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Abstract

Serine proteases of the Chymotrypsin family are structurally very similar but have

very different substrate preferences. This study investigates a set of 9 different

proteases of this family comprising proteases that prefer substrates containing

positively charged amino acids, negatively charged amino acids, and uncharged amino

acids with varying degree of specificity. Here, we show that differences in electro-

static substrate preferences can be predicted reliably by electrostatic molecular

interaction fields employing customized GRID probes. Thus, we are able to directly

link protease structures to their electrostatic substrate preferences. Additionally, we

present a new metric that measures similarities in substrate preferences focusing only

on electrostatics. It efficiently compares these electrostatic substrate preferences

between different proteases. This new metric can be interpreted as the electrostatic

part of our previously developed substrate similarity metric. Consequently, we suggest,

that substrate recognition in terms of electrostatics and shape complementarity

are rather orthogonal aspects of substrate recognition. This is in line with a 2‐step

mechanism of protein‐protein recognition suggested in the literature.
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1 | INTRODUCTION

In humans, more than 560 different genes code for proteases1 consti-

tute nearly 3% of all approximately 19 000 human genes2; therefore,

proteases have been investigated as drug targets extensively.3 Many

protease inhibitors are already very successful drugs, eg, to control

blood coagulation,4 to treat hypertension and diabetes,5 to fight

cancer, and to combat viral diseases like HIV6 and Hepatitis C.7
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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However, protease promiscuity and overlapping specificity profiles

are major problems that have to be overcome in most protease

inhibitor drug design efforts.8,9

Proteases catalyze the hydrolysis of peptide bonds through

acceleration of the nucleophilic attack on the peptide amide group,

which would otherwise be kinetically stable.10 To fulfill their biological

function, proteases have to bind their native substrates and stabilize

the transition state for hydrolysis of the peptide bond.11 Promiscuity

and specificity of this recognition process not only exhibit striking

differences between different proteases, but also show large
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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variations within the binding cleft of an individual protease.12-14

Obviously, evolution had to tackle quite different tasks—on the one

hand, designing proteases that are able to digest more or less every

peptide that they encounter, and on the other hand, designing

proteases within a signaling cascade, that should specifically recognize

the subsequent member of the signaling chain to ensure the proper

transmission of the signal.15 This evolutionary pressure led to

proteases ranging from highly promiscuous to extremely specific.

Surprisingly, these extremes can occur within the same family of

evolutionarily related proteases, eg, the Chymotrypsin family of serine

proteases.16

The promiscuity and specificity of substrate recognition are very

often not spread evenly along the binding cleft. Proteases often prefer

certain substrate amino acids in given distances to their catalytic

center. Half a century ago, Schechter and Berger17 suggested a

convention to denote the peptide substrate amino acids (P4 to P4′)

and the subpockets (S4 to S4′) within the binding cleft around the

scissile bond (cf. Figure 1).

Several methods have been published to describe and localize

promiscuity and specificity of the protease binding interface, thus

facilitating a comparison of individual proteases.18-21 Our cleavage

entropy metric14,22 is based on substrate data deposited in the

MEROPS database23 and quantifies the specificity of peptide

recognition in each subpocket. To compare proteases based on their

substrate recognition, we developed a metric that considers the

positional abundance of individual amino acids.24 These methods

allow the investigation of localized regions of promiscuity and

specificity in the binding interface of proteases and the analysis of

their thermodynamic properties. Thus, different subpockets of the

same protease as well as binding clefts of different proteases can be

studied and compared.
FIGURE 1 Peptide substrate amino acid (Pi and Pi′) and protease sub
(vertical line). The N‐terminal side of the substrate is located on the left

FIGURE 2 Correlation of substrate specificity with backbone flexibility
(S6‐S1) of Thrombin's binding cleft (ranging from red—specific, rigid and o
Research on snake venom metalloproteases revealed strong hints

that their promiscuity is linked to their flexibility.25 Likewise, we found

that Caspases26 and Thrombin27 display strong correlations between

flexibility and promiscuity. For Thrombin, this correlation translates

into ordering processes of water molecules in the binding interface.

Regions of specificity show ordered water molecules in the interface,

whereas regions of promiscuity tend to have more disordered water

molecules in the first solvation sphere (Figure 2). On the other hand,

enthalpic contributions to hydration of the S1 and S4 to S6 are almost

identical. Thus, dynamic, and therefore entropy of hydration, contrib-

utes strongly to the recognition of substrates in Thrombin.

Electrostatic interactions are quite different from other contribu-

tions of substrate recognition as they are long‐range interactions that

change little with small differences in distance.28,29 This has several

important consequences. Obviously, a more continuous distance

dependence varies less with conformational changes, much in contrast

to shape‐dependent recognition like van der Waals interactions and

recognition that relies on precise exit vectors like hydrogen bonds.

On the contrary, due to the long‐range character of electrostatic inter-

actions, assigning them to specific subpockets is more challenging.

Calculating differences in electrostatic molecular interaction fields

(eMIFs) of proteins is a rather challenging task. Many different

approaches exist, and all of them have a significant impact on the

result. Differences in the handling of the solvent and the solute, either

implicit as a continuum or explicit, can yield highly different results.30

When using an implicit model, it is also not trivial to assign each point

on the grid a certain value for the dielectric constant. This problem is

irrelevant for high distances to the solute but can yield errors for

points close to it.31 Furthermore, differences in handling multipoles

will also introduce differences in the results.32 The biggest error,

however, is included when using different protonation states for the
pocket enumeration (Si and Si′) with respect to the cutting position

and orientational ordering of water molecules in the non‐prime site
rdered, via yellow to green—promiscuous, flexible and disordered)27
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model, as introducing an extra charge, or removing one, changes

the entire electrostatic field significantly.

In a previous study, we used GRID‐probes that test van der Waals

interactions and electrostatics simultaneously. Even taking into

account conformations extracted from molecular dynamics trajecto-

ries, we could only achieve limited correlation with substrate

recognition.33

To predict the specificity of proteases, Pethe et al34 used a

structure‐based approach that ranks possible substrates according to

interaction energies and reorganization penalties. Their scheme out-

performs conventional methods that focus solely on knowledge‐based

prediction of substrate preferences.

Okun and Chen compared proteases with a statistical model. They

calculated electrostatic similarities using a volumetric overlay of

isopotentials.35

In PIPSA,36 the Hodgkin index is used to compare different

Molecular Interaction Fields of proteins. The program was also used

by Henrich et al37 to compare the electrostatic similarity of the 3

proteases, Trypsin, Thrombin, and uPA.

Various approaches are already available that compare binding

sites,38 often for the purpose of off‐target prediction and drug

repurposing.39 Such methods rely on molecular interaction fields

(MIFs), eg, BioGPS40,41 and IsoMIF,42 on shape and physicochemical

properties of the surface, eg, protein functional surfaces,43 on graphs

representing the 3D atomic similarities, eg, IsoCleft44 or on finger-

prints describing the binding sites, eg, PocketMatch.45 In several data

bases, properties of binding sites are stored for comparison, such as

pseudocenters with projected physicochemical properties in

CavBase,46-48 in CavSimBase49 and in SiteEngine,50 sequence and

structural similarity in CPASS,51 position of functional groups in

SuMo,52 or surface geometrics and electrostatics in eF‐site.53

However, most of these methods are not meant to compare

structurally very similar cavities as found in our set of chymotrypsin‐

like proteases (Figure 3), or define the binding site without ligand

information. Therefore, we chose to implement our own method

optimized to compare similar binding interfaces and able to compare

these interfaces based on a distance criterion to a ligand as described

in the methods section below in detail.
FIGURE 3 Cleavage site sequence logos of substrate data used for ge
indicate the number of substrates filed in the MEROPS database for each
data is supplied in the Supporting Information)
2 | METHODS

2.1 | Electrostatic substrate preferences

We extracted and isolated the electrostatic contributions and the

shape recognition contributions in the substrate preference similarity

metric that we defined previously.24 We achieved this goal by binning

the amino acid residues according to their electrostatic properties into

positively charged (K, R, H), negatively charged (D, E), and neutral

amino acids (G, P, A, V, L, I, M, F, Y, W, S, T, C, N, Q). In this way,

we split off shape‐dependent and size‐dependent aspects of substrate

recognition and focus solely on electrostatic recognition and

specificity. The shape‐dependent aspects of substrate recognition

can be studied individually for each of the 3 bins, especially within

the bin of neutral amino acids. However, this aspect is beyond the

scope of the current study. Considering histidine as a positively

charged amino acid is somewhat arbitrary, but in line with the usual

classification in sequence logos.54 Nevertheless, histidine is rather

underrepresented in substrate data (1.7%); thus, this choice does not

influence the analysis significantly (correlation data is shown in the

Supporting Information).

For each of the 9 proteases under investigation, we extracted

substrate data from the MEROPS database23 (Trypsin S01.151, Factor

VIIa S01.215, Factor Xa S01.216, Thrombin S01.217, Kallikrein‐1 S01.160,

Chymotrypsin S01.001, Elastase‐1 S01.153, Granzyme M S01.139,

Granzyme B S01.010) for substrate residues P4 to P4′.

For each substrate position, amino acids are assigned to 1 of the 3

bins according to their electrostatic properties. For each substrate

position, a vector is constructed via Equation 1.

vPi ¼ NPi
positive ¼

∑3
a¼1n

Pi
a

∑3
a¼1pa

; NPi
negative ¼

∑2
a¼1n

Pi
a

∑2
a¼1pa

; NPi
neutral ¼

∑15
a¼1n

Pi
a

∑15
a¼1pa

 !

(1)

In Equation 1, Nbin
Pi is the score in 1 of the 3 electrostatic bins

(positive, negative, or neutral) of substrate position Pi, a the index of

the amino acids in 3 different bins, na
Pi the number of occurrences

of amino acid a in the substrate position Pi, and pa the natural
nerating substrate preference similarity metric. Numbers in brackets
protease. The logos were generated with WebLogo54 (the underlying
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occurrence of amino acid a. This weighting with the natural occur-

rence of the amino acids in human proteins55 results in an intrinsic

normalization of the bins.

Concatenation of vectors vPi for substrate positions P4 to P4′ and

bin is summarized into a vector of dimension 3·8 = 24. This vector is

subsequently normalized to 1 and contains the electrostatic substrate

preferences for each protease.

vProtease ¼ vP4; …; vP4′ð Þ
‖ vP4; …; vP4′ð Þ‖ (2)

The electrostatic substrate similarity of 2 proteases is calculated by

forming the scalar product between the respective electrostatic

substrate preference vectors. A scalar product of 0 indicates

orthogonal substrate preferences. A scalar product of 1 implies

identical electrostatic substrate preferences, as found when comparing

an individual protease with itself, ie, the electrostatic substrate

preference. Additionally, the product of every single line of the vector

can be interpreted as contribution corresponding to either positive,

negative, or neutral substrate residues at every single substrate

position. The sum of individual substrate positions indicates the overall

contribution of positive, negative, and neutral substrate residues.

2.2 | Electrostatic molecular interaction fields
(eMIFs)

X‐ray structures for all 9 proteases were downloaded from the PDB

(Trypsin 1PQ7,56 Factor VIIa 1KLI,57 Factor Xa 1C5M,58 Thrombin

4AYY,59 Kallikrein‐1 1SPJ,60 Chymotrypsin 4CHA,61 Elastase‐1

1QNJ,62 Granzyme M 2ZGH,63 Granzyme B 1FQ364). For Thrombin

and for Granzyme M, structures with a ligand were chosen to ensure

a conformation of the active form.65,66 For structures containing a

ligand, the ligand was removed.

The structures were aligned with respect to their Cα atoms, and

all structures were protonated with Protonate3D67 and prepared with

MOE.68 The catalytic histidine (His‐57) was chosen to be uncharged in

all structures.

Using the program GRID,69,70 3 molecular interaction fields (MIFs)

were calculated on a grid for the entire binding interface of the

proteases. For each probe, a grid spacing of 1 Å was used. For the first

MIF, a hydrophobic H‐probe was used in order to characterize the

shape of the binding cleft. It was further restricted by a distance

criterion (5 Å) to ligands (P4 to P4′) in aligned peptide complex

structures, ie, 1DE7, 3LU9 (Thrombin), and 2ZGH (Granzyme M). Only

grid points that fulfill the distance criterion and show favorable

interactions (<0 kcal/mol) with the H‐probe were used in the further

calculations of the eMIFs. In order to minimize van der Waals

interactions and focus on electrostatic contributions alone, the eMIFs

were calculated with user‐defined GRID probes with charges of +1

and −1. Both, the van der Waals radius of the probes and the cutoff

for the van der Waals interactions, were set to their smallest allowed

input values of 0.01 and 3 Å, respectively, basically switching of the

van der Waals interactions. Only points of the eMIFs that show

favorable interactions (<0 kcal/mol) were kept for further calculations.

Obviously, the points of favorable interactions for the positive probe

are points of unfavorable interactions for the negative probe and vice
versa. Thus, the final eMIFs are represented by a grid, of which the points

need to have a negative energy (favorable interaction) and furthermore

have to be a subset of the previously selected grid points of the H‐probe

(proximity to the ligand, no overlap with the protease itself).

The proteases and their eMIFs were realigned slightly by

overlaying the weighted center of grid points of the H‐probe MIFs

and aligning the first eigenvector71 of the H‐probe MIFs tensor of

inertia, ie, the one corresponding to the largest eigenvalue. Due to

the high similarity of the binding clefts, this procedure resulted in an

excellent alignment. Thus, the second and third eigenvalues were

not used for further refinement, avoiding problems due to their near

degeneration. The resulting alignment was consequently used for

analyses with the electrostatic GRID probes.

The overlap of the eMIFs corresponding to the same charge was

calculated using spherical Gaussian functions with a σ of 2 Å centered

at the grid points, according to Equation 3. We tested several options

for the width of the Gaussian function, ranging from 1 to 2 Å but

found surprisingly little impact on the resulting correlation with

experimental substrate data, which is in line with the long‐range

nature of electrostatic interactions, the results of these calculations

are summarized in the supporting info.

O ¼ NANB·
πσ2

Aσ
2
B

2 σ2
A þ σ2

B

� �
 !3

2

· exp −
rA−rBð Þ2

2 σ2
A þ σ2

B

� �
 !

(3)

In Equation 3, NA,B is the height of the spherical Gaussian function,

σ2A,B is the variance of the spherical Gaussian function, and rA,B is the

center of the spherical Gaussian function, for A and B, respectively.
3 | RESULTS

3.1 | Electrostatic substrate similarities

Electrostatic substrate similarities show whether 2 proteases cleave

similar substrates or whether they have opposing substrate prefer-

ences. The substrates are only characterized by their charge—positive,

neutral, or negative. The shape of the amino acids is neglected, so,

eg, the recognition of glutamate and aspartate is considered to be

exactly equivalent. The electrostatic substrate similarities can be

broken down to the contributions of the single substrate positions

that sum up to the total value. The contributions to self‐similarities

reflect the electrostatic substrate preference of single proteases and

are normalized to give a total of 1.

Figure 4 gives an overview of the similarities between 2 proteases

in the substrate space after binning the amino acids, as described

earlier. Our metric detects prominent similarities among the proteases

with high preference for positively charged residues in the S1

subpocket, ie, Trypsin, Factor VIIa, Factor Xa, Thrombin, and

Kallikrein‐1. The same holds true for the proteases reading primarily

neutral amino acids, ie, Chymotrypsin, Elastase 1, and Granzyme M.

Granzyme B, the only protease of our set that predominantly reads

negatively charged amino acids, is singled out by our metric and shows

low similarities to all other proteases.

Electrostatic substrate preferences are not only highlighted for

the S1 subpocket, but also for all other subpockets. For example, the



FIGURE 4 The heights of the bars indicate the electrostatic substrate similarities between all 9 investigated proteases, ranging from P4 to P4′,
and the resulting sum (Σ) on the right. Blue represents favoring of positively charged amino acids, yellow neutral ones, and red negatively charged
ones. The self‐similarities are depicted as diagonal entries and placed on a gray background in the symmetric matrix
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electrostatic substrate preferences of Granzyme M reveal a propensity

for negatively charged residues in the subpockets S3, S3′, and S4′ that

is hardly identifiable in the cleavage site sequence logos (Figure 3).

Among the proteases that prefer positively charged amino acids in

S1, Factor VIIa and Kallikrein‐1 are quite different in the substrate

preferences in that subpocket, yet they share a preference for posi-

tively charged substrate amino acids in S3′. Granzyme B, favoring neg-

atively charged substrate residues over large parts of its binding site,

shows generally only minimal similarity with the proteases that prefer

positive residues in the S1 subpocket. Still within these, the largest

electrostatic substrate similarity with Granzyme B is determined for

Trypsin. While Trypsin is very specific for positive amino acids in S1,

in remote subpockets, it accepts negatively charged residues. This

peculiarity is highlighted when compared with Granzyme B.
3.2 | Electrostatic molecular interaction fields
(eMIFs)

With the negatively and the positively charged GRID probes, the

eMIFs of the proteases can be determined (Figure 5).
Trypsin shows favorable interactions with the positive probe in its

S1 subpocket, while in the more peripheral S4 and S4′ subpockets, it

prefers the negative probe. Factor VIIa, Factor Xa, Thrombin, and

Kallikrein‐1 favor the positive probe in large parts of their binding

clefts. Chymotrypsin has a dyadic eMIF as in the prime site it interacts

favorably with the positive probe and towards the outer non‐prime site

with the negative probe. In the S2 and the S4′ subpocket, Elastase‐1

favors the positive probe, while in the rest of the prime site and in S3 it

favors the negative probe. Both Granzymes seem to show a completely

negative eMIF, but on closer inspection Granzyme M favors the

positive probe in S1′, the corresponding eMIF is hidden below a layer

of grid points favoring interactions with the negative probe.
3.3 | Electrostatic substrate preferences and
electrostatic molecular interaction fields

A joint view of electrostatic substrate preferences and eMIFs of a

protease demonstrates the presence of similar patterns in both

metrics. In subpockets that are associated with a substrate readout

preference for positively charged residues, strong interactions with



FIGURE 5 The electrostatic molecular interaction fields (eMIFs) are shown for the 9 investigated proteases. The interactions with the positive
probe are depicted in blue, whereas the interactions with the negative probe are depicted in red. A cutoff of −3 kcal/mol was used for the
visualization of the fields
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the positive probe are present, while in subpockets with substrate

readout preference for negatively charged amino acid residues the

negative interactions predominate. Commonly, where no strong

electrostatic substrate preferences are detected, no strong

electrostatic interactions can be found.

The eMIFs of Granzyme B show the same pattern as the

electrostatic substrate preference (Figure 6), ie, favorable interactions

with the negative probe are visible over the entire binding site. In the

electrostatic substrate preference, the same trend can be observed.

For Kallikrein‐1, primarily favorable interactions with the positive

probe are visible. Substantial areas where the negative probe is

favored can be found only in the outer regions of the non‐prime site,

ie, the S3 subpocket. Again, this is very well reflected by the

electrostatic substrate preference, as in the S3 and S4 subpockets a

propensity for negatively charged amino acids can be seen.

For Elastase‐1, the eMIFs reflect the electrostatic substrate

preference very well. As the S1 subpocket is specific for neutral amino

acids, practically no electrostatic interactions are visible. The prime

site substrate self‐similarities show preferences for the negative
probe, whereas the non‐prime site varies more in electrostatic

preferences. The eMIFs correspond very well with this. In the S3

subpocket, which is to be rather unspecific in terms of electrostatics,

both interactions can be observed, although the positive eMIF at that

position is barely visible because it is hidden behind the negative one.

In the S1 subpocket of Trypsin, positively charged amino acids are

strongly favored, which is also visible in the eMIF. On the periphery of

the binding site, the protease starts favoring negatively charged amino

acids, which is also mirrored very well by the calculated eMIFs, where

the negative eMIF starts to dominate around the S3′ and S4′

subpockets.

3.4 | Electrostatic substrate similarities and eMIF
overlaps

Calculation of the overlap between the eMIFs of different proteases

establishes areas where the same interactions prevail and facilitates

the comparison with the electrostatic substrate similarities. Some

representative examples of this comparison between eMIF overlap

and electrostatic substrate similarities are shown in Figure 7.



FIGURE 6 The eMIFs of Granzyme B, Kallikrein‐1 (top), Elastase‐1 and trypsin (bottom) for the positive (blue) and the negative probe (red), using
a cutoff of −3 kcal/mol and the electrostatic substrate preference for positive amino acids (blue), neutral amino acids (yellow), and negative amino
acids (red). Substrate self‐similarities are in general well reflected by the eMIFs
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Considering Chymotrypsin and Kallikrein‐1 (Figure 7), the

differences in substrate similarity can easily be explained by the

eMIFs. Both proteases favor positively charged and neutral amino

acids in nearly the entire binding cleft. However, on the non‐prime

site, Kallikrein‐1 favors negative amino acids in the S3 subpocket. This

hotspot is also visible in the overlap eMIF of the 2 proteases. On the

entire prime site, the eMIF overlap shows favorable positive

interactions, as does the substrate similarity.

Thrombin and Factor Xa are the most similar ones in their

electrostatic substrate readout among our set of proteases. Their

eMIFs vary only very little (Figure 7). There are small differences in

the subpockets on the outer regions of the prime site as well as farther
away on the non‐prime site. But near the S1 subpocket, the

differences of the eMIFs are negligible.

An overview of the similarities of the 9 proteases in positive

substrate readout and positive eMIF overlap is given in the upper part

of Figure 8. The lower part of Figure 8 is the corresponding equivalent

showing the negative part of the substrate similarities and the eMIF

overlaps from the negative GRID probe. The matrices of the substrate

similarities match the electrostatic parts of the total substrate

similarities already shown in Figure 4.

At first glance, proteases that are similar in electrostatic substrate

readout are also similar in their eMIF similarity. To quantify the

correlation of the similarity in substrate space and the eMIF similarity,



FIGURE 7 eMIFs, eMIF overlap and electrostatic substrate similarity for chymotrypsin and Kallikrein‐1 (top) and thrombin and factor Xa
(bottom): The eMIFs and their overlaps are depicted in blue (positive probe) and red (negative probe). The eMIF overlap was calculated at a
cutoff of 0 kcal/mol and visualized at a cutoff of 50 (kcal/mol)2. The eMIF overlap on the right is depicted without protein surfaces, revealing
overlapping eMIFs deep in the S1 subpocket hidden by the protein surfaces on the left. Above the overlap eMIF, the substrate similarity for the
proteases is depicted for the positively charged amino acids (blue), for the neutral ones (yellow) and for the negatively charged ones (red)
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a Mantel test was performed,72,73 resulting in a Pearson correlation of

0.82 for the positive and 0.57 for the negative probe, respectively.

The correlation for the positive probe is excellent. The correlation

for the negative probe still is surprisingly high, as the binding clefts

of most proteases of our set are dominated by interactions with the

positive probe with minor contribution of the negative probe.

Furthermore, the similarity of the eMIFs at the binding site of the

different proteases was also calculated using the webPIPSA

server36,74 and the APBS method75 for calculation of the eMIF (Figure

S8 in the Supporting Information). In webPIPSA, we defined the selec-

tion of the binding site via the coordinates centered between the Cαs

of the W215, the catalytic serine (S195) and the E192, as well as a

radius of 17 Å. In general, both approaches are in good agreement,

with a few differences between them. The most striking discrepancy

is the apparent dissimilarity of Factor VIIa in the webPIPSA results

to most of the other proteases, primarily reading positively charged

amino acids in the S1. While the presented approach finds that the

eMIF of Factor VIIa is rather similar to all these proteases. This differ-

ence could be due to the different definition of the binding interface,

or to the different method to calculate the similarity.
4 | DISCUSSION

In a previous study, a conclusive correlation between the knowledge‐

based protease substrate specificity and physics‐based enthalpic

aspects of the binding cleft of proteases33 was hampered by simulta-

neously considering van der Waals interactions and electrostatics.
With the improved approach presented in this work, where we sepa-

rate electrostatics from van der Waals interactions, in contrast a high

correlation is found for electrostatic substrate preferences and eMIFs.

This shows that electrostatic recognition is a major factor in protease

substrate recognition in all proteases of the Chymotrypsin family

investigated here. This is in line with previously published work focus-

ing on Thrombin by Huntington76 and on Chymotrypsin C by Batra

et al.77 The most important aspect of our breakthrough here seems

to root back to focusing only at electrostatics, both in characterizing

protease readout and interaction profiles. Mechanisms of electrostatic

substrate recognition seem to be inherently different from other

mechanisms of substrate recognition. Due to their strong nature and

their long‐range behavior, electrostatic interactions behave quite dif-

ferently from other aspects of substrate recognition, which are domi-

nated by shape complementarity.78,79 Electrostatic interactions are

not only strong and long ranging, but compared with van der Waals

interactions vary relatively little with small changes in distance. Hence,

it is not surprising that considering only static X‐ray structures already

yields a very high correlation between electrostatic substrate similari-

ties and electrostatic interaction field similarities. Flexibility of the

binding interface is influencing electrostatics only to a minor extent.

Electrostatic contributions would vary substantially solely with major

conformational changes and, obviously, with differences in proton-

ation or ion coordination. The long‐range behavior and continuous

nature of electrostatic interactions also impede allocating electrostatic

contributions to subpockets of the binding clefts. By correlating the

electrostatic substrate recognition with the electrostatic interaction

field of the entire binding cleft, we avoid the non‐trivial task of



FIGURE 8 Substrate similarity and eMIF overlap for positive (top) and negative (bottom) substrate space and probe are compared. High similarity
and overlap are shaded in dark blue (positive) and dark red (negative), respectively, while low similarity and overlap are depicted on a white
background (both). For readability purposes, the eMIF overlap was scaled logarithmically
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apportioning the binding cleft into subpockets. Still, for an efficient

substrate prediction, which however is beyond the scope of this study,

such a partitioning of electrostatic contributions to subpockets of the

binding cleft would be highly desirable.

This is in line with the notion that protein‐protein recognition

follows a 2‐step mechanism. Firstly, an initial encounter complex

forms when enzyme and substrate meet. The association rates for this

initial encounter complex are largely governed by electrostatics.80 An

energy funnel pulls substrate and enzyme together and directs the

substrate towards the binding site81-84 (Figure 9). In a second step,

conformational changes lead to the formation of a compatible binding

interface.85,86 Here, shape complementarity and flexibility are crucial

to enable weak van der Waals interactions and to avoid clashes.
Electrostatics and shape complementarity in context of substrate

recognition can be considered rather orthogonal properties resulting

in different aspects of substrate recognition.87 Thus, we believe that

these 2 aspects of substrate recognition can be separated very

efficiently by our knowledge‐based approach to analyze substrate

readout data as presented in this study. Electrostatic substrate

preferences can be characterized very well by binning substrate

residues according to their charge. On the other hand, we expect that

shape complementarity can be characterized by analyzing substrate

recognition within the 3 bins, especially within the neutral bin

comprising 15 different neutral amino acid residues. If we can describe

the contributions of electrostatics and shape complementarity in a

solely physics‐based way, it will be possible to predict the localized



FIGURE 9 The binding interface of trypsin depicted with the eMIFs
of the positive (blue) and negative (red) probe. An energy cutoff of
−0.5 kcal/mol was used for the visualization of far‐reaching
electrostatic interactions. The eMIF forms a funnel‐like long‐range
interaction profile that presumably guides substrates towards an initial
encounter complex
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specificity and promiscuity of proteases and most likely also of other

biomolecular interfaces.
5 | CONCLUSIONS

A knowledge‐based approach to characterize differences in electro-

static substrate preferences is introduced and applied on 9 homologous

serine proteases of the chymotrypsin family. The approach bins known

substrate residues into positively charged, negatively charged, and

neutral amino acids. Thus, electrostatic preferences in substrate

recognition are quantified within subpockets of the binding cleft of

the 9 serine proteases and can be compared between different

proteases. Similarities and differences in electrostatic preferences can

easily be identified on a localized subpocket level but also globally for

the complete binding cleft.

On the other hand, eMIFs are calculated in a physics‐based way

studying X‐ray structures using the program GRID in combination with

user‐defined probes that focus on electrostatics. The binding cleft

within the X‐ray structures is delimited by a proximity criterion to

known ligands. Calculating the overlap between eMIFs results again

in similarities and differences in electrostatic preferences.

Comparing the knowledge‐based and physics‐based similarities

and differences in electrostatic preferences, a high correlation

between the 2 totally different approaches is found. This implies that

the electrostatic part of substrate recognition and substrate specificity

can be explained very well by eMIFs.

Due to the long‐range nature of electrostatics, we assume that

these electrostatic molecular interactions fields determine the

formation of an initial encounter complex between substrates and

proteases.
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