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Abstract: Successful weaning from prolonged mechanical ventilation (MV) is an important issue in
respiratory care centers (RCCs). Delayed or premature extubation increases both the risk of adverse
outcomes and healthcare costs. However, the accurate evaluation of the timing of successful weaning
from MV is very challenging in RCCs. This study aims to utilize artificial intelligence algorithms to
build predictive models for the successful timing of the weaning of patients from MV in RCCs and to
implement a dashboard with the best model in RCC settings. A total of 670 intubated patients in the
RCC in Chi Mei Medical Center were included in the study. Twenty-six feature variables were selected
to build the predictive models with artificial intelligence (AI)/machine-learning (ML) algorithms.
An interactive dashboard with the best model was developed and deployed. A preliminary impact
analysis was then conducted. Our results showed that all seven predictive models had a high area
under the receiver operating characteristic curve (AUC), which ranged from 0.792 to 0.868. The
preliminary impact analysis revealed that the mean number of ventilator days required for the
successful weaning of the patients was reduced by 0.5 after AI intervention. The development of an
AI prediction dashboard is a promising method to assist in the prediction of the optimal timing of
weaning from MV in RCC settings. However, a systematic prospective study of AI intervention is
still needed.

Keywords: artificial intelligence; machine learning; weaning timing; successful weaning; prediction;
mechanical ventilation; respiratory care center; dashboard; impact analysis

1. Introduction

Respiratory failure is a critical condition that occurs when the lungs cannot obtain
enough oxygen or when carbon dioxide is retained in the body, resulting in tissue hypox-
emia and hypercapnia. This can be caused by a direct injury to the pulmonary tissue or by
other systemic diseases that affect breathing [1]. According to Carson et al. [2], the incidence,
mortality, and medical expenditure related to respiratory failure increase with age.

Patients with respiratory failure need to receive invasive mechanical ventilator therapy.
In the US, it was estimated that there were 2.7 episodes of mechanical ventilation per
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1000 population, with a national cost of approximately $27 billion, which constitutes 12%
of all hospital costs [3].

Patients with acute respiratory failure who receive invasive mechanical ventilation
during the critical stage can still be successfully weaned after recovery from the precipitat-
ing illness. Some patients need a longer period of weaning in order to recover. The National
Association for Medical Direction of Respiratory Care defined prolonged mechanical ven-
tilation (MV) as the administration of mechanical ventilation for more than 21 days and
more than 6 h per day [4]. In Taiwan, the National Health Insurance established a transfer
system in which ICU patients under prolonged MV (>21 days) are transferred and cared for
in respiratory care centers (RCCs) until they are weaned from the ventilator. In RCC, the
early detection of some level of independent respiration in patients is important to allow
them to progressively wean from the ventilator until their respiratory systems function
independently. Unfortunately, there is a lack of reliable MV-weaning decision-making tools
that consider the complex states of patients to provide objective, scientific, and successful
weaning probabilities for medical personnel to use. As a result, medical personnel may
underestimate patients’ ability to recover; thus, attempts at weaning may be delayed, which
not only increases medical costs but also causes patients discomfort.

Artificial intelligence (AI) or machine-learning (ML) approaches are complicated
modeling techniques that can model extremely complex functions, often with higher
predictive model quality than traditional statistics [5]. They can be applied in many
situations in which a relationship between independent variables (inputs) and dependent
variables (outputs) exists. AI or ML methods provide great opportunities to improve
patient outcomes. ML methods have been applied to help clinical decision making by using
a large amount of digital information generated in medical settings. However, using AI
or ML technologies in the prediction of the timing of the weaning of patients from MV is
quite rarely studied in the RCC setting.

Our study aimed to develop an interactive AI system for the optimal timing prediction
of successful weaning among patients who received invasive MV while in a RCC. A
preliminary AI intervention analysis was conducted as well. The main contributions of this
research are: (1) the use of an AI approach for modeling MV-weaning prediction in RCCs
with clinically available resources; (2) the development of an AI model into an innovative
prediction system to assist RCC clinical decision making; and (3) the implementation of a
preliminary AI impact analysis to demonstrate the clinical benefits of AI.

The rest of this paper is structured as follows: Section 2 gives an overview of related
literature; Section 3 presents how the data were collected and how the study was conducted;
Section 4 presents the results obtained in this study; Section 5 discusses the outcomes
and findings of the study; and finally, Section 6 provides conclusions and directions for
further research.

2. Related Work

A previous study used respiratory pattern variability in patients during the weaning
process to determine the differences between patients who could and could not tolerate a
spontaneous breathing trial; however, only 64 patients were enrolled in AI modeling [6].
Ossai and Wickramasinghe [7] reviewed 26 papers and found that there is a progressive
interest in methods that could reinforce the management of patients under prolonged MV
due to the increased medical costs and associated adverse outcomes. They pointed out that
the small data size and poor study design hampered the development of a unified approach
to managing MV in the ICU. They also concluded that the ensemble model predicted
ventilator weaning better than other algorithms.

Kwong et al. [8] conducted a systematic literature review and meta-analysis of studies
on weaning from MV that used AI and ML in ICUs. They identified nine studies that
used AI/ML to predict ventilator weaning. Their management included the prediction
of arterial blood gases, successful spontaneous breathing trials, successful extubation,
ventilator setting, and oxygenation status. The study found that an insufficient number of
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studies have begun to evaluate the efficacy and effectiveness of AI and ML for ventilator
weaning in ICUs. The authors suggested that AI and ML have an important role in
predicting spontaneous breathing trial failure, extubation failure, arterial blood gases, and
the adjustment of MV settings to determine levels of oxygenation. The available studies for
the application of AI and ML in this area may still be limited.

One of our previous AI/ML works developed an AI model for predicting risk before
lung resection surgery to provide information for anesthesiologists on whether a patient can
be extubated immediately after surgery, because it is difficult for doctors to comprehensively
evaluate risk factors to assess patients in time-limited pre-anesthetic clinics [9]. In this
previous study, we developed a predictive system to demonstrate the feasibility of an AI
model; however, the benefit of the AI intervention was not explored. Based on the review
of related works, an AI model was used to develop a system based on electronic medical
data that can predict whether patients could be weaned immediately after lung resection
surgery [9].

3. Materials and Methods
3.1. Ethical Consideration

The present study was approved by the Institutional Review Board of the Chi Mei
Medical Center (IRB Serial No.: 10912-016). All methods were carried out in accordance
with relevant guidelines and regulations. Informed consent from patients was waived due
to the retrospective nature of the study.

3.2. Study Design

We organized a multi-disciplinary team, including physicians, respiratory therapists,
data scientists, and information engineers, for this study. Adult patients (age ≥ 20 years)
who had a tracheotomy or endotracheal intubation, and were admitted to the RCC wards
of Chi Mei Medical Center from August 2016 to December 2019 were enrolled in the present
study. Figure 1 shows the research flow.
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Figure 1. Research Flow. RCC: respiratory care center; SMOTE: synthetic minority oversampling tech-
nique; AUC: area under the receiver operating characteristic curve; HIS: hospital information system.

3.3. Feature and Outcome Variables

The 26 feature variables included for modeling were age, gender, APACHE II (Acute
Physiology and Chronic Health Evaluation II) score in RCC, GCS_E (Glasgow Coma
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Scale_eyes opening) in RCC, GCS_M (Glasgow Coma Scale_motor response) in RCC,
heart rate, SBP (systolic blood pressure), DBP (diastolic blood pressure), suction times,
duration of MV (periods in support mode), FiO2, PEEP (positive end-expiratory pressure),
RR Actual (respiratory rate actual), MV Actual (minute ventilation actual), mPaw (mean
airway pressure), SpO2, PSL (pressure support level), PSL volume, T-piece trial count, and
presence of comorbidities such as diabetes, chronic obstructive pulmonary disease (COPD),
myocardial infarction (MI), stroke, end-stage renal disease (ESRD), pneumonia, and sepsis.
These features were chosen because of their wide availability in the RCC setting. All feature
variables were extracted from the hospital information system (HIS) database as well as
real-time recordings of ventilator outputs. Referring to a Taiwanese population-based
study [10], we defined the outcome variable of successful weaning as weaning from MV
for five consecutive days. This is also accepted as a basis for the provision of government-
related health subsidies in Taiwan. Meanwhile, failed weaning included transfer back to
ICU/ward with MV, transfer to respiratory care ward (RCW, long-term care settings to
which prolonged mechanical ventilator (PMV)-dependent RCC patients can be transferred),
discharge from hospital in critical condition (critical AAD), and death. The outcome
variable was binary-coded with 1 as successful weaning and with 0 as failed weaning.

3.4. Model Building and Measurement

Before modeling, the data were randomly split into the training dataset (70%) and the
test dataset (30%). To balance the dataset with an imbalanced outcome class, the synthetic
minority over-sampling technique (SMOTE) [11] was applied. SMOTE is an oversampling
technique in which the minority class is oversampled by creating “synthetic” samples along
the line segments joining any or all of the minority class’ nearest neighbors. This technique
was adopted only for the training dataset.

We used seven supervised ML algorithms, which included logistic regression (LR),
random forest (RF), support vector machine (SVM), k-nearest neighbors (KNN), extreme
gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and multilayer
perceptron (MLP), to build the models and measure the models’ quality in terms of accuracy,
sensitivity, specificity, receiver operating characteristic curve (ROC), and area under the
receiver operating characteristic curve (AUC) [12]. However, overall model performance is
generally evaluated by AUC in medical studies since both true/false positive and true/false
negative are considered. Cross-validation is a resampling procedure used to evaluate ML
models more objectively. We performed a five-fold cross-validation and the best model was
chosen based on the highest AUC value. This was then used to develop a prediction system.

The Python programs in scikit.learn, Tensorflow, and other toolkits were utilized to
complete the model building and relevant analysis [13]. The tools employed included
Python 3.7.6, TensorFlow 2.1.0, Keras 2.3.1, Numpy 1.18.1, Pandas 1.0.3, imbalanced-learn
0.6.2, lightgbm 2.3.1, xgboost 1.1.1, matplotlib 3.1.3, and scikit-learn 0.22.2.post1.

3.5. Implementing an Interactive AI Prediction System with the Optimal Model

To verify whether the study’s optimal model was indeed feasible, the model was used
to develop a prototype system with interactive functions for respiratory care members
(physicians and respiratory therapists) to test and evaluate [9,14]. Based on Liao et al.’s
study [15], we implemented this AI predictive system with web services technology in
a digital dashboard form. The AI model was built with Python language and packed as
a web service while the prediction system was developed with Microsoft Visual Studio®

and integrated into the HIS. The AI infrastructure in Chi Mei Medical Center includes one
GPU (graphics processing unit) server for efficient training of models, one database server
for storing big medical data, and one web-service server for storing the developed web
services which can be used by HIS to perform real-time specific predictions.

According to the need for clinical respiratory therapy, this study set 11 time periods
to provide timely predictions (each day was considered as a time period). A web-based
dashboard system was designed to present the probability of successful weaning in each
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time period from the beginning of RCC admission to the nearest future time period for
each patient. For example, if a patient stayed in RCC for 50 h, the dashboard would show
the probability of the 24th, 48th, and 72nd hours. By observing the trend curve of the prob-
abilities (colored balls), the respiratory care team had the capacity to objectively evaluate
each patient and assess whether it was possible to try to wean them from ventilator use.

An important feature of our AI system is its ability to provide interactive functions,
allowing respiratory care members to not only obtain current success probabilities quickly
but also to manually adjust model feature values (e.g., SBP) to simulate the probability of
success after possible changes in their patient’s overall health condition. This would be
very helpful for advanced decision making and physician–patient communication.

4. Results
4.1. Demographics and Baseline Statistical Tests

After removing the missing or ambiguous values, a total of 670 patients who were
admitted to the RCC at Chi Mei Medical Center between August 2016 and December 2019
were retrospectively included in the present study for building the AI model. The detailed
baseline characteristics and grouping based on the success and failure of the weaning are
shown in Table 1.

Table 1. Demographics and baseline statistical tests.

Feature
Total Patients Weaning Failure Weaning Success

p-Value
N = 670 N = 210 N = 460

Age, mean (SD) 68.9 (14.1) 70.0 (13.5) 68.4 (14.4) 0.161
Male, n (%) 409 (61.0) 140 (66.7) 269 (58.5) 0.054

APACHE II score, mean (SD) 16.1 (5.8) 17.9 (6.0) 15.3 (5.5) <0.001
GCS_E, mean (SD) 3.2 (1.0) 3.0 (1.1) 3.3 (0.9) 0.005
GCS_M, mean (SD) 5.0 (1.0) 4.8 (1.2) 5.1 (0.9) 0.001

Diabetes, n (%) 261 (39.0) 93 (44.3) 168 (36.5) 0.068
COPD, n (%) 202 (30.1) 80 (38.1) 122 (26.5) 0.003

MI, n (%) 143 (21.3) 55 (26.2) 88 (19.1) 0.049
Stroke, n (%) 306 (45.7) 84 (40.0) 222 (48.3) 0.056
ESRD, n (%) 86 (12.8) 31 (14.8) 55 (12.0) 0.377

Pneumonia, n (%) 515 (76.9) 180 (85.7) 335 (72.8) <0.001
Sepsis, n (%) 292 (43.6) 119 (56.7) 173 (37.6) <0.001

HR, mean (SD) 87.4 (17.9) 92.8 (20.9) 85.0 (15.7) <0.001
SBP, mean (SD) 127.9 (21.2) 126.9 (21.5) 128.3 (21.1) 0.452
DBP, mean (SD) 75.2 (14.8) 74.8 (14.5) 75.4 (14.9) 0.622

Frequency of suction (per day), mean (SD) 4.5 (5.7) 4.0 (5.1) 4.7 (5.9) 0.100
The duration of on-MV, mean (SD) 355.2 (209.2) 412.4 (267.2) 329.0 (170.6) <0.001

FiO2, mean (SD) 25.8 (2.7) 26.8 (3.2) 25.4 (2.3) <0.001
PEEP, mean (SD) 5.2 (0.8) 5.5 (1.0) 5.1 (0.5) <0.001

RR Actual, mean (SD) 18.2 (5.5) 19.6 (6.0) 17.5 (5.1) <0.001
MV Actual, mean (SD) 7.4 (2.6) 8.1 (2.9) 7.0 (2.3) <0.001

mPaw, mean (SD) 8.6 (3.7) 9.5 (6.2) 8.1 (1.2) 0.002
SpO2, mean (SD) 98.4 (4.2) 98.2 (2.0) 98.4 (4.8) 0.451
PSL, mean (SD) 9.5 (2.1) 10.9 (2.7) 8.9 (1.3) <0.001

PSL volume, mean (SD) 417.7 (115.7) 429.2 (126.8) 412.5 (110.1) 0.101
T-piece trial, mean (SD) 3.1 (4.1) 1.9 (3.6) 3.6 (4.2) <0.001

Note1. APACHE II: Acute Physiology and Chronic Health Evaluation II; GCS_M, E: Glasgow Coma Scale—motor
response, eye opening; COPD: chronic obstructive pulmonary disease; MI: myocardial infarction; ESRD: end-
stage renal disease; HR: heart rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; MV: mechanical
ventilation; PEEP: positive end-expiratory pressure; RR Actual: respiratory rate, actual; MV Actual: minute
ventilation, actual; PSL: pressure support level. Note2. p-value was examined by chi-squared test (categor-
ical features) or two-sample t test (numerical features); null hypotheses: there are no differences among the
demographic groups (variables).

The results of the Spearman correlation analysis in Table 2 indicate the contribution of
each feature to the outcome. It can be seen, based on the absolute values of the correlation



Diagnostics 2022, 12, 975 6 of 13

coefficients, that the PSL had the strongest correlation with successful weaning outcomes,
followed by FiO2, T-piece trial, mPaw, PEEP, and APACHE II score.

Table 2. The correlation coefficient between each feature and outcome of successful weaning.

Feature Correlation Coefficient Feature Correlation Coefficient

Age −0.047 MV Actual −0.186
Sex −0.078 mPaw −0.244

APACHE II score(RCC
admission) −0.208 SpO2 0.074

GCS_E 0.105 PSL −0.410
GCS_M 0.109 PSL volume −0.059

HR −0.184 T−piece trial 0.245
SBP 0.042 Diabetes −0.074
DBP 0.025 COPD −0.117

frequency of suction (per day) 0.042 MI −0.080
The duration of weaning −0.140 Stroke 0.077

FiO2 −0.254 ESRD −0.039
PEEP −0.216 Pneumonia −0.142

RR Actual −0.160 Sepsis −0.178

4.2. Modeling Results

This study used seven machine-learning algorithms, namely LR, RF, SVM, KNN,
lightGBM, XGBoost, and MLP, to build the prediction models with the training dataset.
A grid search with fivefold cross-validation for hyper-parameter (see Table 3) tuning for
each algorithm was conducted to obtain the best model. The prediction models were tested
with the testing dataset and measured in terms of their accuracy, sensitivity, specificity,
and AUC (see Table 4). Among the seven algorithms, the XGBoost algorithm had the best
performance, with the highest AUC (see Table 4, Figure 2). Boosting algorithms are an
advanced ensemble machine-learning strategy that endeavor to make an accurate classifier
from various weak classifiers [16].

Table 3. Hyper-parameter range for experiments.

Method and Hyper-Parameter Values

KNN
weights uniform, distance

n_neighbors (Number of neighbors) range(1, 25)
algorithm auto, ball_tree, kd_tree, brute
leaf_size range(1, 5)

Logistic Regression
penalty l1, l2

C (Inverse of regularization strength) 1e−3, 1e−2, 1e−1
max_iter (Maximum number of iterations) 10, 30, 50, 100, 1000

SVM
kernel rbf, linear

gamma (Kernel coefficient) auto, scale, 1e−2, 1e−3
C (Inverse of regularization strength) 1, 2, 5, 10

shrinking True, False

Random Forest
n_estimators (Number of trees in the forest) 100, 200, 500, 700, 1000

max_features auto, sqrt
max_depth auto, 15, 30, 50

LightGBM
learning_rate 1e−3, 1e−2, 1e−1

num_iterations 100, 200, 500, 700, 1000
max_depth 4, 12, 15, 30, 50
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Table 3. Cont.

Method and Hyper-Parameter Values

num_leaves 1, 5, 10
feature_fraction 1e−1, 0.2, 0.5, 0.7

MLP

hidden_layer_sizes (100), (100, 55), (90, 60), (200, 150,
50),(64, 64, 32), (64, 128, 64, 32)

batch_size (Size of minibatches for stochastic optimizers) 8, 16, 32
learning_rate_init 1e−3, 1e−2, 1e−1

early_stopping True, False

XGBoost
learning_rate 1e−4, 1e−3, 1e−2

gamma (minimum loss reduction required to make a
further partition on a leaf node of the tree) 1e−2, 1e−3, 1e−4, 1e−5

num_iterations 100, 200, 500, 700, 1000
max_depth 4, 15, 30, 50

Note. The hyper-parameters that are not described in this table were set to the default values used in the
scikit-learn library.

Table 4. Testing results of the predictive models.

Algorithm Accuracy Sensitivity Specificity AUC

KNN 0.746 0.728 0.786 0.792
Logistic Regression 0.776 0.804 0.714 0.803

SVM 0.784 0.783 0.786 0.818
Random Forest 0.791 0.804 0.762 0.845

LightGBM 0.813 0.815 0.810 0.859
MLP 0.806 0.804 0.810 0.864

XGBoost 0.851 0.880 0.786 0.868
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4.3. Prediction System Development and User Evaluation

The XGBoost prediction model showed the best testing results among all the prediction
models tested in this study and was therefore selected for subsequent clinical system
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development and deployment. The AI Center and Department of Information Systems
of Chi Mei embedded the XGBoost model in a web-based system (digital dashboard) for
predicting the optimal MV weaning timing for patients in the RCC (see Figure 3). The
digital dashboard was launched in the RCC of Chi Mei Hospital in November 2020.
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Figure 3. A screenshot of the AI prediction system (digital dashboard).

The digital dashboard was demonstrated to the RCC respiratory care members (three
physicians and five therapists) and gained high recognition. They thought that it was a
very useful tool in helping to decide whether it would be beneficial to try to wean patients
from ventilator use. This decision could then be easily communicated with the patients or
their families.

4.4. Use Case Scenario

As shown in Figure 3, the RCC respiratory care members applied the prediction system
on the morning of 7 April 2022, to obtain an overview of the status of all the RCC patients.
Patient 01 was admitted on 30 March 2022, having received 191 h of ventilator use after
admission. For conservative consideration, the threshold for trying to wean was set at more
than 50% in the initial stage of the deployment of the system (the threshold probability
was initially set at 60%). This resulted in a probability of nearest future for successful
weaning of 60.38% (day 7) and of nearest past of 61.24% (day 8). This showed that the
patient’s respiratory ability had improved for two consecutive days (increasing probability
of success) and demonstrated a higher value of successful weaning than the threshold set
at 60%. Based on these data, the RCC respiratory care members (physicians and respiratory
therapists) may have been able to successfully remove the patient from the ventilator on or
before day 8. As for patients 03 to 06, the results showed that they were not suitable for
weaning because of the low probability of success (<50%).

Users can double-click a specific patient on the dashboard to see the curve chart of the
probability of successful weaning and obtain an overview of the progress of the ventilator
use (see Figure 4). As shown in Figure 4, users can click “Interactive prediction” to manually
adjust the model feature values (e.g., FiO2set) and simulate the probability of success after
possible changes in the patient’s overall health condition (followed steps 1, 2, 3 in Figure 5).

In this case, after the respiratory care members simulated the patient’s feature values
of FiO2set (FiO2) from 30 to 25, PEEPEPAP (PEEP) from 8 to 5, and T-P trial (T-piece trial)
from 0 to 3 (times), it was found that the probability rose from 32.34% to 51.15%, indicating
that successful weaning could be performed based on the given health status. Therefore,
the respiratory care members could strengthen the patient’s rehabilitation treatment to
improve the patient’s respiratory muscle strength and endurance. Next, they could perform
T-P trials and lower the FiO2 as soon as possible, so that the patient would be highly likely
to successfully wean from the ventilator. Please note that part of the interface of the online
dashboard is in Chinese, but these figures (Figures 3–5) have been manually modified to
English for an international readership.
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4.5. Preliminary Impact Study for Patients

After the dashboard was launched in the RCC in late 2020, we obtained the mean
intubation time of patients who were successfully weaned from MV during the initial
adoption from January 2021 to March 2021. We then compared the results with those of the
patients from the previous year (from January 2020 to March 2020 without AI assistance).
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Adult patients who had endotracheal intubation and had been removed from MV for 120 or
more hours (i.e., successful weaning) were included in the comparison study. The analysis
results (see Table 5) showed that the disease severity of the patients during AI intervention
seemed greater than that of those without AI intervention. Further, the mean number
of intubation days of those who were successfully weaned was reduced by 0.5 and the
120-hour successful weaning rate increased by 3.1%, indicating that our AI model did help
patients wean from ventilators earlier, which could lead to a positive impact on quality
of care.

Table 5. The Preliminary Results of Clinical Evaluation and Comparison.

Indicators
(before AI Adoption)

2020/01–03
N = 57

(after AI Adoption)
2021/01–03

N = 58

RCC APACHE II score, mean 14.6 16.1

Intubation days of successful
weaning, mean 16.7 16.2

120-h successful weaning-rate 67.1% 70.2%

5. Discussion

In this study, we built an AI predictive model and implemented an AI dashboard
with the best model to help healthcare workers decide the best time to wean patients in
the RCC. In addition to superior model performance, the preliminary impact analysis
showed that the AI intervention reduced the number of intubation days for patients who
were successfully weaned from MV and increased the weaning rate. To the best of our
knowledge, no previous study has explored the development and use of AI to predict the
successful weaning of patients from MV in the RCC setting. Thus, our study has profound
academic and practical novelty and value.

The timing of extubation is important in mechanical ventilation. Delayed extubation
prolongs hospital stays, increases medical costs, and results in greater suffering. Meanwhile,
premature extubation increases the risk of extubation failure and re-intubation, which in
turn leads to a higher risk of morbidity, greater medical expenditure, longer hospital length
of stay, and increased risk of mortality [17]. Further, poor outcomes are associated with
extubation failure. The early identification of patients’ ability to undergo a breathing
trial can shorten their ventilator use duration. If a patient does not qualify for successful
weaning based on the developed prediction system, premature extubation and extubation
failure can be reduced, and alternative care practices can be instituted, such as an increased
rehabilitation program, an evaluation of the patient’s nutritional status, and transfer to
a long-term care facility to further reduce morbidity, length of hospital stay, and risk
of mortality.

A recent study also used the electronic medical records of RCC patients in Taiwan
from between 2013 and 2018 to develop a ML model to predict the successful weaning of
patients from ventilators [18]. They used three models, XGBoost, RF, and LR, to establish
the prediction model. The AUCS obtained were 0.908, 0.888, and 0.762 for the XGBoost
model, RF model, and LR model, respectively. In the current study, seven supervised ML
algorithms were used to build the model, and the AUCS obtained were 0.868, 0.845, and
0.803 for the XGBoost model, RF model, and LR model, respectively. In Lin’s study [18],
the dataset and out-dataset contained similar clinical domains, which were: ventilation
domain, physiology domain, laboratory domain, APACHE II score, and the presence of
comorbidities. In the current study’s domain, the vital sign before weaning was used
instead of the weekly average blood pressure, heart rate, body temperature, and oxygen
saturation utilized in Lin’s study [18]. We also included the frequency of sputum suction in
our analysis because airway hygiene plays an important role in successful weaning.
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Lin’s study [18] used a total of 300 features (covering the average values of the same
features of MV use during 1 to 6 weeks) to build an excellent prediction model. However,
it may be difficult to actually apply it in clinics because it incorporates too many variables.
In addition, the model may only be suitable for patients who have been on MV for 6 weeks
(or more). However, based on general evidence, many RCC patients can be successfully
weaned from MV before 6 weeks. By contrast, the present research aimed at practical
usability and chose 26 features that are easily available in clinical practice to build a
predictive model, and the predictable timing was not limited to the time of MV use. More
importantly, we implemented the model as a predictive system (a digital dashboard) and
demonstrated its feasibility and effectiveness.

A patient’s underlying disease could lead to respiratory failure; therefore, the disease
should be treated and kept under control before weaning the patient from ventilator use
in the ICU. The weaning procedure includes a gradual reduction in ventilator support by
adjusting the ventilator setting and the oxygenation, making sure that the vital signs are
stable during the process. The patient may then perform a spontaneous breathing trial and
extubation. A study by Rose et al. [19] used knowledge-based automated weaning systems
for the early detection of patients’ ability to spontaneously breathe and to inform decisions
over the discontinuation of ventilation. These methods were found to reduce the duration
of MV, the length of stay in the ICU, and the likelihood of tracheostomy for critically ill
patients; however, a systematic review and meta-analysis showed no strong evidence of
the effect on hospital stay, reintubation, self-extubation, non-invasive ventilation following
extubation, or risk of mortality.

Ventilation is necessary to save lives, especially during respiratory failure, but pro-
longed use of ventilators increases the risk of several complications [20,21]. The weaning
process accounts for about 40% of the total duration of ventilation [22]. With the improve-
ment in information technology and the development of highly skilled organizations, both
AI and ML have been widely applied in most healthcare settings. AI and ML methods
have been found to exert a positive influence on patient outcomes. AI helps physicians
to enhance their clinical decision processes by allowing them to efficiently use substan-
tial amounts of digital information in ICU settings. A systematic review evaluated the
efficacy and effectiveness of AI in weaning mechanically ventilated ICU patients [23]. AI
application in the weaning process can be divided into ventilator and oxygenation man-
agement [23–25], spontaneous breathing trials [26–28], and extubation and arterial blood
gas prediction [29,30]. It is worth mentioning that these applications rely on consulting
systems that tend to operate according to less robustly confirmed methods. Further, it was
found that it is difficult to test the system in different clinical situations. Because of the
long list of decisions the algorithm makes, it is difficult to obtain ground-truth annotations
from human experts. One criticism of AI is that its methods could lead to black-box results;
that is, the algorithm can provide a physician with a prediction but cannot offer further
information on how the prediction was made based on the given data. Efforts to explain AI
are being made to enhance the clarity of its algorithms.

Before the era of AI, decisions over the weaning process and the timing of weaning
were made based on the physician’s personal experience. Physicians take into consideration
changes in vital signs, laboratory data, images, and ventilator settings to decide on weaning
and extubation. Even after a comprehensive evaluation, weaning may be performed too
late for some patients, and the risk of misjudgment still exists. The development of an AI
model could support physicians’ decision making, allowing more precise and scientifically
sound decisions over the weaning process.

There are some limitations to our study. First, the data used in the present study
were obtained in only one medical center; thus, the results may not be generalized to
other hospitals and areas. We call for further study by enrolling multiple centers. Next,
we did not analyze medical images, such as computed tomography (CT) scans and chest
roentgenography. We believe that the additional information from these images could
further improve the prediction of the developed model. Finally, weaning is a dynamic
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process involving many confounding factors, which can change with time; therefore, some
individualized factors need to be further evaluated.

6. Conclusions

Weaning strategies in RCC patients must be thoroughly planned, and determining
the timing of weaning from ventilator use is one of the most important steps to consider.
Incorporating a variety of clinically accessible factors that affect ventilator weaning in RCC,
including patient physiology, nursing records, and mechanical ventilation parameters, this
study used AI technology to develop an innovative system for predicting the optimal timing
of weaning, which was integrated later on into clinical practice. A preliminary impact
analysis showed its benefits, as expected. Based on these results, our study demonstrated
the clinical usefulness of AI in RCCs. It is advised that future researchers consider including
more parameters to improve the prediction accuracy of our study. A large-scale prospective
study of AI intervention in MV weaning decision making in RCCs is needed. Moreover,
the application of information technology infrastructure while implementing AI services
in clinical settings is another critical issue. Advanced technologies, such as the Internet of
Medical Things (IoMT), blockchain, and cloud computing should be studied [31,32].
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