice that even the consistency
between model prediction and observation contains diagnosis information: the part in the candidate,
which causes the model prediction, is probably right. Besides, traditional methods are proposed for a
weak-fault model with only one normal mode and one unknown fault mode. The correctness is not
ensured for a strong-fault [19] model in which fault modes are described with specific behaviors.

This paper studies conflict and consistency directed diagnosis methods for a strong-fault model
comprehensively and has the following novelties: (1) A new conception, consistency (formally defined
in Section 3.2.2), is proposed to boost diagnose; (2) a novel LTMS is proposed to obtain multiple
conflicts and consistencies in one reasoning process; (3) proposes a more accurate distribution
model about candidate and observation; (4) based on the distribution in (3), proposes two
A* search-based algorithms that make full use of conflicts and consistencies to get single-diagnosis
and multiple-diagnosis respectively.

The rest of this paper is organized as follows: Section 2 introduces the formal definitions and
methods about system model, diagnosis problem and the conflict directed A* for a weak-fault model;
Section 3 discusses the proposed method in detail; Section 4 analyzes the algorithms proposed
comprehensively; Section 5 demonstrates the proposed methods by a real-word model: a heat control
unit of a spacecraft; The last section presents the conclusion and future work.

2. Theoretical Background

This section introduces the basic definitions and methods about DX diagnosis methods.
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2.1. Discrete Model

In DX, models are usually logic propositions in which variables are discrete: Boolean or Enumerative.
Based on the description manner of discrete variables, the models are divided into weak-fault and a
strong-fault models.

2.1.1. Logic Based Diagnosis Model

Logic (such as first order logic) is a powerful language to describe complex behaviors and used in
many famous diagnosis systems such as GDE and Sherlock [14].

Formally, a diagnosis model (DM) is defined by tuple (1).

<SV, SD, MD> (1)

where:

• SV (system variable) is the finite set of system variables. The set can be partitioned into mode
variables (MODE), observation variables (OBS) and inner variables (INNER). The possible
behavioral modes of each component are defined by the mode variable. Observation variables
means their values can be obtained from sensors and in this paper (and other most cases) they are
assumed to be perfectly correct. And inner variable is all other variables.

• SD (system description) is a finite set of logic propositions which are constraints over SV.
Usually SD is represented by CNF or Negative Normal Form (NNF) [28].

• MD (mode distribution) is the prior probability distribution of mode variables.

Usually, models for components are first built and then are conjoined as (2) where C is a finite set
of logic propositions, which describes how subsystems connect to each other.

SV = ∪SVi
SD = (∪SDi) ∪ C
MD = ∪MDi

(2)

2.1.2. Weak-Fault Model and Strong-Fault Model

The model which has only one normal mode and an unknown fault mode is called a weak-fault
model. On the contrary, a model with specific fault modes is a strong-fault model. In other words,
given the inputs, the outputs are determined for each fault mode in a strong-fault model.

SV = {mode, in1, in2, out}, mode ∈ {normal, f ault}, in1, in2, out ∈ {true, f alse}
SD = {(mode == normal)⇒ (in1 and in2 == out)}
MD = {P(mode = normal) = 0.99, P(mode = f ault) = 0.01}

(3)

The weak-fault model of the adder in Figure 1 is shown in (3). In this weak-fault model, the
system has only two modes: normal and fault. When the mode is normal, out must be equal to “in1 and
in2.” When the mode is fault, there is no constraint over inputs and output. Sometimes a weak-fault
model uses a bool variable as the mode variable instead.

SV = {mode, in1, in2, out}, mode ∈ {normal, or_ f ault}, in1, in2, out ∈ {true, f alse}
SD = {(mode == normal)⇒ (in1 and in2 == out),

(mode == or_ f ault)⇒ (in1 or in2 == out)}
MD = {P(mode = normal) = 0.99, P(mode = or_ f ault) = 0.01}

(4)

The strong-fault model of the adder in Figure 1 is shown in (4). Compared with model (3),
the strong-fault model has a fault mode or_fault, in which out is equal to “in1 or in2” by mistake.
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The most significant difference between the two models is that the strong-fault model specifies the
behaviors even for fault mode.
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Diagnosing a strong-fault model is quite difficult because of the non-monotonicity. In a weak-fault
model, setting a component as a fault will never cause a conflict because there is no constraint in fault
mode. The famous Safari [20] utilizes this feature and starts diagnosis by assuming that all components
are faulty. In a strong-fault model, if a mode’s behavior is not consistent with the observation, anyone in
the rest may be available.

2.2. Diagnosis Problem

Given a DM, fault diagnosis is to find diagnosis solutions (diagnosis for short) that explain the
health states of systems. This subsection gives some definitions formally. They are a little different
from the definitions in other literatures [20,29] to be more suitable for a strong-fault model.

A Diagnosis Problem (DP) is defined by tuple (5).

<DM, obs> (5)

where:

• DM is the diagnosis model of a system.
• obs is the assignment set of observation variables.

2.2.1. Diagnosis

A diagnosis ωs is an assignment set of mode variables that is consistent with the system model
and the observation as (6). The diagnosis discussed in this paper is static.

SD ∪ obs ∪ωs|6= ⊥ (6)

2.2.2. Preferred Diagnosis

The definition of diagnosis above only describes what a diagnosis is but what is a good diagnosis
is not given. Usually, diagnosis is evaluated by posterior probability P(mode|obs) which can be
decomposed by Bayes rule as in Equation (7).

P(mode|obs) =
P(mode)P(obs|mode)

P(obs)
(7)

where:

• P(mode) is the priori probability of mode.
• P(obs|mode) is the conditional probability of observation obs given mode. For simplification, in most

cases, P(obs|mode) is restricted in {0, 1} (when there exist conflicts, P(obs|mode) = 0; when there
is no conflict, P(obs|mode) = 1) which means the diagnosis is evaluated by priori probability
instead of posterior probability. However, the simplification ignores system structure and implies
that the existence of conflict is the only flag of if the candidate mode is right, which means that
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both false alarm and missing alarm are zero. This paper proposes a new scheme to compute it
more accurate.

• P(obs) is the marginal probability of observation obs and there is no need to compute it because it
is a normalization factor.

Most approximation diagnosis methods [19] design a routine based on (7) to search for the best
candidate and then check the consistency between the candidate and observation until the diagnosis
(consistent candidate) is found. To the author’s knowledge, the top two famous methods are Best
First A* (BFA*) search and Conflict Directed A* (CDA*) search. BFA* uses priori information (P(mode))
only and CDA* uses both priori (P(mode)) and conflicts information (parts of P(obs|mode)). As CDA*
is the one of the state of art methods and the basis of our approaches, it is introduced briefly in the
next subsection.

2.3. Conflict Directed A* Search for Weak Model

The search space size of a diagnosis problem is dn, where d is the domain’s average size of each
mode variable and n is the size of set MODE. It is too costly to find all the diagnoses. However,
most diagnoses are insignificant because of their low probabilities. CDA* employs the theorem about
diagnosis and conflict to avoid testing unnecessary mode assignments.

A conflict c is an assignment set of mode variables which satisfies that

SD ∪ obs ∪ c|= ⊥ (8)

Without confusion, we also call the difference between observed value and predicted value a
conflict (or between predicted values).

If C is a set of sets c1, c2 . . . cn, set h is a hitting set of C if

∀c ∈ C, h ∩ c 6= ∅ (9)

If C includes all the conflict sets, c is sure to be a diagnosis.
To find the best candidate effectively, the conflict directed A* method develops a novel framework

shown in Figure 2. The A* search finds a best candidate based on priori probability and the conflicts
obtained till now. LTSM checks the consistence of the candidate, the system model and observation.
If it is consistent, the candidate is a diagnosis and added into the diagnosis set. Otherwise, LTMS finds
the minimal conflicts, adds them into conflict set and a new iteration starts. Williams introduces two
distinct search algorithms for a single-diagnosis and multiple diagnoses.
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2.3.1. Single-Diagnosis

To find only one diagnosis, Williams generates a hitting set of current conflicts as the new
candidate to be checked. To get the preferred hitting set efficiently, CDA* generates constituent kernels
(CK) of each conflict first and then generates kernels that resolve all the conflicts.

A constituent kernel of conflict c is an individual assignment that resolves c.
A kernel of the set C including all conflict sets is the minimal set that resolves all conflicts in C

(no subset of kernel resolves all conflicts).
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The A* search is employed to find a specific kernel. Figure 3 shows a search tree created by CDA*
where blank nodes are invalid nodes and grey nodes are valid nodes. The two blank nodes are not
kernels because they are not minimal and the two nodes in the right are not extended because they are
able to resolve both conflicts.

When there is no conflict in the beginning, the candidate assumes that all components are normal.
When conflicts are found by LTMS, the conflict manager generates the next best kernel by resolving
all the conflicts and gets the next best candidate by setting all other components as normal. To be
brief, Figure 3 evaluates candidates by the number of fault component and kernels are best candidates.
In practice, kernels are also evaluated by probability.
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2.3.2. Multiple Diagnoses

When multiple diagnoses are expected, the diagnosis method is quite different. Figure 4 shows a
search tree where blank nodes are candidates and grey nodes will be extended in the following search.
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Figure 4. A Search Tree Expanded by Conflict Directed A* Search (CDA*) for Multiple Diagnoses.

CDA* computes the cost of nodes in the search tree according to the prior probability. But if a
node contains any conflict, its cost is ∞ and the node is skipped. A valid best candidate is found at the
leaf node and it is a diagnosis if verified by LTMS. The search-verification iteration ends until enough
diagnoses are obtained.

The next section will introduce the shortcomings of current methods and our solutions.
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3. Conflict and Consistency Directed A* Diagnosis for a Strong-Fault Model

CDA* makes full use of conflicts that imply the scope of possible fault components. It is more
effective than BFA* which will not jump over apparently possible candidates but there are still some
drawbacks: (1) Although more conflicts can help to find best candidate more accurately, LTMS can only
give one conflict one time; (2) Only conflict is utilized to obtain best candidate but consistency between
predicted value and observed value implies the possible normal components; (3) The effectiveness of
CDA* is not proven for a strong-fault model.

To overcome the drawbacks above, this paper proposes a Conflict and Consistency Directed
A* diagnosis method illustrated in Figure 5. The Multi-conflict and Multi-consistency LTMS
(MCMC-LTMS) checks the consistency of candidate, model and observation and finds as many
conflicts and consistencies as possible if it is inconsistent. The A* search generates the best candidate
based on priori probability, conflicts and consistencies. The iteration continues until there are enough
diagnoses in diagnosis set.
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To accomplish this framework, three problems must be solved. The first one is to represent the
model by Boolean variables so that classic reason technique such as unit propagation [30] can be
applied. The second problem is MCMC-LTMS, which is quite difficult to achieve because there are
insignificant consistencies generated in reasoning. They must be identified and ignored to avoid
disturbing the generation of best candidate. How to utilize all the information to generate the best
candidate is the last problem. This paper uses the encoding technique in Torta’s thesis [29] to address
the first one and proposes innovative methods to solve the last two.

3.1. Model Encoding

Since there are multi-valued variables (enumeration variables) in a strong-fault model,
LTMS cannot reason the system directly. Fortunately, multi-valued variables can be encoded by
Boolean variables.

A multi-valued variable v (v = v1, v2 ... vn) with n values can be encoded by n Boolean variables
where the value (true, false) of each Boolean variable indicates if the value of v is vi. Then the
assignments in SD are replaced by Boolean variables as shown in (10) where v is a multi-valued
variable, v@vi and bi are Boolean variables.

multi− valuedvariables : v = v1, v2 . . . vn

booleanvariables : v@v1, v@v2 . . . v@vn

origninalSD : (v = vi) ∧ b1∧!b2

encodedSD : v@vi ∧ b1∧!b2

(10)

Besides the replacements in SD, additional constraints are inserted to ensure that the assignments
of Boolean variables are consistent with Enumeration variables. The first one is MUTEXT constraint,
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as (11), which ensures that any two Boolean variables encoding the same multi-valued variable will
not be true at the same time.

MUTEXT :!(v@vi ∧ v@vj) (11)

The second one is the COMPLETENESS constraint, as (12), which ensures that there must be at
least one Boolean variable encoding multi-valued v is true.

COMPLETENESS : v@v1 ∨ v@v2 ∨ · · · ∨ v@vn (12)

The two constraints make sure that there exists one and only one true variable in any set of
Boolean variables encoding an Enumeration variable. By replacing the assignments and adding the
extra constraints, original model is converted into a Boolean one that can be solved by LTMS.

3.2. Multi-Conflict Multi-Consistency LTMS

LTMS [23] is designed to avoid repeating reasoning. It is composed of node and justification as
Figure 6. Nodes can be classified into assumption node, premise node and reason node. In diagnosis,
premise nodes are observations and clauses of system model. Justification recording the reasoning
process is mainly implemented by unit propagation [31]. All the reasoning rules are illustrated in (13)
where (a) is a standard unit propagation which predicts a value of an inner variable/output variable,
(b) is a true propagation which means the clause is true and (c) is a false propagation which means the
clause is false. The consistency among candidate, model and observation is verified by the three rules.

(a)A = f alse, A ∨ B⇒ B = true
(b)A = f alse, B = true, A ∨ B⇒ true clause
(c)A = f alse, B = f alse, A ∨ B⇒ f alse clause

(13)

When there is a conflict found in traditional LTMS, the reasoning is stopped. Then, the conflict
sets are returned to obtain best candidate.

Although LTMS provides conflict sets to jump over many impossible candidates, it can only get
one conflict every time and does not dig the information in system structure deeply. In this subsection,
LTMS is improved in two perspectives: multiple conflicts and consistencies.
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3.2.1. Multi-Conflict LTMS

More conflicts may help to greatly reduce the range of fault components. For example, in Figure 7,
if the predicted value and observed value of out2 are different, we can get a conflict set {A = normal,
C = normal} which indicates that there may be fault in component A or C but the better candidate can
only be determined by priori probabilities. However, if another conflict, for example at out1, is found,
it is obvious that component A is more likely to be faulty.
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To get multiple conflicts in one reasoning process, multi-conflict LTMS does not stop when
one conflict is found. To obtain as many conflicts as possible, this paper proposes an out-ignorance
in reasoning strategy which means the observed output values do not participate in the reasoning.
This technique makes a value can be propagated sequentially even if there is a conflict between
predicted and observed value. This helps the reasoning to cover as many components as possible.
Conflicts are found in two ways: (1) the differences between predicted values and observed values;
(2) false clause as (c) in (13). Conflict sets are obtained by searching back forward until all the assumed
modes causing conflicts (or fault clauses) are found.

3.2.2. Multi-Consistency LTMS

Conflict reveals the scope of fault components. In the opposite, is there something indicating
the range of normal component? Still in Figure 7, conflict {A = normal, C = normal} indicates both
components A and C are possible to be faulty. But if there predicted value and observed value at out1
is the same, it implies that both component A and B are normal. So, component C is the one probably
to be faulty. The example shows the basic idea of consistency, which is formally defined as follows:

A consistency c is an assignment set of mode variables satisfies that (1) there exits an over
determined clause set [32] SDc in which any mode variable also exists in c; (2) there is no conflicts over
c, SDc and observation obs as (14):

c ∪ SDc ∪ obs|6= ⊥ (14)

A consistency c is maximal if there is no super set of c is a consistency. Different from multi-conflict
LTMS, multi-consistency finds maximal consistencies.

Consistency is found by true clause but not all true clauses are consistencies. For example, (in == out)
can be converted to ((!in∨out)∧(in∨!out)), where (in∨!out) is true when in is observed to be true.
However, the true clause is insignificant because it does not verify the functionality (in == out). To obtain
the significant consistencies, three techniques are adopted: (1) unit propagation delay; (2) unknown
ignorance; and (3) false-enumeration ignorance. Unit propagation delay means all clauses can be true or
false must be inferred first before conduct unit propagation. Unknown ignorance means if an unknown
variable is included in a true clause, the clause is ignored to find consistency. False-enumeration ignorance
is the same with unknown ignorance but unknown variable is replaced by false variable encoding an
enumeration. Rule 1 makes sure that insignificant clause like (in∨!out) can be found. Rule 2 and rule 3
will mark them as invalid clauses for consistency. The consistency can be found by searching back
forward from true clauses and “verified” atoms (must be true for variables encoding enumerations
and any values for original Boolean variables).

One important thing is that the assignments in a consistency are not ensured to be correct, just like
the assignments in a conflict are not always wrong. A Bayesian model is proposed to analyze the
relationships among the correctness of assignments, conflicts and consistencies, which is discussed in
Section 3.3.1.

3.2.3. MCMC-LTMS

This subsection combines the ideas of multiple-conflict and multiple-consistency together.
The details of MCMC-LTMS are illustrated by pseudocodes where three routines are
the most important: CHECK_CONSISTENCY, MIN_CONFLICT and MAX_CONSISTENCIES.
CHECK_CONSISTENCY checks the consistency among system model SD, observation obs and
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candidate ω. MIN_CONFLICT and MAX_CONSISTENCIES find multiple minimal conflicts and
multiple maximal consistencies respectively.

Algorithm 1 illuminates the framework of CHECK_CONSISTENCY for MCMC-LTMS. It applies
PROPAGATE_FORWARD on clause_set until no propagation is made (flag == 0). If there exists a conflict
or false clause in any propagation, the route returns false. On the contrast, it returns true.

Algorithm 1. Pseudocode of CHECK_CONSISTENCY for Multi-Conflict and Multi-Consistency-LTMS
(MCMC-LTMS).

CHECK_CONSISTENCY (SD, obs, ω)
Inputs: SD, system description in the form of CNF

obs, observations of observed variables
ω, assumptions of mode variables

Outputs: the consistency among SD, obs and ω

load obs and ω

clause_set = SD
/* bit0 ~unit propagate, bit1 ~conflict or false clause, bit2 ~true clause */
bit<3> flag0 = 0, flag = 0
do

flag = PROPAGATE_FORWARD(clause_set)
flag0 = flag0 | flag

while (flag ! = 0)
conflict = flag0 & (1 << 1)
return conflict? false: true

Algorithm 2 shows how to reason by PROPAGATE_FORWARD. For all clauses, CLAUSE_SCAN
finds the false, true and unknown literals in clause and stores them in false_assign, true_assign,
unknown_literal. When true_assign is not empty, the clause is true. But if the unknown_literal is not
empty (rule 2) or there exists false assignment for variable encoding enumeration variables (rule 3),
the clause is not valid for consistency. If the unknown_literal are more than one, the clause remains the
same. If there is only one unknown literal, unit propagation is applied but delayed (rule 1). If all the
literals are false, the clause is false and at least one conflict set can be obtained.

Algorithm 2. Pseudocode of PROPAGATE_FORWARD for MCMC-LTMS.

PROPAGATE_FORWARD (clause_set)
Inputs: clause_set, the clauses describe system
Outputs: a 3-bit flag, bit0 ~unit propagate, bit1 ~conflict, bit2 ~true clause

clause_set, clause_set is replaced by the clauses remain the same
bit<3> flag = 0
for clause in clause_set

CLAUSE_SCAN(clause, false_assign, true_assign, unknown_literal))
if (true_assign is not empty)

reason = (unknown_literal is empty)? true: false //rule 2
PROPAGATE_TRUE_CLAUSE(clause, true_assign, false_assign, reason)//rule 3
flag = flag | (1<<2)

else if (unknown_literal.size > 1)
remain_clause.insert(clause)

else if (unknown_literal.size == 1) //rule 1
store clause, false_assign, unknown_literal in fringe

else
PROPAGATE_FALSE_CLAUSE(clause, false_assign)
flag = flag | (1<<1)

for clause, false_assign, literal in fringe
flag = flag | PROPAGATE_FRINGE_CLAUSE(clause, false_assign, literal)?: (1<<0): (1<<1)

clause_set = remain_clause
return flag
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Algorithm 3 illustrates how to obtain multiple minimal conflicts when it is inconsistent.
MIN_CONFLICTS searches backward from all the conflict atoms and false clauses, finding conflict
sets recursively from down to up. If a conclusion is made by several premises, the results of the
premises are combined by MIN_PRODUCT and if a conclusion is made by anyone on several premises,
they are combined by MIN_PLUS. Finding the maximal consistencies are similar in Algorithm 4 except
that MIN_PRODUCT and MIN_PLUS are replaced by MAX_PRODUCT and MAX_PLUS where
PRODUCT means a Cartesian product of sets; PLUS means union set of sets; MIN means the minimal
set; and MAX means the maximal set.

Algorithm 3. Pseudocode of MIN_CONFLICTS for MCMC-LTMS.

MIN_CONFLICTS (conf_atom_clause)
Inputs: conf_atom_clause, a conflict atom, conflict atom set, false clause or false clause set
Outputs: the set of minimal conflicts
conflict = {}
for item in conf_atom_clause

if (item is a mode atom and is true)
conflict0 = {item}

else if (item is a non-mode atom or clause)
conflict0 = {}
for i in item’s support set

conflict0 = MIN_PRODUCT(conflict0, MIN_CONFLICTS(i))
else

conflict0 = {}
conflict = MIN_PLUS(conflict, conflict0)

return conflict

Algorithm 4. Pseudocode of MAX_CONSISTENCIES for MCMC-LTMS.

MAX_CONSISTENCIESc(atom_true_clause)
Inputs: atom_true_clause, an atom, an atom set, a true clause or a true clause set
Outputs: the set of maximal consistencies
consistency = {}
for item in atom_true_clause

if (item is a mode atom and is true)
consistency0 = {item}

else if (item is a non-mode atom or clause)
consistency0 = {}
for i in item’s support set

consistency0 = MAX_PRODUCT(consistency0, MAX_CONSISTENCIES (i))
consistency = MAX_PLUS(consistency, consistency0)

return consistency

After obtaining the minimal conflicts and consistencies, the A* search algorithm is employed to
generate new candidates.

3.3. A* Search in Diagnosis

This subsection describes how to use the A* search to generate the best candidates based
on the conflicts and consistencies returned by MCMC-LTMS in two cases: single diagnosis and
multiple diagnoses.
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The most important idea of the A* search is to solve the diagnosis problem as an optimization
problem as (15) where g is the evaluation function.

max : g(ω)

subject to : SD ∪ obs ∪ω|6= ⊥
(15)

In most cases, unfortunately, the diagnosis optimization problem for a strong-fault model is
nonconvex like Figure 8 where the X-axis and Y-axis are modes of component 1 and component 2
respectively and the Z-axis is the probabilities of different mode combinations.

BFA* and CDA* solve the problem by A* search algorithm [33] based on mutual, preferential
independence (MPI) [22] ensuring that the values of mode variables can be assigned one by one
independently. This section discusses how to exploit priori, conflict and consistency in detail.
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3.3.1. Bayes in Assignments and Possible Conflicts

Conflict and consistency are different evaluation results of a redundant set. Pulido calls a
redundant set a Possible Conflict (PC) [32]. This paper adopts the same terminology but uses PC to
represents the unknown result of an equality check between two values (two model prediction values,
or one model prediction value and one observation). Traditional methods simply assume that if there is
a conflict, the candidate is invalid (false alarm probability is zero); if there is no conflict, the candidate
is a diagnosis (missing probability is zero). For the discrete model, the first rule is right according to the
definition of consistency-based diagnosis [29]. However, the second rule is not absolutely right for a
strong-fault model. One of the most famous examples is “Stuck Fault” [20] which means a component
gets stuck on a mode in spite of commands. When the component is in the mode m, there will be
no conflict even the candidate set the component in “stuck m.” Although the candidate can be lost
because it contains more fault number compared with the candidate assuming the component is in
the mode m, the oversimplified probability model cannot help us to evaluate the cost if we want to
set some mode variables different values from a consistency set. Because if missing alarm is zero,
the assignments in a consistency must be right. However, the statement can be wrong. This part
analyzes the influence relations between mode variable assignments and possible conflicts using the
Bayesian method and proposes a new simplified probability model, assuming that: (1) each mode
assignment influences each involved PC independently; (2) false alarm probability is zero (due to the
definition of consistency-based diagnosis); and (3) missing alarm probability is a small constant.
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The bipartite graph in Figure 9 illustrates the influence relationships between mode variables and
PCs, where ωi is the assignment for a mode variable and PCi is a possible conflict. Possible conflict PC
= 1 means the PC is consistent (consistency) and PC = 0 means inconsistent (conflict). ωi = 1 means the
assignment is correct and ωi = 0 means the assignment is wrong. Without confusion, ωi is also used
to represent the assigned mode value of component i. In the worst case, any assignment is involved
in all possible conflicts as in Figure 9. However, usually one possible conflict only involves several
assignments. The kj components involved in the jth possible conflict PCj are denoted by ωj1, ωj2 · · ·ωjkj

.
Based on the structure in Figure 9 and results of PCs, the probability of mode assignments is evaluated
by (16) to find the best candidate.

P(ω1, ω2 · · ·ωn|PC1, PC2 · · ·PCm) = P(ω1,ω2···ωn ,PC1,PC2···PCm)
P(PC1,PC2···PCm)

=
n
∏
i=1

P(ωi)

×
m
∏
j=1

P(PCj

∣∣∣ωj1, ωj2 · · ·ωjkj
)

× 1
P(PC1,PC2···PCm)

(16)

where
n
∏
i=1

P(ωi) is the priori probability of assignments,
m
∏
j=1

P(PCj

∣∣∣ωj1, ωj2 · · ·ωjkj
) is the conditional

probability mentioned in (7) and P(PC1, PC2 · · ·PCm) is the normalization factor. Finding the best
candidate means to solve optimization problem (17) where

→
ω = [ω1, ω2 · · ·ωn]

T .

max : g(
→
ω) =

n

∏
i=1

P(ωi) ×
m

∏
j=1

P(PCj

∣∣∣ωj1, ωj2 · · ·ωjkj
) (17)

It is difficult to solve (17) because the probabilities in this formula are coupled with the
real structure of system. To provide a general diagnosis method, this paper assumes that each
mode assignment ω effects the probability independently and the simplified distribution model for
P(PCj

∣∣∣ωj1, ωj2 · · ·ωjkj
) is shown in Table 1 where ε (missing alarm probability) is positive number

close to zero. If a fault may not cause a conflict, ε should be larger.
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Table 1. Simplified Distribution of Mode Variable Assignments and Possible Conflicts.

Mode Assignments PCj Conditional Probability

f is the number of wrong assignments
1 εf

0 1 − εf

The distribution in Table 1 indicates that: when all the assignments in a PC is correct (f = 0),
PC must be consistent (P(PC = 1) = ε0 = 1 and P(PC = 0) = 1 − ε0 = 0); when one assignment is wrong,
PC is probability to be a conflict (P(PC = 1) = ε and P(PC = 0) = 1 − ε); when there are multiple
assignments are wrong, εf and 1 − εf are the probability of consistency and conflict respectively. Briefly,
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if PCj = 0, there must be at least one wrong assignment in ωj1, ωj2 · · ·ωjkj
; if PCj = 1, the probability of

any ω = 1 in ωj1, ωj2 · · ·ωjkj
is much higher.

To avoid numerical problem, (17) is converted into a cost-based minimization optimization
problem (18) where fj is the number of different assignments between new candidate and consistency
or conflict (assuming new candidate is correct, the different assignments in consistency or conflict are
wrong assignments), n is the number of components and m is the number of PCs.

min : c(
→
ω) = − ln(

n
∏
i=1

P(ωi) ×
m
∏
j=1

P(PCj

∣∣∣ωj1, ωj2 · · ·ωjkj
) )

= −
n
∑

i=1
ln P(ωi)−

m
∑

j=1
ln P(PCj

∣∣∣ωj1, ωj2 · · ·ωjkj
)

=
n

∑
i=1

(− ln P(ωi))︸ ︷︷ ︸
priori cost

+ (− ln ε)
m

∑
j=1, PCj=1

f j︸ ︷︷ ︸
consistency−break cost

+
m

∑
j=1, PCj=0

(− ln(1− ε f j))

︸ ︷︷ ︸
con f lict−solve cost

(18)

The cost is composed of three parts: priori cost which is determined by the priori probability,
consistency-break cost which is the cost to assign mode values different from the assignments in
consistencies and conflict-solve cost which is the similar to break consistency cost but assigns different
values from conflicts. Equation (18) indicates that: (1) any different assignment from consistency
results in a high punishment in the cost; (2) If there is no different assignment from any conflict,
the cost will be positive infinite and the more different assignments from the conflicts, the less the cost
is. To minimize the cost function, the consistency-break cost prefers to reserve the assignments in all
consistencies and the conflict-solve cost prefers to change all assignments in conflicts. With the same
priori probability, different assignments from consistency will increase cost but different assignments
from conflict will reduce cost. However, in most cases, the more different assignments from conflict,
the priori cost will be larger. Best candidate should make a balance among priori, breaking consistency
and solving conflict.

The three parts of cost function in (18) contribute differently to the whole cost. Figure 10 shows
the curve of natural logarithm function y = ln(x) in which y is close to zero when x is close to 1 and y is
close to negative infinite when x is close to zero. For priori cost, usually P(ωi) for normal mode is close
to 1 but close to 0 for fault mode. When finding a candidate containing fault modes, priori cost is not a
small quantity. In consistency-break cost, because ε is a positive number close to zero, lnε is not a small
quantity and when assignments in candidate are different from those in consistency, consistency-break
cost contributes a lot. And consistency-break cost is zero if the assignments in consistencies keep the
same. For conflict-solve cost, when assignments in conflicts are not changed, it is infinite, however it
is a small quantity when some assignments in conflicts are changed and conflict- solve cost does not
decrease much when f increases.

So, (18) can be approximated by (19).

cost(
→
ω) =


∞, there exists unsolved conflict

n

∑
i=1

(− ln P(ωi))︸ ︷︷ ︸
priori cost

+ (− ln ε)
m

∑
j=1, PCj=1

f j︸ ︷︷ ︸
consistency−break cost

, else (19)

The only problem for (19) is that, to construct a heuristic function for A* search, consistency-break
cost should be in the form of a sum according to component, rather than a sum according to PC.
Fortunately, it is very easy to convert. The converted formula is shown in (21).
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3.3.2. Single Diagnosis—CCDLSA*

With the MPI property, finding a single diagnosis is relatively simple. The first best candidate ω

is generated by assigning each mode variable the most likely value (for example, all components are
normal) according to the prior probability. If there is no conflict found, ω is a diagnosis and else new
candidate must be generated based on the information returned by MCMC-LTMS.

Williams B. C. et al. [22] employs kernel constitutes to find the next best candidate. The core
idea behind kernel constitutes is that even if a component is set as fault by mistake, it will not cause
more conflicts. However, the diagnosis in solution space for a strong-fault model is nonmonotonic
which may cause the expansion of conflict. For example, assuming component B is faulty in Figure 7.
If detect a conflict at out1 (conflict set {A, B}) and the kernel constitute algorithm takes {A} as the
candidate by mistake. For a weak-fault model, the only mode of A can be fault and the conflict set
will still be {A, B} because setting component A as fault predicts no wrong value at the output of A.
However, for a strong-fault model, a specific fault mode must be assigned to component A and a fault
mode will cause a wrong output for component A and there will be two conflict sets {A, B} and {A, C}.
The expansion of conflict causes “combinatorial explosion” and a strong-fault model cannot adopt
kernel constitutes method.

In this subsection, we propose a Conflict and Consistency Directed Local Sequential A* search
(CCDLSA*) to solve this problem where “local” means only components involved in conflicts are
searched and “sequential” means new possible fault components are added sequentially. A* algorithm
is employed in the search.

< P(ωi), fi > (20)

Each node in the search tree is labelled by (20) where P(ωi) is the priori probability, fi is the
occurrence number of component i in all consistencies in which ωi is different from the assumption.
The cost of the assignments is defined by (21) if all the conflicts are solved.

n

∑
i=1

(− ln P(ωi) + (− ln ε) fi) (21)

where n is the number of variables in the assignments. If the assignment does not solve all the conflicts,
its cost is positive infinite.

Take the system in Figure 7 as an example. Assume each component has three modes.
{A = mA.1, B = mA.1} is a consistency and {A = mA.1, C = mC.1} is a conflict. The search tree is illustrated
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in Figure 11 where the algorithm prefers to believe that A’s mode is mA.1 because it does not break any
consistency. Algorithms 5 and 6 illustrate the proposed method.Sensors 2018, 18, x  16 of 28 
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Algorithm 5 shows the framework of CCDLSA*. First, all the components are assumed to be
normal. If it is not consistent with SD and obs, the minimal conflict and maximal consistency sets
are obtained. FAULT_COMPONENT finds possible fault components which are assigned as normal
in a conflict set and new possible fault components are pushed back to vector fault_components.
A*_BEST_CANDIDATE finds the next best candidate whose consistency is further checked by
CHECK_CONSISTENCY. The procedure loops till a consistent diagnosis ω is found. Because the
addition of consistencies will change the cost of existing nodes, only consistencies in the first consistency
check are utilized.

Algorithm 5. Pseudocode of CCDLSA*.

CCDLSA*(SD, obs)
Inputs: SD, system description in the form of CNF

obs, observations of observed variables
Output: ω, the diagnosis consistent with SD and obs
ω = all components are normal
if (!CHECK_CONSISTENCY(SD, obs, ω))

atom_true_clause = consistency variables or valid true clauses
conf_atom_clause = conflict variables or valid false clauses
conflicts = {}, fault_components = empty vector
consistencies = MAX_CONSISTENCIES(atom_true_clause)
do

conflicts = conflicts + MIN_CONFLICTS (conf_atom_clause)
push back FAULT_COMPONENT(conflicts) - fault_components into fault_components
ω = A*_BEST_CANDIDATE(conflicts, consistencies, fault_components)

while(!CHECK_CONSISTENCY(SD, obs, ω))
return ω

Algorithm 6 shows the kernel algorithm A*_BEST_CANDIDATE. A queue is first initialized by
empty set {}. Then the node ω with minimal cost in queue is always popped out. If ω does not assign
values for all components in fault_components, node ω is expanded by EXPAND where cost is defined
by (21). If it does, ω is the best candidate after adding other default assignments by ADD_DEFAULT.

CCDLSA* is efficient because both conflict and consistency are employed to generate best
candidate and the search space is restricted by the possible fault components. However, it is not
good at obtaining multiple diagnoses because maybe there exist no enough diagnoses in local space.
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Algorithm 6. Pseudocode of A*_BEST_CANDIDATE for CCDLSA*.

A*_BEST_CANDIDATE (conflicts, consistencies, fault_component)
Inputs: conflicts, the set of all conflicts

consistencies, the set of all consistencies
fault_components, the set of possible fault components

Output: ω, the best candidate
add {} into queue
do

ω = pop queue
if ω does not assign values for all components in fault_components

EXPAND(ω, conflicts, consistencies)
else

break
while(1)
ω = ADD_DEFAULT(ω)
return ω

3.3.3. Multiple Diagnoses—CCDGA*

The previous subsection proposes a novel focused search diagnosis method to get one diagnosis
and this subsection discusses how to get multiple ones. As shown in Figure 8, the search space is
nonconvex. It is likely to fall into a local space and fail in getting enough diagnoses. This subsection
discusses how to solve this problem by Conflict and Consistency Directed Global A* search (CCDGA*).

Briefly, CCDGA* expands the search space from possible fault components to all the components.
Figure 12 illustrates the search tree of a global based diagnosis, for example used in 0. The basic
algorithm shown in Algorithm 7 is similar to the one in Algorithm 5 except that the initial
assignments are obtained from the search tree and the loop stops until enough diagnoses are obtained.
A*_BEST_CANDIDATE in Algorithm 7 is the same with Algorithm 6 except that fault_components
are replaced by all components. CCDGA* can also be used to obtain single diagnosis but CCDLSA*
outperforms it because of the less search space.
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Algorithm 7. Pseudocode of CCDGA*.

CCDGA*(SD, obs, k)
Inputs: SD, system description in the form of CNF

obs, observations of observed variables
k, the number of diagnosis want to obtain

Output: Ω, the diagnosis set consistent with SD and obs
conflicts = {}, consistencies = {}
do

ω = A*_BEST_CANDIDATE(conflicts, consistencies, all_components)
atom_true_clause = consistency variables or valid true clauses in the first consistency check
conf_atom_clause = conflict variables or valid false clauses
if (!CHECK_CONSISTENCY(SD, obs, ω))

conflicts t = conflicts + MIN_CONFLICTS (conf_atom_clause)
consistencies = MAX_CONSISTENCIES(atom_true_clause) in the first consistency check

else
add ω into Ω

while(size of Ω < k)
return Ω

4. Algorithm Analysis

This section analyzes methods proposed in Section 3.

4.1. MCMC-LTMS

This subsection discusses completeness, coverage and complexity of MCMC-LTMS.

• Completeness

Completeness is defined as the ability to predict all the outputs based on enough inputs.
As MCMC-LTMS employs unit propagation as the reason method, it is incomplete in theory. However,
“A strong-fault model” makes SD a special subset of propositions. Let’s first look at why unit
propagation is incomplete. Assuming A and B are two Boolean variables.

(A ∨ B) ∧ (!A ∨ B) (22)

(A∨!A) ∧ B (23)

Then (22) and (23) are the same proposition in different forms. (22) is a CNF and apparently
unit propagation cannot be applied. But (23) tells us that B must be true because (A∨!A) must be true.
As CNF is the standard form of unit propagation, unit propagation is incomplete. But the problem no
longer exists for a strong-fault model.

To be brief, assume that the behavior of each mode is described by Boolean variables in the
form of (24)

m⇒ (PIN ⇒ lout) (24)

where m is the mode variable, PIN is a proposition composed of input variables and lout is the literal of
output variable out.

(C1
m,IN ∨ l1

out) ∧ (C2
m,IN ∨ l2

out) ∧ · · · ∧ (Cn
m,IN ∨ ln

out) (25)

Equation (25) is the CNF form of (24) where Ci
m,IN is a clause composed m and input variables

and liout is a literal of out. m will be assumed in diagnosis. Inputs are observed or the outputs of other
components. If the all the inputs of this component are observed, (Ci

m,IN∨liout) is a true/false clause
or the value of out can be inferred because the value of Ci

m,IN is determined. If some inputs of this
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component are not observed, they are sure to be inferred from other components. So, the value of all
unknown non-mode variables will be inferred by unit propagation.

As a conclusion, MCMC-LTMS is complete for a strong-fault model.

• Coverage

The coverage discusses if MCMC-LTMS is able to find conflicts covering all fault components.
Before analysis, an assumption is made: fault components will surely cause at least one conflict.
The assumption means a fault mode will always predict a different output from the normal mode and
the outputs of multiple faults will never be counteracted. Although sometimes the assumption is not
satisfied, it is necessary to analyze the coverage of MCMC-LTMS theoretically.

When a system is abnormal, there are two methods to find conflict: difference between predicted
value and observed value of output and false clause. For the first case, all the outputs are predicted
and all the functionalities of the system are verified, which ensures MCMC-LTMS cover all possible
fault components, For the second case, the false clause will not stop the propagation of false predicted
values. More components may be involved but the real fault component will never be missed.

Under the assumption, MCMC-LTMS can cover all possible fault components. If the assumption
is not satisfied, the coverage is not ensured.

• Complexity

The operation of MCMC-LTMS is composed of two steps: (1) reasoning to get the values of
unknown variables and (2) backtracking to find all the conflicts and consistencies.

In the first step, because our object systems are described by a strong-fault model, all the unknown
variables can be inferenced by unit propagation and the complexity is O(na) where n is the number of
clauses in a CNF model and a is the time to execute one unit-propagation.

In the second step, if m conflicts and consistencies are found in the whole and b is the time to find
one conflict or consistency. The time complexity is O(mb).

As a conclusion, the complexity is O(na+mb). As a contrast, the complexity of standard LTMS is
O(na+mb) where m is 0 or 1 because it only finds the support set of one conflict. Although MCMC-LTMS
seems less efficient, it has the same complexity when there is no conflict and MCMC-LTMS saves many
reasoning steps when there exist conflicts because it merges information from multiple conflicts.

4.2. A* Search in Diagnosis

4.2.1. Single Diagnosis—CCDLSA*

• Correctness

We define the correctness of proposed algorithm as the ability to detect conflict if there exists one
and the ability to find a consistent diagnosis. Sometimes a fault will not cause conflict but the problem
can only be solved by improving model rather than algorithm.

For a strong-fault model, MCMC-LTMS is complete. It is able to find at least one conflict if exist.
Although MCMC-LTMS cannot cover all possible fault components in the first consistency check when
the assumption is not satisfied, the any possible fault components missed in the first check will be
added to the search space in the next loops. CCDLSA* enumerates all the possible combinations and
the real assignments must be in them. So CCDLSA* is sure to terminate and get the diagnosis.

• Complexity

The space and time complexity of CCDLSA* is the same and is related to the number of possible
combinations. In the worst case, CCDLSA* must enumerate all the possible combinations which
indicates that the complexity is O(mn) where m is the average assignment number and n is the fault
component number. And if consistency eliminates normal components from fault components correctly,
the complexity is reduced.
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• Optimality

The A* search is optimal when the estimated cost of unassigned mode variables in heuristic
function is not overestimated. The heuristic function used in this paper set the estimated cost as zero
which can never be over the real cost. Therefore, CCDLSA* is optimal.

• Robustness

To be optimal, the A* search usually conducts multiple backtracking when it finds that the
current node is not optimal. If the priori distribution of mode variable is sharp, which means that
the probabilities of different values for one mode variable vary a lot, it is easy to distinct different
combinations by priori probabilities and less backtracking occurs. If the prior distribution is flat,
the priori probabilities of different are similar to each other and more backtracking occurs.

In a summary, if the priori distributions of mode variables are sharp, the CCDLSA* is robust.
However, if the priori distributions are flat, the robustness is not ensured.

4.2.2. Multiple Diagnoses—CCDGA*

• Correctness

The correctness of CCDGA* is similar to CCDLSA*. Because it traverses the solution space for all
the components, it is sure to find all the possible diagnoses.

But if our expected diagnoses number exceeds the existing ones, CCDGA* will traverse the whole
solution space and usually not terminate in acceptable time.

• Complexity

The complexity of CCDGA* is also similar to CCDLSA* except that n is the number of
all components.

• Optimality

Due to the same analysis for CCDLSA*, CCDGA* is optimal.

• Robustness

When there exit enough diagnoses, robustness of CCDGA* is the same with CCDLSA*: if the priori
distributions of mode variables are sharp, the CCDGA* is robust. However, if the priori distributions
are flat, the robustness is not ensured. However, if there are fewer diagnoses than the expected number,
CCDGA* will traverse the whole search space, which is too costly.

5. Case Study

5.1. Model Introduction

Figure 13 shows a heat control system composed of battery, switch, heater, sensor and ammeter in
satellite. The battery offers power so that the heater can keep other equipment warm and operating
well. There is a main switch S to control all the heaters and four switches si (i = 1, 2, 3, 4) to control four
heaters. Heater hi (i = 1, 2, 3, 4) is composed of two resistors hi1 and hi2. Four sensors Seni (i = 1, 2, 3, 4)
are used to monitor the heating efficiency. Two ammeters A1 and A2 monitor the current at two points.

The modes of all the components are shown in Figure 14 in which normal modes can transfer
to both normal modes and fault modes but fault modes can never transfer to normal modes.
Table 2 illustrates the behaviors of each component in different modes in details.
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Table 2. Components, Modes and Behaviors.

Component Mode Behavior

battery

normal The output voltage is normal.

by_pass The output voltage is zero.

less_volta The output voltage is lower than normal.

over_volta The output voltage is higher than normal.

switch

normal When the switch is on, output is equal to the input. Zero when off.

stuck_on The switch keeps on ignoring the command.

stuck_off The switch keeps off ignoring the command.

resistor

normal

If the input voltage is zero, there is no heat and output current is zero.
If the input voltage is less, power is less and output current exists.
If the input voltage is normal, power is normal and output current exists.
If the input voltage is over, power is over and output current exists.

less_power If the input voltage is zero, there is no heat and output current is zero.
Otherwise, power is less and output current exists.

over_power If the input voltage is zero, no heat and output current is zero.
Otherwise, power is less and output current exists.

broken There is no heat and output current is zero.

sensor

normal

If both resistors generate no heat, output temperature is none.
If both resistors generate heat normally or one is less power but the other is
over power, output temperature is normal.
If one resistor generates heat over power and the other one is normal or over
power, output temperature is over.
In other cases, output temperature is less.

stuck_less Output temperature is less.

stuck_over Output temperature is over.

broken Output temperature is broken.

ammeter
normal The output is the number of input currents.

fault The output is always zero.

The system in Figure 14 is composed of 20 components where there are 4 sensors, 5 switches,
8 resistors, 2 ammeters and 1 battery in whole. The search space is 4× 35 × 48 × 44 × 22 = 65,229,815,808
≈ 6.5 × 1010 which is too huge to search by traversing. After encoding, the system is described by
Boolean variables and there are 1059 constraint clauses (model) over the system which are also a huge
challenge to MCMC-LTMS. The system is employed to demonstrate the proposed methods in the next
two subsections where all the experiments are conducted on a i7-8550u, 8G RAM laptop.

5.2. MCMC-LTMS

This subsection demonstrates the ability of MCMC-LTMS to find conflict and consistency.
The 11 observations are shown in Table 3 where cS is the command for switch S, cs1~cs4 are the
commands for s1~s4, t1~t4 are the output values of Sen1~Sen4 and c1 and c2 are the monitored
currents of A1 and A2.

Table 3. Observations for Heat Control System.

Variable cS cs1 cs2 cs3 cs4 t1 t2 t3 t4 c1 c2

Value true true true true true norm norm less norm four four

Table 4 shows the conflicts and consistencies found by MCMC-LTMS where there are 1 conflict
and 5 consistencies. Based on the structure in Figure 13, it is obvious that the conflict locates the fault
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component in sensor 3 and its upstream components. The first three consistencies mean that branches
1, 2 and 4 including three sensors are normal. The last two consistencies extend the normal scope to
h31, h32, A1 and A2. The most interesting consistency is {battery, S, s3, s4, h31, h32, h41, h42, A2} in
which h31 and h32 may be in fault mode less_power in theory but because the predicted outputs at A1
and A2 are consistent with observed values, h31 and h32 are included in consistency.

Table 4. Conflict and Consistency Found by MCMC-LTMS.

Type Set

Conflict {battery, S, s3, h31, h32, sen3}

Consistency

{battery, S, s1, h11, h12, sen1}
{battery, S, s2, h21, h22, sen2}
{battery, S, s4, h41, h42, sen4}
{battery, S, s1, s2, h11, h12, h21, h22, A1}
{battery, S, s3, s4, h31, h32, h41, h42, A2}

The result in Table 4 indicates that MCMC-LTMS can effectively analyze system behaviors and
find conflict and consistency set based on the structure information hidden in encoded model.

5.3. A* Search in Diagnosis

5.3.1. Single Diagnosis

Best First A* search (BFA*), Conflict Directed A* search (CDA*, multiple fault version, single fault
version cost too much time), CCDLSA* (ε = 1.0e-2) and CCDGA* (ε = 1.0e-2) were evaluated to find
one diagnosis for the same scenario in Table 3.

Figure 15 provides the diagnosis process of CCDLSA* where the algorithm tried 3 candidates in all
and the diagnosis results showed that sensor Sen3 was in stuck_less fault mode and other components
were normal. The correctness of the diagnosis can be easily verified according to system structure
and component behavior. To be brief, the diagnosis processes of other algorithms are not given in this
paper. All the left 3 algorithms had the same diagnosis results but different diagnosis time and tried
candidates number.
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To compare the performances of different methods, BFA* is adopted as the criterion. The “Ratio,”
defined by (26), in the next 4 tables are the percentages of “algorithm” based on BFA* for different
“value”s.

Ratio(algorithm) =
value o f algorithm

value o f BFA∗ × 100% (26)

The time for 10 experiments is shown in Table 5 where “Ave” means the average time and “Ratio”
means the percentages of diagnosis time based on BFA*. We can see that the time for 10 experiments
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fluctuates slightly around the average time which is also shown in Figure 16. The small fluctuation
implies that all of the 4 algorithms are stable and proves the robustness of the proposed methods.
In average, CCDLSA* and CCDGA* cost less time than BFA* and CDA*. Due to the smaller search
space of CCDLSA*, it was slightly better than CCDGA*.

Table 5. Single Diagnosis Time(s) for BFA*, CDA*, CCDLSA* and CCDGA*.

Algorithm 1 2 3 4 5 6 7 8 9 10 Ave Ratio

BFA* 1.787 1.711 1.620 1.712 1.738 1.883 1.702 1.782 1.738 1.680 1.74 100.00%
CDA* 1.644 1.756 1.711 1.668 1.676 1.640 1.687 1.650 1.682 1.64 1.68 96.55%

CCDLSA* 1.165 1.163 1.156 1.169 1.131 1.19 1.134 1.144 1.147 1.153 1.16 66.67%
CCDGA* 1.191 1.24 1.252 1.311 1.183 1.183 1.178 1.256 1.267 1.319 1.24 71.26%
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The numbers of nodes for search are shown in Table 6 where “Tried Candidates” means the
number of candidates tried by the algorithm, “Expanded Nodes” means the number of nodes expanded
in the search tree and “Node in Queue” means the number of the leaf nodes in the search tree when
the diagnosis is finished. “Num” means the number of nodes and the percentages “Ratio” beside the
numbers are the ratios of their node numbers and the node number for BFA*. Although CDA* tried
fewer candidates than BFA*, the numbers of nodes expanded and in queue were still much larger than
CCDLSA* and CCDGA*. CCDLSA* tried the least candidates, expanded least nodes and left least
nodes in the queue as well.

Based on the analysis about Tables 5 and 6 and Figure 16, we can see that CCDLSA* and CCDGA*
can avoid invalid node expansion effectively. This feature helps the two proposed algorithms consume
less memory space and time to diagnose.

Table 6. Tried Candidates, Expanded Nodes and Nodes in Queue for Single Diagnosis.

Algorithm
BFA* CDA* CCDLSA* CCDGA*

Num Ratio Num Ratio Num Ratio Num Ratio

Tried Candidates 11 100.00% 8 72.72% 3 27.27% 3 27.27%
Expanded Nodes 125 100.00% 116 92.80% 6 4.80% 23 18.40%
Nodes in Queue 293 100.00% 286 97.61% 15 5.12% 55 18.77%

5.3.2. Multiple Diagnoses

This experiment evaluates BFA*, CDA* and CCDGA* (ε = 1.0e-2) in finding 3 diagnoses.
The diagnosis results of CCDGA* are shown in Figure 17 where the three diagnoses were:

(1) sensor Sen3 was in stuck_less fault mode; (2) heater h32 was in less_power fault mode and (3) heater
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h31 was in less_power fault mode (all other components in the three diagnoses were normal). All the
three diagnoses could explain the observation. BFA* and CDA* gave the same results, which were not
shown in this paper to avoid redundancy.Sensors 2018, 18, x  25 of 28 
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The diagnosis times for 10 experiments are given in Table 7, the average time is illustrated in
Figure 18 and Table 8 shows the statistic information of nodes for search.

Table 7. 3-Diagnosis Time(s) for BFA*, CDA* and CCDGA*.

Algorithm 1 2 3 4 5 6 7 8 9 10 Ave Ratio

BFA* 2.326 2.234 2.228 2.179 2.146 2.152 2.060 2.227 2.122 2.163 2.18 100.00%
CDA* 1.844 1.951 2.053 1.823 1.881 1.871 1.815 1.871 1.890 1.892 1.89 86.70%

CCDGA* 1.347 1.593 1.465 1.642 1.534 1.517 1.477 1.496 1.482 1.524 1.52 69.72%
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Table 8. Tried Candidates, Expanded Nodes and Nodes in Queue for Single Diagnosis.

Algorithm
BFA* CDA* CCDGA*

Num Ratio Num Ratio Num Ratio

Tried Candidates 35 100.00% 14 40.00% 9 25.71%
Expanded Nodes 297 100.00% 234 78.79% 78 26.26%
Nodes in Queue 689 100.00% 610 88.53% 190 27.58%

The statistical data in Tables 7 and 8 and Figure 18 are similar to the data for single-diagnosis.
CCDGA* was robust in the test, tried the least candidates, expanded the least nodes and kept the least
node in the queue. Although CDA* also just tried a small number of candidates, the nodes expanded
and reserved in the queue approaches the numbers of BFA*. In general, CCDGA* has both space and
time advantages over CDA* and BFA*.
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The section evaluates each module in the proposed methods comprehensively. Section 5.2 shows
that MCMC-LTMS can not only check the consistency between system model, candidate and
observation but also effectively find conflict and consistency set even though the novel LTMS does
not explicitly utilize the system structure model. The two algorithms based on MCMC-LTMS are
accessed in Section 5.3 where both single diagnosis and multiple diagnoses manifest that the proposed
search methods can accurately skip improbable candidates based on the results from MCMC-LTMS.
Compared with BFA* and CDA*, both CCDLSA* and CCDGA* can significantly reduce the space and
time cost in diagnosis.

6. Conclusions and Future Work

This paper presents research on reasoning and search in MBD for a strong-fault model.
The greatest contribution is the proposition of consistency in MBD. In fact, the PC corresponds to
the residual in Fault Detection and Identification (FDI) [11]. Evaluating a residual as 1 amounts to a
PC is verified as a conflict. In the opposite, the PC is proven to be a consistency when the residual is 0.
The proposition of consistency makes MBD and FDI more consistent.

To obtain consistency when reasoning over discrete model, this paper proposed a novel
MCMC-LTMS which is able to obtain multiple conflicts and consistencies in one reasoning process.
In theory, MCMC-LTMS is complete for a strong-fault model and can cover all fault components in
most cases. In the experiment, MCMC-LTMS found the only minimal conflict and all the maximal
consistencies without using system structure information explicitly.

Faults can be isolated efficiently if the information in conflict and consistency is fully utilized.
By Bayesian analysis and the introduction of missing alarm probability, a more exquisite probability
model was proposed. Based on the probability model, P(obs|mode) can be evaluated more accurately.

An approximate version of P(obs|mode) provided by the novel probability model are used to
construct the heuristic function for A* search. With the proposed heuristic function, two A* search
algorithms are designed for single diagnosis and multiple diagnoses respectively. It has been proven
theoretically that although the two algorithms may traverse the whole search space in the worst case,
the diagnoses are correct and optimal for a strong-fault model. For the sharp priori distribution,
both algorithms are robust except that when expecting too many diagnoses, CCDGA* is too time
costly. The search algorithms may perform badly for the flat priori distribution. The experiment
showed that all the tested algorithms were robust and could give the correct diagnoses but both
CCDLSA* and CCDGA* expanded fewer nodes in the search, tried fewer insignificant candidates and
cost less time. Because CCDLSA* has a smaller search space than CCDGA*, CCDLSA* performed
better in single diagnosis. Specifically, using BFA* as the criterion, for single diagnosis, CCDLSA* and
CCDGA* reduced time by 33.33% and 28.74% respectively. However, CDA* just reduced by 3.45%;
for 3 diagnoses, CCDGA* reduced time by 30.28% and CDA* only reduced by 13.3% as a comparison.
Besides, CCDLSA* and CCDGA* also significantly outperformed CDA* in tried candidates, expanded
nodes and nodes in queue, which indicated that the proposed algorithms cost less memory space.

Theoretical analysis and experiment manifest that the proposed diagnosis methods for
a strong-fault model are effective and efficient. For a sharp priori distribution, both CCDLSA* and
CCDGA* are suitable for single diagnosis but CCDLSA* is better. For multiple diagnoses, CCDGA* is
effective with sharp priori distribution and a proper expected diagnosis number.

Currently, the search algorithms can only employ the consistencies found in the first iteration
because the weights of nodes may change in the search tree based on new consistencies which causes
reconstruction of the search tree. How to make use of consistencies incrementally will be studied in
the future.
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