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Abstract

Multi-locus sequence typing (MLST) has emerged as the state-of-the-art method for resolving bacterial population genetics
but it is expensive and time consuming. We evaluated the potential of high resolution melting (HRM) to identify known
MLST alleles of Campylobacter jejuni at reduced cost and time. Each MLST locus was amplified in two or three sub fragments,
which were analyzed by HRM. The approach was investigated using 47 C. jejuni isolates, previously characterized by classical
MLST, representing isolates from diverse environmental, animal and clinical sources and including the six most prevalent
sequence types (ST) and the most frequent alleles. HRM was then applied to a validation set of 84 additional C. jejuni isolates
from chickens; 92% of the alleles were resolved in 35 hours of laboratory time and the cost of reagents per isolate was $20
compared with $100 for sequence-based typing. HRM has the potential to complement sequence-based methods for
resolving SNPs and to facilitate a wide range of genotyping studies.
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Introduction

Campylobacter jejuni is the leading reported cause of bacterial

gastroenteritis in developed countries [1]. The organisms colonize

a range of hosts, including domestic animals and wild birds, and

fecal shedding readily contaminates ground water [1]. While

outbreaks are well documented, most clinical cases represent

isolated, sporadic infections for which the source is rarely

apparent. Consumption of contaminated food, especially poultry

has been considered the most prevalent source [2]; however,

recent studies implicate environmental water and unpasteurized

milk as potentially important [3].

Multi-locus sequence typing (MLST), a genotyping system

based on single-nucleotide polymorphisms (SNPs) of housekeeping

genes, has emerged as the state-of-the-art method for resolving

bacterial population genetics [4,5]. A recently developed MLST

system for C. jejuni [6] indicates that the species is genetically

diverse, with a weakly clonal population structure, marked by

frequent intra- and interspecies horizontal genetic exchange [6–8].

Some MLST-defined lineages of C. jejuni have been linked to a

restricted geographical area [9] or to particular ecological niches,

such as bathing beaches [7], water [10], wild birds [11], chickens,

pigs, bovines or sheep [12]. Although MLST is highly reproduc-

ible, portable, and easy to interpret, it is complex and expensive to

perform.

The development of fluorescent DNA binding dyes with

improved saturation properties has allowed a more precise

assessment of sequence variation based on the analysis of DNA

melting curves. This technique, referred to as high resolution

melting (HRM), can distinguish single base variation and then has

the potential to identify SNPs without the burden of sequencing

[13,14]. After PCR amplification, amplicons are subjected to

melting curves with a fluorescence monitoring of a saturating dye

that does not inhibit PCR. This approach provides a simple,

closed-tube, semi-automated and cost-effective method for detect-

ing base substitutions and small insertions or deletions [15].

Merchant-Patel et al. [16] recently reported the application of

HRM for typing the flagellin-encoding flaA gene of Campylobacter

jejuni; their results demonstrated that the method is both accurate

and easy to implement.

In this study, we describe the novel application of an HRM

protocol optimized to perform MLST of C. jejuni isolates. Our goal

was to resolve the C. jejuni sequence types as defined in the existing

MLST database (http://pubmlst.org/campylobacter) at substan-

tially lower cost than the conventional sequence-based method.

Results

For all 47 isolates, successful amplifications were achieved across

the 17 sub fragments spanning the seven MLST loci. Tables 1, 2,

3, 4, 5, 6, 7 list all SNPs included in this study. The SNP position

in the fragment did not have a strong effect on the Tm separation,

even if the SNP was near the amplification primer. Excluding

uncA, about 90% of SNPs were transition mutations (T to C or C

to T, A to G or G to A), but inversion mutations (G to C or C to G

and A to T or T to A) were also readily detected.

For each sub fragment, the expected 3 to 6 alleles were resolved

by HRM as distinct difference plots (Figure 1). The reproducibility
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of the system was confirmed at multiple levels. The same DNA

extracts were run in duplicate or triplicate wells of the same plate

and in replicate wells across different runs. In addition, gene

fragments representing the same MLST allele were amplified from

DNA extracts of at least 6 different C. jejuni isolates. The HRM

curves for the same DNA preparations or for the same sequences

(SNPs) amplified from different isolates were readily grouped

together; conversely, curves for different alleles could be

consistently resolved.

Since each MLST locus was divided into two or three sub

fragments for the HRM analysis, it was necessary to consider the

HRM profiles for all of the sub fragments together in order to

assign an MLST allele. For example, aspA was represented by five

alleles and the locus was analyzed in three fragments (Table 1).

The left fragment (199 bp) contained three SNPs; however, within

this sub fragment, there were only three unique sequences – alleles

aspA-1 and -8 were identical as were aspA-2 and -7. The middle

fragment (197 bp) contained two SNPs generating three unique

sequences; but in this region, aspA-1 and -4 were identical, as were

aspA-2 and -7. Finally, the right fragment (247 bp) included 3

SNPs generating 4 unique sequences, with aspA-2 and -8 being

identical. Within each sub fragment, the unique sequences had

distinct HRM profiles (Figure 1A, 1B, and 1C). The combination

of profiles across the three sub fragments resolved the five different

alleles.

The uncA alleles in the demonstration set included uncA-17,

which is derived from C. coli [6] and differs from the other uncA

alleles by multiple SNPs, representing both transition and

substitution mutations. Consequently, the HRM profile for each

sub fragment of uncA-17 was highly divergent from the profiles for

the other uncA alleles, with appreciably higher values for the

relative signal difference (y axis, Figure 1O, P and R). For the

middle sub fragment the other alleles were particularly difficult to

resolve when uncA-17 was present (Figure 1P), but readily

distinguished when uncA-17 was excluded (Figure 1Q).

To evaluate the relative efficiency and cost of performing

MLST by HRM compared with conventional direct sequencing,

we analyzed a confirmation set of 84 additional C. jejuni isolates

from chickens. Using HRM, we resolved 92% of the MLST

alleles. Moreover, the analysis required only 35 hours of

laboratory time and reagents cost only $20 (Canadian) per isolate

compared with $100 for sequence-based typing (data not shown).

Discussion

MLST has emerged as the state-of-the-art method for studying

bacterial population genetics. The MLST system for C. jejuni has

been used in population studies of isolates from different

geographical areas [17], from human and non-human sources

[7,9], as well as in molecular epidemiologic analyses of outbreaks

[18,19]. However performing MLST remains laborious and

expensive. We have shown here that HRM can complement full

MLST characterization of C. jejuni by identifying the most

common alleles more rapidly and at lower cost.

HRM can resolve the SNPs that define the different alleles in

the MLST system because two DNA amplicons that differ at even

a single nucleotide will have different melting profiles. For the

demonstration set of 47 diverse isolates, HRM resolved all 35

predicted alleles among the seven MLST genes. The differences in

melting profiles among alleles varied with the number and type of

SNPs as well as the gene fragment being amplified. For example,

the profiles for unc-17, an allele which is known to come from C.

coli [6,8,10,11,20], showed very strong differences in relative

fluorescence signal and very sharp groupings (Figure 1O, P and

Q). However, sub fragments where the alleles differed by only a

single SNP often showed readily distinguished melting profiles

(e.g., aspA-2, 7 and aspA-1, 8 in Figure 1A and aspA-7 and aspA-1 in

Figure 1C). Even in instances where the relative fluorescence

signal differences were quite small (0.8–3.0) and, consequently, the

profiles less tightly clustered (Figure 1A, C and F), reliable

interpretation was possible based on the differences in the overall

profiles considered across the range of temperatures.

This strategy for typing C. jejuni isolates has many important

advantages, but the single greatest benefit is the reduction in the

Table 1. SNPs in aspA locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

9 45 84
-----
174

-----
279 342 414 476

aspA-1 T G G G C C T C

aspA-2 T G A A T C C T

aspA-4 C A G G C T T C

aspA-7 T G A A T C T T

aspA-8 T G G G T C C T

aThe numbering starts at the first nucleotide of each comparison fragment for
each locus on the C. jejuni MLST database website. Numbers not underlined
are in the left fragment, numbers with intermittent underlining are in the
middle fragments and numbers with solid underling are in the right fragment.

doi:10.1371/journal.pone.0016167.t001

Table 2. SNPs in glnA locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

12 33 45
-----
108

-----
112

-----
132

-----
202

-----
267 369 384 465

glnA-1 G A A A C A A C C T A

glnA-2 G A A G C A A C C T A

glnA-4 G G A G T A G T T C G

glnA-7 A A A G C T A C T T A

glnA-17 G G G G T A A C C T A

aThe numbering starts at the first nucleotide of each comparison fragment for
each locus on the C. jejuni MLST database website. Numbers not underlined
are in the left fragment, numbers with intermittent underlining are in the
middle fragments and numbers with solid underling are in the right fragment.

doi:10.1371/journal.pone.0016167.t002

Table 3. SNPs in gltA locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

12 39 200 201 207 294 320 348 396

gltA-1 A C T G C C G A A

gltA-2 G T T G T C A A A

gltA-3 A T C G C T A G A

gltA-5 A C T G C C A A A

gltA-10 A T T C C T A A G

aThe numbering starts at the first nucleotide of each comparison fragment for
each locus on the C. jejuni MLST database website. Numbers not underlined
are in the left fragment and numbers with solid underling are in the right
fragment.

doi:10.1371/journal.pone.0016167.t003
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total time and cost required. HRM requires neither agarose gel

analysis, sequencing, nor sequence analysis. We estimate that the

per isolate cost to perform MLST using HRM is 20–30% that of

sequencing. This is achieved without compromising the portability

of MLST since the existing nomenclature can be used. As of

August 2010, the C. jejuni MLST database contained more than

4600 alleles among almost 10330 isolates. The 47 isolates in our

study were drawn from the six major clonal complexes and

included alleles whose frequency in the current database ranged

from 40% and 68% (pgm and uncA, respectively). We were able to

resolve most of these alleles using a single reference isolate for each

of the six major sequences types. Distinguishing all known alleles

might require additional reference isolates. However, an advan-

tage of this HRM system is that any sequenced allele can be used

as the reference profile. Our experience with the 84 C. jejuni

isolates from chickens demonstrated that the system is particularly

efficient when analyzing ecological niches with relatively few ST

variations. Analyzing isolates from niches with more variation,

novel niches, or from several niches simultaneously would be less

efficient as it would require additional reference strains or

sequencing more samples, but would still be less expensive than

sequencing of all genes.

Obviously, an HRM system cannot replace sequence-based

MLST. If a previously unidentified melting profile is encountered,

it is necessary to revert to sequencing; however, once identified,

the new profile can be used for reference in subsequent HRM

analyses. If the sequence proves to be a new allele, it can be

submitted to the database.

At a technical level, HRM can be performed using cyclers that

accept 384-well plates, permitting high-throughput studies.

Because HRM compares amplicons from independent PCR

reactions, it is essential to standardize the quantity of DNA used

in order to minimize reaction-to-reaction variability. We observed

that variation in DNA quantity or quality could shift amplification

curves; such offsets have been previously observed to compromise

the HRM groupings [21].

HRM can be readily applied to a wide range of genetic analyses

that involve detection of a single SNP or a signature allele

representing a specific set of SNPs. Examples in microbiology

include studies requiring the identification of particular clonal

complexes, sequence types or individual mutations. By selecting

the locus amplified and the reference standard for the HRM

system based on the objective of the study, this approach can be

applied to questions in pathogenesis, ecology, epidemiology and

antibiotic resistance. As just one example, the NAP1/027

epidemic strain of C. difficile belongs to MLST type 35 [22].

Identifying a signature allelic profile could serve as a rapid shortcut

for preliminary strain detection [23, 24], minimizing the

challenges and effort associated with PFGE or sequencing.

Analogous situations arise in numerous studies across all levels of

biology, from resistance mutations in viruses to human alleles

associated with clinical disease.

In summary, we have demonstrated that by analyzing multiple

loci concurrently HRM technology can resolve the SNPs that are

the basis of MLST. In our studies of .120 C. jejuni isolates from

diverse geographical sources and representing diverse genotypes,

the HRM results were consistent with sequencing and thus could

be expressed using the existing MLST nomenclature, but were

obtained with greater speed, less effort and at lower cost. HRM

has the potential to complement classical sequence-based methods

and facilitate a wide range of genotyping studies.

Materials and Methods

Isolates
Table 8 lists the source, MLST alleles, sequence type and clonal

complex of 47 C. jejuni isolates used in this study; all have been

previously reported [10] and analyzed by the standard MLST

protocol [7]. Isolates were selected to represent diverse sources and

to include the six most prevalent sequence types (ST) and most

frequent alleles for each locus.

DNA extraction
All C. jejuni isolates were grown on 5% (vol/vol) defibrinated

sheep blood TSA (Oxoid Inc., Nepean, On) in a micro aerobic

atmosphere at 42uC for 24–48 h. Isolated colonies were used to

inoculate Mueller-Hinton broth (Oxoid Inc., Nepean, On), grown

Table 4. SNPs in tkt locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

12 21 72 117 138 141 162 174 189 297 330 435

tkt-1 C C T C C T A A C C T C

tkt-3 C C T C C T A A C C C C

tkt-7 T T A C A C A G T T C T

tkt-9 T T A T C T G G T T C T

aThe numbering starts at the first nucleotide of each comparison fragment for each locus on the C. jejuni MLST database website. Numbers not underlined are in the left
fragment and numbers with solid underling are in the right fragment.

doi:10.1371/journal.pone.0016167.t004

Table 5. SNPs in uncA locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

3
-----
189

-----
234 375

uncA-1 T C G C

uncA-3 C C G T

uncA-5 C T G C

uncA-6 C C G C

uncA-17b

uncA-105 T C A C

aThe numbering starts at the first nucleotide of each comparison fragment for
each locus on the C. jejuni MLST database website. Numbers not underlined
are in the left fragment, numbers with intermittent underlining are in the
middle fragments and numbers with solid underling are in the right fragment.

bLeft fragment: 12 SNPs; middle fragment: 29 SNPs; right fragment: 28 SNPs.
doi:10.1371/journal.pone.0016167.t005
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to 0.5 McFarland standard density, 0.5 ml of the broth transferred

to a microfuge tube, centrifuged at 13000 rpm for 10 minutes and

the supernatant discarded. Genomic DNA was extracted from the

pellet by adding 10 ml of NaOH 0.5 N. After 5 minutes, 10 ml of

Tris 1 M pH 8.0 and 980 ml of sterile distilled water were added.

DNA extracts were stored at 220uC. DNA concentration was

measured using a NanoVue spectrophotometer (GE Healthcare

Life Science, Piscataway, NJ, USA).

Primer design
The fragments for the seven loci in the MLST system (402 to

507 bp) are longer than the maximum that can be efficiently

analyzed by HRM (100 to 300 bp) [13]. Consequently, for each

locus two or three sub fragments were analyzed to provide

adequate resolution of the known alleles. Oligonucleotide primers

used are listed in Table 9. In the majority of cases, the 39 end (for

forward primers of left locus fragments) and the 59 end (for reverse

primers of right locus fragments) were the last nucleotides before/

after the comparison fragment for each locus on the C. jejuni MLST

database website. In four cases (GLN HRM F7, TKT HRM F1,

TKT HRM R2, UNC HRM F6) the primer was upstream or

downstream from the comparison fragment by 28, 24, +4 and 26

nucleotides, respectively. One primer (GLY HRM F3) included the

first nucleotide of the comparison fragment. Internal primers

overlapped each other to cover the entire sequence. Primers were

synthesized by Integrated DNA Technologies (Coralville, Iowa,

USA) and used without further purification.

PCR and HRM analysis
Real-time PCR cycling was performed in a 96-well plate on a

LightCyclerH 480 II real-time PCR system (Roche). Each plate

must contain at least two reference isolates for each allele that

would be identified on the plate together with the unknown

samples. The reaction was performed in a 15 ml PCR mix

containing 1X LightCyclerH 480 High Resolution Melting Master

Kit (Roche), 3.5 mM MgCl2, 0.5 mM of each primer and between

10 and 20 ng of DNA The amplification protocol consisted of a

first denaturation step at 95uC [5 min], 45 cycles of denaturation

at 95uC [10 s], annealing at 55uC [30 s], and extension at 72uC
[30 s]. The HRM step consisted of a first denaturation step at

95uC [1 min], followed by a renaturation step at 40uC [1 min].

Melting curves were generated by ramping from 70uC to 95uC at

0.02uC/sec, 25 acquisitions/uC.

During amplification, fluorescence data were normalized and

then plotted using the automated grouping functionality provided

by the LightCyclerH 480 II Gene Scanning Software version

1.5.0.39 and by manual editing. Figure 2A shows the compilation

of curves representing successful amplification of the left fragment

of gly for 96 isolates. All curves reached a similar plateau height

and, as per manufacture’s recommendations, the mean cycle

number at which fluorescence exceeded background (referred to as

the crossing point or cycle threshold) was ,30 with a range of less

than 7 across all samples. Reactions that did not meet these criteria

were discarded and the fragment amplified again in a subsequent

run. The software automatically analyzed the raw melting curve

data and set the pre-melt (initial fluorescence) and post-melt (final

fluorescence) signals of all samples to uniform values (Figure 2B);

occasionally, manual adjustments were made to optimize group

separation. Next, the software shifted the normalized curves along

the temperature axis to equalize the point at which the dsDNA in

each sample becomes completely denatured (temperature shift,

Figure 2C). For each locus, the default of 5 was used as the

Table 6. SNPs in glyA locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

3 42 51 57 114 120 129 136 138 198 208 213 237 259 264 267 285 286 303 309 312 320 504

glyA-2 T C C T T A C C T C G C A A C A A C T T G C C

glyA-3 C T T C T A C C T T A T A G T G A T C T A C T

glyA-4 T C C T C G G T A T A T A G C G G C C C A T C

glyA-53 T T T C T A C C T T A T G G T G A T C T A C T

aThe numbering starts at the first nucleotide of each comparison fragment for each locus on the C. jejuni MLST database website. Numbers not underlined are in the left
fragment and numbers with solid underling are in the right fragment.

doi:10.1371/journal.pone.0016167.t006

Table 7. SNPs in pgm locus fragments.

Allele SNPs position (59 to 39) in locus fragmentsa

33 41 45 81 150 162 165 168 171 216 219 219 249 267 291 316 324 342 348 372 405 408 435 453 471 494

pgm-1 A C T A A A A T A A C C A C G T C C G T T T T C C C

pgm-2 G T C G G G T A G G T T G T T C C T A C T C T T T T

pgm-5 A C T G A A A T A A C C A T G T T T G T T T C C C C

pgm-6 A C T G G G C A G A C C A T T C C T A C C C T T T C

pgm-10 A C T G A A G T A A C C A T G T C T G T T T T C C C

pgm-11 G T C G G G C A G G T T G T T C C T A C T C T T T T

aThe numbering starts at the first nucleotide of each comparison fragment for each locus on the C. jejuni MLST database website. Numbers not underlined are in the left
fragment and numbers with solid underling are in the right fragment.

doi:10.1371/journal.pone.0016167.t007
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Figure 1. Difference plots for the normalized and temperature shifted melting curves for all locus fragments. A: asp left. B: asp middle.
C: asp right. D: gln left. E: gln middle. F: gln right. G: glt left. H: glt right. I: gly left. J: gly right. K: pgm left. L: pgm right. M: tkt left. N: tkt right.
O: unc left. P: unc middle. Q: unc middle without allele unc-17. R: unc right. Arrows link allele numbers with corresponding same color curves.
doi:10.1371/journal.pone.0016167.g001
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Table 8. C. jejuni isolates used in the study.

Isolate Source aspA glnA gltA glyA pgm tkt uncA STa CCb

001A-0058 Human 2 1 1 3 2 1 5 21 21

001A-0078 Human 2 1 1 3 2 1 5

001B-0003 Chicken 2 1 1 3 2 1 5

001B-0035 Chicken 2 1 1 3 2 1 5

001B-0046 Chicken 2 1 1 3 2 1 5

006A-0001 Raw milk 2 1 1 3 2 1 5

006A-0004 Raw milk 2 1 1 3 2 1 5

007A-0018 Water 2 1 1 3 2 1 5

007A-0031 Water 2 1 1 3 2 1 5

001A-0059 Human 4 7 10 4 1 7 1 45 45

001A-0060 Human 4 7 10 4 1 7 1

001B-0010 Chicken 4 7 10 4 1 7 1

001B-0011 Chicken 4 7 10 4 1 7 1

001B-0024 Chicken 4 7 10 4 1 7 1

007A-0023 Water 4 7 10 4 1 7 1

007A-0030 Water 4 7 10 4 1 7 1

007A-0032 Water 4 7 10 4 1 7 1

001A-0005 Human 7 17 5 2 10 3 6 353 353

001A-0016 Human 7 17 5 2 10 3 6

001A-0085 Human 7 17 5 2 10 3 6

001A-0259 Human 7 17 5 2 10 3 6

001A-0263 Human 7 17 5 2 10 3 6

001A-0273 Human 7 17 5 2 10 3 6

001A-0274 Human 7 17 5 2 10 3 6

001B-0008 Chicken 7 17 5 2 10 3 6

001A-0162 Human 1 4 2 2 6 3 17 61 61

001A-0163 Human 1 4 2 2 6 3 17

001A-0166 Human 1 4 2 2 6 3 17

001A-0238 Human 1 4 2 2 6 3 17

006A-0014 Raw milk 1 4 2 2 6 3 17

006A-0020 Raw milk 1 4 2 2 6 3 17

006A-0026 Raw milk 1 4 2 2 6 3 17

006A-0028 Raw milk 1 4 2 2 6 3 17

001A-0064 Human 1 2 3 4 5 9 3 42 42

001A-0084 Human 1 2 3 4 5 9 3

001A-0088 Human 1 2 3 4 5 9 3

001A-0168 Human 1 2 3 4 5 9 3

001B-0009 Chicken 1 2 3 4 5 9 3

001B-0012 Chicken 1 2 3 4 5 9 3

001B-0052 Chicken 1 2 3 4 5 9 3

006A-0053 Raw milk 1 2 3 4 5 9 3

001A-0287 Human 8 2 5 53 11 3 105 1212 1212

001A-0289 Human 8 2 5 53 11 3 105

001B-0029 Chicken 8 2 5 53 11 3 105

001B-0055 Chicken 8 2 5 53 11 3 105

001B-0056 Chicken 8 2 5 53 11 3 105

001B-0057 Chicken 8 2 5 53 11 3 105

aST; sequence type.
bCC; clonal complex.
doi:10.1371/journal.pone.0016167.t008
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threshold value in the temperature shift step. In the final step each

shifted, normalized curve is plotted (difference plot, Figure 1I) as

the difference relative to an arbitrarily chosen reference curve

among the samples analyzed on the plate, usually one of the

known reference isolates. The software groups together similar

curves according to an adjustable sensitivity value. In these

displays (Figure 1A to 1R) the differences between melting curve

profiles for different alleles are readily appreciated. Curves not

grouped with one of the reference isolates would have to be run

subsequently with other reference isolates containing the allele or

sequenced. If the reference isolates were not grouped together

correctly, the run would be repeated.
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